
Query languages for property graphs

From RPQs to Cypher

NoSQL and New SQL course

M2 LID, Université Gustave-Eiffel

2023 -2024

version 2

Introduction

About this PDF 2

Navigation

From any frame, the page numberpage number is a link to the navigable outline

Term translations

There is a French/English lexiconFrench/English lexicon at the end.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

This segment is about query languages for property graphs

In part II:

The data model is Property Graph (PG)

The DBMS we will use (Neo4j) implements this DM

The query languages we consider (Cypher, GQL, etc.)
need this DM to have any meaning

Query

Answer

User DBMS

DM

This segment is about query languages for property graphs

In part II:

The data model is Property Graph (PG)

The DBMS we will use (Neo4j) implements this DM

The query languages we consider (Cypher, GQL, etc.)
need this DM to have any meaning

Query

Answer

User DBMS

DM

This segment is about query languages for property graphs

In part II:

The data model is Property Graph (PG)

The DBMS we will use (Neo4j) implements this DM

The query languages we consider (Cypher, GQL, etc.)
need this DM to have any meaning

Query

Answer

User DBMS

DM

This segment is about query languages for property graphs

In part II:In part II:

The data model is Property Graph (PG)

The DBMS we will use (Neo4j) implements this DM

The query languages we consider (Cypher, GQL, etc.)
need this DM to have any meaning

Query

Answer

User DBMS

DM

Popularity of Graph DBMS’s (1) 5

Vast majority of DMBS’s are relational, not graph

Document stores 10.3%

Graph DBMS 1.7%

Key-value stores 5.5%

Multivalue DBMS 0.3%
Native XML DBMS 0.3%
Object oriented DBMS 0.3%
RDF stores 0.5%

Relational DBMS 71.9%

Search engines 4.4%

Spatial DBMS 0.5%

Time Series DBMS 1.2%

Vector DBMS 0.2%
Wide column stores 2.8%

Figure and data from db-engines.com, August 2023

db-engines.com

Popularity of Graph DBMS’s (2) 6

Graph DBMS’s has grown in popularity for ten years

Relational DBMS’s continued their slow decline

Figure and data from db-engines.com, August 2023

db-engines.com

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·SparQL

PGQL

GSQL G-Core

Academia

Late 1980’s – RPQs are invented

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·SparQL

PGQL

GSQL G-Core

Academia

Since 1990’s – RPQs are studied and extended in academia

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·SparQL

PGQL

GSQL G-Core

Academia

2011 – The query language Cypher is released with the DBMS Neo4j

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·SparQL

PGQL

GSQL G-Core

Academia

Mid 2010’s – Cypher is successful and new graph DBMS’s appear.
Some use Cypher, some come with their own query language.

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·SparQL

PGQL

GSQL G-Core

Academia

Late 2010’s – Idea to merge existing languages for interoperability

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·SparQL

PGQL

GSQL G-Core

Academia

2023 – SQL/PGQ support for querying PG’s in SQL
2024? – GQL, standard query language for PG’s

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·SparQL

PGQL

GSQL G-Core

Academia

Side note: In SPARQL, the standard language for the RDF DM, features
Property paths which are also based on RPQ’s.

Outline 8

Part I: Theoretical Foundations

Data model: Graphs
Query language: RPQs

Part II: A practical application

Data model: Property graphs
Query language: Cypher

Part I: Theoretical foundations

Terminology reminder: sets 10

A set is a finite or infinite collec-
tion of elements such that:

order does not matter
duplicates do not matter

Example sets:
{1} = {1, 1}
{4, 8, 15, 16, 23, 42}

= {8, 4, 23, 15, 42, 16}
{(4, 15), (16, 42)}
N = {0, 1, 2, . . .}
∅, the empty set

The union of two sets A and B
is the set of elements which are
in A, in B, or in both A and B.

{1, 3} ∪ {2, 1} = {1, 3, 2}

The intersection of two sets A
and B is the set of elements
which are in both A and B.

{1, 3} ∩ {2, 1} = {1}

The Cartesian product of two
sets A and B is the set of all pairs
(x , y) for x ∈ A and y ∈ B

{1, 2, 3} × {a, b} = {(1, a),
(1, b), (2, a), (2, b), (3, a), (3, b)}

Terminology reminder: sets 10

A set is a finite or infinite collec-
tion of elements such that:

order does not matter
duplicates do not matter

Example sets:
{1} = {1, 1}
{4, 8, 15, 16, 23, 42}

= {8, 4, 23, 15, 42, 16}
{(4, 15), (16, 42)}
N = {0, 1, 2, . . .}
∅, the empty set

The union of two sets A and B
is the set of elements which are
in A, in B, or in both A and B.

{1, 3} ∪ {2, 1} = {1, 3, 2}

The intersection of two sets A
and B is the set of elements
which are in both A and B.

{1, 3} ∩ {2, 1} = {1}

The Cartesian product of two
sets A and B is the set of all pairs
(x , y) for x ∈ A and y ∈ B

{1, 2, 3} × {a, b} = {(1, a),
(1, b), (2, a), (2, b), (3, a), (3, b)}

Terminology reminder: sets 10

A set is a finite or infinite collec-
tion of elements such that:

order does not matter
duplicates do not matter

Example sets:
{1} = {1, 1}
{4, 8, 15, 16, 23, 42}

= {8, 4, 23, 15, 42, 16}
{(4, 15), (16, 42)}
N = {0, 1, 2, . . .}
∅, the empty set

The union of two sets A and B
is the set of elements which are
in A, in B, or in both A and B.

{1, 3} ∪ {2, 1} = {1, 3, 2}

The intersection of two sets A
and B is the set of elements
which are in both A and B.

{1, 3} ∩ {2, 1} = {1}

The Cartesian product of two
sets A and B is the set of all pairs
(x , y) for x ∈ A and y ∈ B

{1, 2, 3} × {a, b} = {(1, a),
(1, b), (2, a), (2, b), (3, a), (3, b)}

Terminology reminder: sets 10

A set is a finite or infinite collec-
tion of elements such that:

order does not matter
duplicates do not matter

Example sets:
{1} = {1, 1}
{4, 8, 15, 16, 23, 42}

= {8, 4, 23, 15, 42, 16}
{(4, 15), (16, 42)}
N = {0, 1, 2, . . .}
∅, the empty set

The union of two sets A and B
is the set of elements which are
in A, in B, or in both A and B.

{1, 3} ∪ {2, 1} = {1, 3, 2}

The intersection of two sets A
and B is the set of elements
which are in both A and B.

{1, 3} ∩ {2, 1} = {1}

The Cartesian product of two
sets A and B is the set of all pairs
(x , y) for x ∈ A and y ∈ B

{1, 2, 3} × {a, b} = {(1, a),
(1, b), (2, a), (2, b), (3, a), (3, b)}

Part I: Theoretical foundations

1. Data model: labeled graphs

Our data model : (Labeled) graphs (1) 12

Example

A graph consists of ...

Vertices

Edges

Edge labels

0 1 2 3

4

Ferry

Our data model : (Labeled) graphs (1) 12

Example

A graph consists of ...

VerticesVertices

Edges

Edge labels

0 1 2 3

4

Ferry

Our data model : (Labeled) graphs (1) 12

Example

A graph consists of ...

Vertices

EdgesEdges

Edge labels

0 1 2 3

4

Ferry

Our data model : (Labeled) graphs (1) 12

Example

A graph consists of ...

Vertices

Edges

Edge labelsEdge labels

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Our data model : (Labeled) graphs (2) 13

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L× V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4), (4,R, 1),
(0,F, 3), (4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Our data model : (Labeled) graphs (2) 13

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L× V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1)(0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4), (4,R, 1),
(0,F, 3), (4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Our data model : (Labeled) graphs (2) 13

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L× V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4)(2,R, 4), (4,R, 1),
(0,F, 3), (4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Our data model : (Labeled) graphs (2) 13

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L× V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4), (4,R, 1),
(0,F, 3)(0,F, 3), (4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Our data model : (Labeled) graphs (2) 13

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L× V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4), (4,R, 1),
(0,F, 3), (4,G, 4)(4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Limits to the graph data model (1) 14

Our graphs are single-labeled and single-edge

Each edge has exactly one label.
There cannot be two identical edges.

Road, Ferry

Forbidden Forbidden

Ferry

Road

Allowed

Road

Road

Forbidden

Limits to the graph data model (2) 15

The graph DM is about topology, not data

We encode the existence of entities and of relations between entities
Ex: cities, roads
We don’t encode specific data of an entity or relation
Ex: names, distances

Examples

Our model cannot encode that
the road from 0 to 1 is 2km
long
the gas price is 2€ in vertex 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Part I: Theoretical foundations

2. Graph DM vs Relational DM

Translation: Graph to Tables (1) 17

Can a graph be stored in tables?

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 17

Example – One Vertex table with one row per vertex in the graph

VertexVertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 17

Example – One table for each different label in the graph

Vertex

idid

0
1
2
3
4

RoadRoad

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

FerryFerry

#srcsrc #tgttgt

0 3

GasGas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 17

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 17

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 17

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 17

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 17

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 17

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 17

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (2) 18

Principles of the translation

We start from a graph (V , L,E)
Since V is finite we may enumerate it: V = {v1, . . . , vn}

One table for vertices

Vertex

idid

0
1
...
n

One table per label ℓ in L

ℓ

#srcsrc #tgttgt

...
...

i j
...

...

Table ℓ contains (i , j)
⇐⇒ (vi , ℓ, vj) ∈ E

Translation: Tables to Graph (1) 19

The relational database we want to encode in a graph

Client

loginlogin address

"Alice" "Wonderland"

"Bob" "124 Conch St."

"Eve" "WALL-E’s Truck"

Order

idid #buyer date

0 "Alice" 01-11-1865
1 "Bob" 07-07-2022
2 "Bob" 07-11-2023

Product

namename price

"Pocket Watch" 42
"Rabbit" 0
"Pants" 8
"Broom&Bucket" 4

Contains

#orderorder #productproduct

0 "Rabbit"

0 "Pocket Watch"

1 "Pants"

2 "Pants"

: part of primary key

: foreign keys
Client, Product and Order satisfy 0

Contains satisfies 2

Translation: Tables to Graph (1) 19

The relational database we want to encode in a graph

Client

loginlogin address

"Alice" "Wonderland"

"Bob" "124 Conch St."

"Eve" "WALL-E’s Truck"

Order

idid #buyer date

0 "Alice" 01-11-1865
1 "Bob" 07-07-2022
2 "Bob" 07-11-2023

Product

namename price

"Pocket Watch" 42
"Rabbit" 0
"Pants" 8
"Broom&Bucket" 4

Contains

#orderorder #productproduct

0 "Rabbit"

0 "Pocket Watch"

1 "Pants"

2 "Pants"

: part of primary key
#

:

foreign keys

Client, Product and Order satisfy 0

Contains satisfies 2

Translation: Tables to Graph (1) 19

The relational database we want to encode in a graph

Client

loginlogin address

"Alice" "Wonderland"

"Bob" "124 Conch St."

"Eve" "WALL-E’s Truck"

Order

idid #buyer date

0 "Alice" 01-11-1865
1 "Bob" 07-07-2022
2 "Bob" 07-11-2023

Product

namename price

"Pocket Watch" 42
"Rabbit" 0
"Pants" 8
"Broom&Bucket" 4

Contains

#orderorder #productproduct

0 "Rabbit"

0 "Pocket Watch"

1 "Pants"

2 "Pants"

: part of primary key
: foreign keys

Client, Product and Order satisfy 0

Contains satisfies 2

Translation: Tables to Graph (2) 20

Condition for the translation to be possible

Relational DB consists of tables T1, . . . ,Tk .

Each table Ti

has a primary key, consisting of several columns
has columns that are foreign keys

! Foreign keys can be part of the primary key.

Conditions for the database to be encodable in a graph

Each table Ti satisfies one of the following.
0 Zero foreign key is part of the primary key of Ti .
1 One foreign key is part of the primary key of Ti .
2 Two foreign keys are part of the primary key of Ti , and no other

column is part of the primary key.

Translation: Tables to Graph (3) 21

Condition for the translation to be possible

Relational DB consists of tables T1, . . . ,Tk .

Each table Ti

has a primary key, consisting of several columns
has columns that are foreign keys

! Foreign keys can be part of the primary key.

Conditions for the database to be encodable in a graph

Each table Ti satisfies one of the following.
0 Zero foreign key is part of the primary key of Ti .
1 One foreign key is part of the primary key of Ti .
2 Two foreign keys are part of the primary key of Ti , and no other

column is part of the primary key.

Translation: Tables to Graph (4) 22

The relational database we want to encode in a graph

Client

loginlogin address

"Alice" "Wonderland"

"Bob" "124 Conch St."

"Eve" "WALL-E’s Truck"

Order

idid #buyer date

0 "Alice" 01-11-1865
1 "Bob" 07-07-2022
2 "Bob" 07-11-2023

Product

namename price

"Pocket Watch" 42
"Rabbit" 0
"Pants" 8
"Broom&Bucket" 4

Contains

#orderorder #productproduct

0 "Rabbit"

0 "Pocket Watch"

1 "Pants"

2 "Pants"

: part of primary key
: foreign keys

Client, Product and Order satisfy 0

Contains satisfies 2

Translation: Tables to Graph (5) 23

One vertex per row in table satisfying 0 or 1

Client
row 1

Client
row 2

Client
row 3

Order
row 1

Order
row 2

Order
row 3

Product
row 1

Product
row 2

Product
row 3

Product
row 4

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Translation: Tables to Graph (5) 23

One edge per row and per foreign-key column in each table satisfying 0 or 1

Client
row 1

Client
row 2

Client
row 3

Order
row 1

Order
row 2

Order
row 3

Product
row 1

Product
row 2

Product
row 3

Product
row 4

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Translation: Tables to Graph (5) 23

One edge per row of tables satisfying 2

Client
row 1

Client
row 2

Client
row 3

Order
row 1

Order
row 2

Order
row 3

Product
row 1

Product
row 2

Product
row 3

Product
row 4

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Translation: Tables to Graph (6) 24

Takeaway

Wedding is edgy...

Wedding

#person1person1 #person2person2

Alice Bob
...

...

Alice Bob
Wedding

..but trouple is trouble

Trouple

#person1person1 #person2person2 #person3person3

Alice Bob Eve
...

...
...

Alice

Bob

Eve

T
rouple

How to encode non-binary relations in a graph (1) 25

The wrong ways: adding more edges

Trouple

#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Let us try to add two edges per
row of table Trouple.

! (Alice, Carl, Eve) is not a
row of table Trouple

Alice

Bob

Eve

Row
1

Carl

Dave

Ro
w
2

N
ot

a
row

How to encode non-binary relations in a graph (1) 25

The wrong ways: adding more edges

Trouple

#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Let us try to add two edges per
row of table Trouple.

! (Alice, Carl, Eve) is not a
row of table Trouple

Alice

Bob

Eve

Row
1

Carl

Dave Ro
w
2

N
ot

a
row

How to encode non-binary relations in a graph (1) 25

The wrong ways: adding more edges

Trouple

#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Let us try to add two edges per
row of table Trouple.

! (Alice, Carl, Eve) is not a
row of table Trouple

Alice

Bob

Eve

Row
1

Carl

Dave

Ro
w
2

N
ot

a
row

How to encode non-binary relations in a graph (2) 26

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouple

#pers1pers1 #pers2pers2 #pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

How to encode non-binary relations in a graph (2) 26

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouple

#pers1pers1 #pers2pers2 #pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

How to encode non-binary relations in a graph (2) 26

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouple

#pers1pers1 #pers2pers2 #pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

How to encode non-binary relations in a graph (2) 26

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouple

#pers1pers1#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

How to encode non-binary relations in a graph (2) 26

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouple

#pers1pers1#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

How to encode non-binary relations in a graph (2) 26

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouple

#pers1pers1#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

How to encode non-binary relations in a graph (3) 27

Reification is cheating

Reification works...

Reversible (one may reconstruct the Trouble table)

Easy to generalize to any arity

...but, it is contrary to the spirit of graphs:

The graph requires extra knowledge and maintenance:
Special vertices/edges/labels
Implictly linked labels/edges (Person1/Person2/Person3)
Integrity constraints

Query languages designed for graphs will not expect them

Part I: Theoretical foundations

3. Regular Path Queries

Terminology reminder from automata theory 29

A letter is a symbol coming from
a finite set, the alphabet.

In our case, the alphabet is the
label-set of the graph.

Examples:
{R,F,G} is an alphabet
R and G are letters

A word is a finite sequence of let-
ters

Examples words:
RGRR
R
ε, the empty word

A language is a finite or infinite
set of words

Example languages:
{R,RG}
{R,RR,RRR, . . .}
The words with one G
The words with a prime num-
ber of G

The four ways to build a regexp 30

Atoms

Each letter is a regexp
ε is a regexp

Ex: ε, R, and F are regexps

Concatenation ·
If Q1 and Q2 are regexps
Then Q1 · Q2 is a regexp

Ex: R · R and G · F are regexps
(R · R) · (G · F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R+R and G+F are regexps
(R · R) + (G · F) is a regexp

Kleene star ∗

If Q is a regexp
Then Q∗ is a regexp

Ex: R∗ and G∗ are regexps
((R∗ · G) + F)∗ is a regexp

The four ways to build a regexp 30

Atoms

Each letter is a regexp
ε is a regexp

Ex: ε, R, and F are regexps

Concatenation ·
If Q1 and Q2 are regexps
Then Q1 · Q2 is a regexp

Ex: R · R and G · F are regexps
(R · R) · (G · F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R+R and G+F are regexps
(R · R) + (G · F) is a regexp

Kleene star ∗

If Q is a regexp
Then Q∗ is a regexp

Ex: R∗ and G∗ are regexps
((R∗ · G) + F)∗ is a regexp

The four ways to build a regexp 30

Atoms

Each letter is a regexp
ε is a regexp

Ex: ε, R, and F are regexps

Concatenation ·
If Q1 and Q2 are regexps
Then Q1 · Q2 is a regexp

Ex: R · R and G · F are regexps
(R · R) · (G · F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R+R and G+F are regexps
(R · R) + (G · F) is a regexp

Kleene star ∗

If Q is a regexp
Then Q∗ is a regexp

Ex: R∗ and G∗ are regexps
((R∗ · G) + F)∗ is a regexp

The four ways to build a regexp 30

Atoms

Each letter is a regexp
ε is a regexp

Ex: ε, R, and F are regexps

Concatenation ·
If Q1 and Q2 are regexps
Then Q1 · Q2 is a regexp

Ex: R · R and G · F are regexps
(R · R) · (G · F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R+R and G+F are regexps
(R · R) + (G · F) is a regexp

Kleene star ∗

If Q is a regexp
Then Q∗ is a regexp

Ex: R∗ and G∗ are regexps
((R∗ · G) + F)∗ is a regexp

Language described by a regexp Q 31

Each regexp Q describes a language L(Q)

Examples:
L(R) = {R}

L(R · F · G) = {RFG}
L(R+ G) = {R,G}
L(R · R+ G · R) = L((R+ G) · R) = {RR,GR}
L(R∗) = {ε, R, RR, RRR, . . .}
L((R+ G)∗) = {ε, R, G, RR, RG, GG, . . .}
L((R · R)∗) = {ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

L(R∗ · G · R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language described by a regexp is called regular

Language described by a regexp Q 31

Each regexp Q describes a language L(Q)

Examples:
L(R) = {R}
L(R · F · G) = {RFG}

L(R+ G) = {R,G}
L(R · R+ G · R) = L((R+ G) · R) = {RR,GR}
L(R∗) = {ε, R, RR, RRR, . . .}
L((R+ G)∗) = {ε, R, G, RR, RG, GG, . . .}
L((R · R)∗) = {ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

L(R∗ · G · R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language described by a regexp is called regular

Language described by a regexp Q 31

Each regexp Q describes a language L(Q)

Examples:
L(R) = {R}
L(R · F · G) = {RFG}
L(R+ G) = {R,G}

L(R · R+ G · R) = L((R+ G) · R) = {RR,GR}
L(R∗) = {ε, R, RR, RRR, . . .}
L((R+ G)∗) = {ε, R, G, RR, RG, GG, . . .}
L((R · R)∗) = {ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

L(R∗ · G · R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language described by a regexp is called regular

Language described by a regexp Q 31

Each regexp Q describes a language L(Q)

Examples:
L(R) = {R}
L(R · F · G) = {RFG}
L(R+ G) = {R,G}
L(R · R+ G · R) = L((R+ G) · R) = {RR,GR}

L(R∗) = {ε, R, RR, RRR, . . .}
L((R+ G)∗) = {ε, R, G, RR, RG, GG, . . .}
L((R · R)∗) = {ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

L(R∗ · G · R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language described by a regexp is called regular

Language described by a regexp Q 31

Each regexp Q describes a language L(Q)

Examples:
L(R) = {R}
L(R · F · G) = {RFG}
L(R+ G) = {R,G}
L(R · R+ G · R) = L((R+ G) · R) = {RR,GR}
L(R∗) = {ε, R, RR, RRR, . . .}

L((R+ G)∗) = {ε, R, G, RR, RG, GG, . . .}
L((R · R)∗) = {ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

L(R∗ · G · R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language described by a regexp is called regular

Language described by a regexp Q 31

Each regexp Q describes a language L(Q)

Examples:
L(R) = {R}
L(R · F · G) = {RFG}
L(R+ G) = {R,G}
L(R · R+ G · R) = L((R+ G) · R) = {RR,GR}
L(R∗) = {ε, R, RR, RRR, . . .}
L((R+ G)∗) = {ε, R, G, RR, RG, GG, . . .}

L((R · R)∗) = {ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

L(R∗ · G · R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language described by a regexp is called regular

Language described by a regexp Q 31

Each regexp Q describes a language L(Q)

Examples:
L(R) = {R}
L(R · F · G) = {RFG}
L(R+ G) = {R,G}
L(R · R+ G · R) = L((R+ G) · R) = {RR,GR}
L(R∗) = {ε, R, RR, RRR, . . .}
L((R+ G)∗) = {ε, R, G, RR, RG, GG, . . .}
L((R · R)∗) = {ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

L(R∗ · G · R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language described by a regexp is called regular

Language described by a regexp Q 31

Each regexp Q describes a language L(Q)

Examples:
L(R) = {R}
L(R · F · G) = {RFG}
L(R+ G) = {R,G}
L(R · R+ G · R) = L((R+ G) · R) = {RR,GR}
L(R∗) = {ε, R, RR, RRR, . . .}
L((R+ G)∗) = {ε, R, G, RR, RG, GG, . . .}
L((R · R)∗) = {ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

L(R∗ · G · R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language described by a regexp is called regular

Language described by a regexp Q 31

Each regexp Q describes a language L(Q)

Examples:
L(R) = {R}
L(R · F · G) = {RFG}
L(R+ G) = {R,G}
L(R · R+ G · R) = L((R+ G) · R) = {RR,GR}
L(R∗) = {ε, R, RR, RRR, . . .}
L((R+ G)∗) = {ε, R, G, RR, RG, GG, . . .}
L((R · R)∗) = {ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

L(R∗ · G · R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language described by a regexp is called regular

Definition of RPQs and matching walks 32

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R−→ 1

R−→ 2
R−→ 4 RRR

0
S−→ 0

F−→ 3 SF

0
R−→ 1

R−→ 2
R−→ 4

G−→
4

R−→ 1
R−→ 2

R−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 32

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R−→ 1

R−→ 2
R−→ 4 RRR

0
S−→ 0

F−→ 3 SF

0
R−→ 1

R−→ 2
R−→ 4

G−→
4

R−→ 1
R−→ 2

R−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 32

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R−→ 1

R−→ 2
R−→ 4 RRR

0
S−→ 0

F−→ 3 SF

0
R−→ 1

R−→ 2
R−→ 4

G−→
4

R−→ 1
R−→ 2

R−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 32

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R−→ 1

R−→ 2
R−→ 4 RRR

0
S−→ 0

F−→ 3 SF

0
R−→ 1

R−→ 2
R−→ 4

G−→
4

R−→ 1
R−→ 2

R−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 32

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R−→ 1

R−→ 2
R−→ 4 RRR

0
S−→ 0

F−→ 3 SF

0
R−→ 1

R−→ 2
R−→ 4

G−→
4

R−→ 1
R−→ 2

R−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 32

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R−→ 1

R−→ 2
R−→ 4 RRR

0
S−→ 0

F−→ 3 SF

0
R−→ 1

R−→ 2
R−→ 4

G−→
4

R−→ 1
R−→ 2

R−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 32

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R−→ 1

R−→ 2
R−→ 4 RRR

0
S−→ 0

F−→ 3 SF

0
R−→ 1

R−→ 2
R−→ 4

G−→
4

R−→ 1
R−→ 2

R−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Matching atoms 33

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label

0→ 1 R
1→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4→ 4 G

Matching atoms 33

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label

0→ 1 R
1→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4→ 4 G

Matching atoms 33

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0→ 10→ 1 RR

1→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4→ 4 G

Matching atoms 33

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0→ 1 R
1→ 21→ 2 RR

2→ 3 R
2→ 4 R
4→ 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4→ 4 G

Matching atoms 33

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0→ 1 R
1→ 2 R
2→ 32→ 3 RR

2→ 4 R
4→ 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4→ 4 G

Matching atoms 33

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0→ 1 R
1→ 2 R
2→ 3 R
2→ 42→ 4 RR

4→ 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4→ 4 G

Matching atoms 33

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0→ 1 R
1→ 2 R
2→ 3 R
2→ 4 R
4→ 14→ 1 RR

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4→ 4 G

Matching atoms 33

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0→ 1 R
1→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4→ 44→ 4 G

Disjunction 34

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0→ 1 R
1→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R
0→ 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 34

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0→ 1 R
1→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R
0→ 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 34

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0→ 10→ 1 RR
1→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R
0→ 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 34

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0→ 1 R
1→ 21→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R
0→ 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 34

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0→ 1 R
1→ 2 R
2→ 32→ 3 R
2→ 4 R
4→ 1 R
0→ 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 34

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0→ 1 R
1→ 2 R
2→ 3 R
2→ 42→ 4 R
4→ 1 R
0→ 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 34

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0→ 1 R
1→ 2 R
2→ 3 R
2→ 4 R
4→ 14→ 1 R
0→ 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 34

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0→ 1 R
1→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R
0→ 30→ 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 34

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0→ 1 R
1→ 2 R
2→ 3 R
2→ 4 R
4→ 1 R
0→ 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 35

Q4 = R · R

L(Q4) = {RR}

Match for Q4 Label

0→ 1→ 2 RR
1→ 2→ 3 RR
1→ 2→ 4 RR
2→ 4→ 1 RR
4→ 1→ 2 RR

Matches for Q5 = S · R · R · R

L(Q5) = {SRRR}

0→ 0→ 1→ 2→ 3 SRRR
0→ 0→ 1→ 2→ 3 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 35

Q4 = R · R

L(Q4) = {RR}

Match for Q4 Label
0→ 1→ 20→ 1→ 2 RRRR

1→ 2→ 3 RR
1→ 2→ 4 RR
2→ 4→ 1 RR
4→ 1→ 2 RR

Matches for Q5 = S · R · R · R

L(Q5) = {SRRR}

0→ 0→ 1→ 2→ 3 SRRR
0→ 0→ 1→ 2→ 3 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 35

Q4 = R · R

L(Q4) = {RR}

Match for Q4 Label
0→ 1→ 2 RR
1→ 2→ 31→ 2→ 3 RRRR

1→ 2→ 4 RR
2→ 4→ 1 RR
4→ 1→ 2 RR

Matches for Q5 = S · R · R · R

L(Q5) = {SRRR}

0→ 0→ 1→ 2→ 3 SRRR
0→ 0→ 1→ 2→ 3 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 35

Q4 = R · R

L(Q4) = {RR}

Match for Q4 Label
0→ 1→ 2 RR
1→ 2→ 3 RR
1→ 2→ 41→ 2→ 4 RRRR

2→ 4→ 1 RR
4→ 1→ 2 RR

Matches for Q5 = S · R · R · R

L(Q5) = {SRRR}

0→ 0→ 1→ 2→ 3 SRRR
0→ 0→ 1→ 2→ 3 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 35

Q4 = R · R

L(Q4) = {RR}

Match for Q4 Label
0→ 1→ 2 RR
1→ 2→ 3 RR
1→ 2→ 4 RR
2→ 4→ 12→ 4→ 1 RRRR

4→ 1→ 2 RR

Matches for Q5 = S · R · R · R

L(Q5) = {SRRR}

0→ 0→ 1→ 2→ 3 SRRR
0→ 0→ 1→ 2→ 3 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 35

Q4 = R · R

L(Q4) = {RR}

Match for Q4 Label
0→ 1→ 2 RR
1→ 2→ 3 RR
1→ 2→ 4 RR
2→ 4→ 1 RR
4→ 1→ 24→ 1→ 2 RRRR

Matches for Q5 = S · R · R · R

L(Q5) = {SRRR}

0→ 0→ 1→ 2→ 3 SRRR
0→ 0→ 1→ 2→ 3 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 35

Q4 = R · R

L(Q4) = {RR}

Match for Q4 Label
0→ 1→ 2 RR
1→ 2→ 3 RR
1→ 2→ 4 RR
2→ 4→ 1 RR
4→ 1→ 2 RR

Matches for Q5 = S · R · R · R

L(Q5) = {SRRR}

0→ 0→ 1→ 2→ 3 SRRR
0→ 0→ 1→ 2→ 3 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 35

Q4 = R · R

L(Q4) = {RR}

Match for Q4 Label
0→ 1→ 2 RR
1→ 2→ 3 RR
1→ 2→ 4 RR
2→ 4→ 1 RR
4→ 1→ 2 RR

Matches for Q5 = S · R · R · R

L(Q5) = {SRRR}

0→ 0→ 1→ 2→ 30→ 0→ 1→ 2→ 3 SRRR
0→ 0→ 1→ 2→ 3 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 35

Q4 = R · R

L(Q4) = {RR}

Match for Q4 Label
0→ 1→ 2 RR
1→ 2→ 3 RR
1→ 2→ 4 RR
2→ 4→ 1 RR
4→ 1→ 2 RR

Matches for Q5 = S · R · R · R

L(Q5) = {SRRR}

0→ 0→ 1→ 2→ 3 SRRR
0→ 0→ 1→ 2→ 30→ 0→ 1→ 2→ 3 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation & disjunction 36

Q6 = S · (R+F)

L(Q6) = {SR,SF}

Match for Q6 Label
0→ 0→ 1 SR
0→ 0→ 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =

{
SFE,SFR,SGE,

SGR,RFE,RFR,RGE,RGR
}

Match for Q7 Label
0→ 0→ 3→ 3 SFE
2→ 4→ 4→ 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation & disjunction 36

Q6 = S · (R+F)

L(Q6) = {SRSR,SF}

Match for Q6 Label
0→ 0→ 10→ 0→ 1 SRSR
0→ 0→ 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =

{
SFE,SFR,SGE,

SGR,RFE,RFR,RGE,RGR
}

Match for Q7 Label
0→ 0→ 3→ 3 SFE
2→ 4→ 4→ 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation & disjunction 36

Q6 = S · (R+F)

L(Q6) = {SR,SFSF}

Match for Q6 Label
0→ 0→ 1 SR
0→ 0→ 30→ 0→ 3 SFSF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =

{
SFE,SFR,SGE,

SGR,RFE,RFR,RGE,RGR
}

Match for Q7 Label
0→ 0→ 3→ 3 SFE
2→ 4→ 4→ 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation & disjunction 36

Q6 = S · (R+F)

L(Q6) = {SR,SF}

Match for Q6 Label
0→ 0→ 1 SR
0→ 0→ 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =

{
SFE,SFR,SGE,

SGR,RFE,RFR,RGE,RGR
}

Match for Q7 Label
0→ 0→ 3→ 3 SFE
2→ 4→ 4→ 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation & disjunction 36

Q6 = S · (R+F)

L(Q6) = {SR,SF}

Match for Q6 Label
0→ 0→ 1 SR
0→ 0→ 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =
{
SFE,SFR,SGE,

SGR,RFE,RFR,RGE,RGR
}

Match for Q7 Label
0→ 0→ 3→ 3 SFE
2→ 4→ 4→ 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation & disjunction 36

Q6 = S · (R+F)

L(Q6) = {SR,SF}

Match for Q6 Label
0→ 0→ 1 SR
0→ 0→ 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =
{
SFESFE,SFR,SGE,

SGR,RFE,RFR,RGE,RGR
}

Match for Q7 Label
0→ 0→ 3→ 30→ 0→ 3→ 3 SFESFE
2→ 4→ 4→ 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation & disjunction 36

Q6 = S · (R+F)

L(Q6) = {SR,SF}

Match for Q6 Label
0→ 0→ 1 SR
0→ 0→ 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =
{
SFE,SFR,SGE,

SGR,RFE,RFR,RGE,RGRRGR
}

Match for Q7 Label
0→ 0→ 3→ 3 SFE
2→ 4→ 4→ 12→ 4→ 4→ 1 RGRRGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Kleene star 37

Q8 = R∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0→ 1 R
1→ 2 R

...
2→ 4→ 1 RR

...
1→ 2→ 4→ 1 RRR

...
1→ 2→ 4→

RRRRRR
1→ 2→ 4→ 1

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 37

Q8 = R∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0→ 1 R
1→ 2 R

...
2→ 4→ 1 RR

...
1→ 2→ 4→ 1 RRR

...
1→ 2→ 4→

RRRRRR
1→ 2→ 4→ 1

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 37

Q8 = R∗

L(Q8) = {RR,RR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0→ 10→ 1 RR
1→ 2 R

...
2→ 4→ 1 RR

...
1→ 2→ 4→ 1 RRR

...
1→ 2→ 4→

RRRRRR
1→ 2→ 4→ 1

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 37

Q8 = R∗

L(Q8) = {RR,RR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0→ 1 R
1→ 21→ 2 RR

...
2→ 4→ 1 RR

...
1→ 2→ 4→ 1 RRR

...
1→ 2→ 4→

RRRRRR
1→ 2→ 4→ 1

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 37

Q8 = R∗

L(Q8) = {R,RRRR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0→ 1 R
1→ 2 R

...
2→ 4→ 12→ 4→ 1 RRRR

...
1→ 2→ 4→ 1 RRR

...
1→ 2→ 4→

RRRRRR
1→ 2→ 4→ 1

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 37

Q8 = R∗

L(Q8) = {R,RR,RRRRRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0→ 1 R
1→ 2 R

...
2→ 4→ 1 RR

...
1→ 2→ 4→ 11→ 2→ 4→ 1 RRRRRR

...
1→ 2→ 4→

RRRRRR
1→ 2→ 4→ 1

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 37

Q8 = R∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRRRRRRRR, . . .}

Match for Q8 Label
0→ 1 R
1→ 2 R

...
2→ 4→ 1 RR

...
1→ 2→ 4→ 1 RRR

...
1→ 2→ 4→1→ 2→ 4→

RRRRRRRRRRRR
1→ 2→ 4→ 11→ 2→ 4→ 1

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

22
lapslaps

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 37

Q8 = R∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, }

Match for Q8 Label
0→ 1 R
1→ 2 R

...
2→ 4→ 1 RR

...
1→ 2→ 4→ 1 RRR

...
1→ 2→ 4→

RRRRRR
1→ 2→ 4→ 1

...

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

33
lapslaps

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 37

Q8 = R∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, }

Match for Q8 Label
0→ 1 R
1→ 2 R

...
2→ 4→ 1 RR

...
1→ 2→ 4→ 1 RRR

...
1→ 2→ 4→

RRRRRR
1→ 2→ 4→ 1

...

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

4242
lapslaps

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 37

Q8 = R∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, }

Match for Q8 Label
0→ 1 R
1→ 2 R

...
2→ 4→ 1 RR

...
1→ 2→ 4→ 1 RRR

...
1→ 2→ 4→

RRRRRR
1→ 2→ 4→ 1

...

...

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

nn
lapslaps

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Computing matches 38

Exercice

Compute the matches to query
Q9 = (R + F)∗G(R + F)∗ that
start in 0 and end in 3.

Answer

0
R−→1

R−→ 2
R−→ 4(

R−→ 1
R−→ 2

R−→ 4
)∗

G−→ 4(
R−→ 1

R−→ 2
R−→ 4

)∗

R−→ 1
R−→ 2

R−→ 3

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Computing matches 38

Exercice

Compute the matches to query
Q9 = (R + F)∗G(R + F)∗ that
start in 0 and end in 3.

Answer

0
R−→1

R−→ 2
R−→ 4(

R−→ 1
R−→ 2

R−→ 4
)∗

G−→ 4(
R−→ 1

R−→ 2
R−→ 4

)∗

R−→ 1
R−→ 2

R−→ 3

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Any idea an how to compute
matches in general?

Regexps may be transformed into a finite automaton 40

Glushkov Construction∗

Input a regexp Q
Output a nondeterministic automaton A such that L(A) = L(Q)
Properties of A

D is small: the number of state is in O(size(Q))
D is computed efficiently O(size(Q)2)
D has no epsilon-transitions

∗Other names: position automaton, standard automaton, Berry-Sethi construction

(R+ F)∗G(R+ F)∗

(R1 + F2)
∗G3(R4 + F5)

∗

i

R1

G3

R4

F2 F5

R R

R R

R R

F F

F F

F F

G

G

A graph is essentially an automaton 41

Exercice: compute the product graph×query

i

R1

G3

R4

F2 F5

R R

R R

R R

F F

F F

F F

G

G

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

A graph is essentially an automaton 41

Exercice: compute the product graph×query

i

R1

G3

R4

F2 F5

R R

R R

R R

F F

F F

F F

G

G

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Part I: Theoretical foundations

4. The most common RPQ
semantics

Computing a finite answer 43

RPQ

Answer

User Graph DBMS

! Infinitely many matches but the user expects finite answer !

Different semantics for RPQs

A RPQ semantics = a way to interpret RPQs

The semantics defines the correct answer
⇒ The same query has different answers under different semantics

Goal of an RPQ semantics: ensure the answer to be finite, while
remaining meaningful and easy to compute.

Computing a finite answer 43

RPQ

Answer

User Graph DBMS

! Infinitely many matches but the user expects finite answer !

Different semantics for RPQs

A RPQ semantics = a way to interpret RPQs

The semantics defines the correct answer
⇒ The same query has different answers under different semantics

Goal of an RPQ semantics: ensure the answer to be finite, while
remaining meaningful and easy to compute.

Endpoint semantics (1) 44

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1→ 0→ 2→ 2→ 3 (1,3)
2→ 2 (2,2)
0→ 0→ 2→ 3→ 0→ 3 (0,3)
1→ 0→ 3 (1,3)

Full answer is: {(1, 3), (2, 2), (0, 3)}

Endpoint semantics (1) 44

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1→ 0→ 2→ 2→ 3 (1,3)
2→ 2 (2,2)
0→ 0→ 2→ 3→ 0→ 3 (0,3)
1→ 0→ 3 (1,3)

Full answer is: {(1, 3), (2, 2), (0, 3)}

Endpoint semantics (1) 44

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
11→ 0→ 2→ 2→ 33 (1,3)(1,3)
2→ 2 (2,2)
0→ 0→ 2→ 3→ 0→ 3 (0,3)
1→ 0→ 3 (1,3)

Full answer is: {(1, 3)(1, 3), (2, 2), (0, 3)}

Endpoint semantics (1) 44

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1→ 0→ 2→ 2→ 3 (1,3)
22→ 22 (2,2)(2,2)
0→ 0→ 2→ 3→ 0→ 3 (0,3)
1→ 0→ 3 (1,3)

Full answer is: {(1, 3), (2, 2)(2, 2), (0, 3)}

Endpoint semantics (1) 44

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1→ 0→ 2→ 2→ 3 (1,3)
2→ 2 (2,2)
00→ 0→ 2→ 3→ 0→ 33 (0,3)(0,3)
1→ 0→ 3 (1,3)

Full answer is: {(1, 3), (2, 2), (0, 3)(0, 3)}

Endpoint semantics (1) 44

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a setset of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1→ 0→ 2→ 2→ 3 (1,3)
2→ 2 (2,2)
0→ 0→ 2→ 3→ 0→ 3 (0,3)
11→ 0→ 33 (1,3)(1,3)

Full answer is: {(1, 3)(1, 3), (2, 2), (0, 3)}

Endpoint semantics (2) 45

Evaluating a reachability query

Q10 = GR∗

Match Endpoints

4→ 4 (4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 3 (4,3)

...
...

4→ 4→ 1→ 2
→ 4→ 1→ 2

→ 3 (4,3)
...

...

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q10 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 45

Evaluating a reachability query

Q10 = GR∗

Match Endpoints

4→ 44→ 4 (4,4)(4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 3 (4,3)

...
...

4→ 4→ 1→ 2
→ 4→ 1→ 2

→ 3 (4,3)
...

...

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q10 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 45

Evaluating a reachability query

Q10 = GR∗

Match Endpoints

4→ 4 (4,4)
4→ 4→ 14→ 4→ 1 (4,1)(4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 3 (4,3)

...
...

4→ 4→ 1→ 2
→ 4→ 1→ 2

→ 3 (4,3)
...

...

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q10 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 45

Evaluating a reachability query

Q10 = GR∗

Match Endpoints

4→ 4 (4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 24→ 4→ 1→ 2 (4,2)(4,2)
4→ 4→ 1→ 2→ 3 (4,3)

...
...

4→ 4→ 1→ 2
→ 4→ 1→ 2

→ 3 (4,3)
...

...

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q10 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 45

Evaluating a reachability query

Q10 = GR∗

Match Endpoints

4→ 4 (4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 34→ 4→ 1→ 2→ 3 (4,3)(4,3)

...
...

4→ 4→ 1→ 2
→ 4→ 1→ 2

→ 3 (4,3)
...

...

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q10 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 45

Evaluating a reachability query

Q10 = GR∗

Match Endpoints

4→ 4 (4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 3 (4,3)

...
...

4→ 4→ 1→ 24→ 4→ 1→ 2
→ 4→ 1→ 2→ 4→ 1→ 2

→ 3→ 3 (4,3)(4,3)
...

...

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

11
lapslaps

Gas

Start End

Answer to Q10 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (3) 46

Pros and cons

Pros

Efficient algorithms
Output is always small
Well grounded theory

Cons

Very limited information in the answer
User: “I want to go from Paris to Lyon by car”
Database: “Yes you can”

Endpoint semantics (3) 46

Pros and cons

Pros

Efficient algorithms
Output is always small
Well grounded theory

Cons

Very limited information in the answer
User: “I want to go from Paris to Lyon by car”
Database: “Yes you can”

Shortest semantics (1) 47

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = smallest number of edges

Example

Match Endpoints Length
1→ 0→ 2→ 3 (1, 3) 3 Shortest for (1, 3)
1→ 0→ 2→ 2→ 3 (1, 3) 4 Not shortest for (1, 3)
0→ 2→ 2→ 3 (0, 3) 3 Not shortest for (0, 3)
0→ 2→ 3 (0, 3) 2 Tied shortest for (0, 3)
0→ 0→ 3 (0, 3) 2 Tied shortest for (0, 3)

Full answer: {1→ 0→ 2→ 3, 0→ 2→ 3, 0→ 0→ 3}

Shortest semantics (1) 47

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = smallest number of edges

Example

Match Endpoints Length
1→ 0→ 2→ 3 (1, 3) 3 Shortest for (1, 3)
1→ 0→ 2→ 2→ 3 (1, 3) 4 Not shortest for (1, 3)
0→ 2→ 2→ 3 (0, 3) 3 Not shortest for (0, 3)
0→ 2→ 3 (0, 3) 2 Tied shortest for (0, 3)
0→ 0→ 3 (0, 3) 2 Tied shortest for (0, 3)

Full answer: {1→ 0→ 2→ 3, 0→ 2→ 3, 0→ 0→ 3}

Shortest semantics (1) 47

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = smallest number of edges

Example

Match Endpoints Length
1→ 0→ 2→ 31→ 0→ 2→ 3 (1, 3)(1, 3) 3 Shortest for (1, 3)
1→ 0→ 2→ 2→ 31→ 0→ 2→ 2→ 3 (1, 3)(1, 3) 4 Not shortest for (1, 3)
0→ 2→ 2→ 3 (0, 3) 3 Not shortest for (0, 3)
0→ 2→ 3 (0, 3) 2 Tied shortest for (0, 3)
0→ 0→ 3 (0, 3) 2 Tied shortest for (0, 3)

Full answer: {1→ 0→ 2→ 3, 0→ 2→ 3, 0→ 0→ 3}

Shortest semantics (1) 47

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = smallest number of edges

Example

Match Endpoints Length
1→ 0→ 2→ 31→ 0→ 2→ 3 (1, 3)(1, 3) 33 Shortest for (1, 3)Shortest for (1, 3)
1→ 0→ 2→ 2→ 31→ 0→ 2→ 2→ 3 (1, 3)(1, 3) 44 Not shortest for (1, 3)Not shortest for (1, 3)
0→ 2→ 2→ 3 (0, 3) 3 Not shortest for (0, 3)
0→ 2→ 3 (0, 3) 2 Tied shortest for (0, 3)
0→ 0→ 3 (0, 3) 2 Tied shortest for (0, 3)

Full answer: {1→ 0→ 2→ 31→ 0→ 2→ 3, 0→ 2→ 3, 0→ 0→ 3}

Shortest semantics (1) 47

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = smallest number of edges

Example

Match Endpoints Length
1→ 0→ 2→ 3 (1, 3) 3 Shortest for (1, 3)
1→ 0→ 2→ 2→ 3 (1, 3) 4 Not shortest for (1, 3)
0→ 2→ 2→ 30→ 2→ 2→ 3 (0, 3)(0, 3) 3 Not shortest for (0, 3)
0→ 2→ 30→ 2→ 3 (0, 3)(0, 3) 2 Tied shortest for (0, 3)
0→ 0→ 30→ 0→ 3 (0, 3)(0, 3) 2 Tied shortest for (0, 3)

Full answer: {1→ 0→ 2→ 3, 0→ 2→ 3, 0→ 0→ 3}

Shortest semantics (1) 47

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = smallest number of edges

Example

Match Endpoints Length
1→ 0→ 2→ 3 (1, 3) 3 Shortest for (1, 3)
1→ 0→ 2→ 2→ 3 (1, 3) 4 Not shortest for (1, 3)
0→ 2→ 2→ 30→ 2→ 2→ 3 (0, 3)(0, 3) 33 Not shortest for (0, 3)Not shortest for (0, 3)
0→ 2→ 30→ 2→ 3 (0, 3)(0, 3) 22 Tied shortest for (0, 3)Tied shortest for (0, 3)
0→ 0→ 30→ 0→ 3 (0, 3)(0, 3) 22 Tied shortest for (0, 3)Tied shortest for (0, 3)

Full answer: {1→ 0→ 2→ 3, 0→ 2→ 30→ 2→ 3, 0→ 0→ 30→ 0→ 3}

Shortest semantics (2) 48

Evaluating a reachability query

Q11 = GR∗

Answer under shortest sem.

Walk Shortest for

4→ 4 (4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 3 (4,3)

Example of discarded match

4→ 4→ 1→ 2→ 4 is not in
the answer because it is longer
than 4→ 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 48

Evaluating a reachability query

Q11 = GR∗

Answer under shortest sem.

Walk Shortest for

4→ 44→ 4 (4,4)(4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 3 (4,3)

Example of discarded match

4→ 4→ 1→ 2→ 4 is not in
the answer because it is longer
than 4→ 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 48

Evaluating a reachability query

Q11 = GR∗

Answer under shortest sem.

Walk Shortest for

4→ 4 (4,4)
4→ 4→ 14→ 4→ 1 (4,1)(4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 3 (4,3)

Example of discarded match

4→ 4→ 1→ 2→ 4 is not in
the answer because it is longer
than 4→ 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 48

Evaluating a reachability query

Q11 = GR∗

Answer under shortest sem.

Walk Shortest for

4→ 4 (4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 24→ 4→ 1→ 2 (4,2)(4,2)
4→ 4→ 1→ 2→ 3 (4,3)

Example of discarded match

4→ 4→ 1→ 2→ 4 is not in
the answer because it is longer
than 4→ 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 48

Evaluating a reachability query

Q11 = GR∗

Answer under shortest sem.

Walk Shortest for

4→ 4 (4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 34→ 4→ 1→ 2→ 3 (4,3)(4,3)

Example of discarded match

4→ 4→ 1→ 2→ 4 is not in
the answer because it is longer
than 4→ 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 48

Evaluating a reachability query

Q11 = GR∗

Answer under shortest sem.

Walk Shortest for

4→ 4 (4,4)
4→ 4→ 1 (4,1)
4→ 4→ 1→ 2 (4,2)
4→ 4→ 1→ 2→ 3 (4,3)

Example of discarded match

4→ 4→ 1→ 2→ 44→ 4→ 1→ 2→ 4 is not in
the answer because it is longer
than 4→ 44→ 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (3) 49

Exercice: evaluating some queries

Q12 = S(R+F)∗E

Answer to Q12:
?

Q13 = S(R+F)∗G(R+F)∗E

Answer to Q13:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (3) 49

Exercice: evaluating some queries

Q12 = S(R+F)∗E

Answer to Q12:

{ 0→ 0→ 3→ 30→ 0→ 3→ 3 }

Q13 = S(R+F)∗G(R+F)∗E

Answer to Q13:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (3) 49

Exercice: evaluating some queries

Q12 = S(R+F)∗E

Answer to Q12:

{ 0→ 0→ 3→ 3 }

Q13 = S(R+F)∗G(R+F)∗E

Answer to Q13:

{ 0→ 0→ 1→ 2→ 40→ 0→ 1→ 2→ 4
→ 4→ 1→ 2→ 3→ 3→ 4→ 1→ 2→ 3→ 3 }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (4) 50

Pros and con

Pros

Returns walks

Efficient algorithms (BFS in the product graph×query)
If there are matches from s to t, at least one of them is in the answer

Cons

The shortest walk is not always the “best”
“Do we always want to take the ferry over the direct road?”
(Real query languages allow to assign costs to edges/atoms)

No vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the average time?”
“What is the connectedness level?”

Shortest semantics (4) 50

Pros and con

Pros

Returns walks

Efficient algorithms (BFS in the product graph×query)
If there are matches from s to t, at least one of them is in the answer

Cons

The shortest walk is not always the “best”
“Do we always want to take the ferry over the direct road?”
(Real query languages allow to assign costs to edges/atoms)

No vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the average time?”
“What is the connectedness level?”

Trail semantics (1) 51

Used by Cypher (Neo4j) and GQL with keyword ALL TRAIL

Principle

Return a set of walks
Apply a filter on the set of matching walks
The filter is: each walk that repeats an edge is filtered out

Examples

Match Decision
1→ 0→ 2→ 2→ 3 No repetition ⇒ Kept in the answer
1→ 0→ 20→ 2→ 3→ 0→ 20→ 2 Repeated edges ⇒ Filtered out

Trail semantics (1) 51

Used by Cypher (Neo4j) and GQL with keyword ALL TRAIL

Principle

Return a set of walks
Apply a filter on the set of matching walks
The filter is: each walk that repeats an edge is filtered out

Examples

Match Decision
1→ 0→ 2→ 2→ 3 No repetition ⇒ Kept in the answer
1→ 0→ 20→ 2→ 3→ 0→ 20→ 2 Repeated edges ⇒ Filtered out

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk

Yes

The straight road

Yes

The road with 1 lap

No

The road with 2 laps

No

...

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q1 under trail semantics:

{

0→ 0→ 3→ 3

}

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walkThe ferry walk

Yes

The straight road

Yes

The road with 1 lap

No

The road with 2 laps

No

...

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q1 under trail semantics:

{

0→ 0→ 3→ 3

}

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walkThe ferry walk YesYes
The straight road

Yes

The road with 1 lap

No

The road with 2 laps

No

...

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q1 under trail semantics:

{ 0→ 0→ 3→ 30→ 0→ 3→ 3 }

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight roadThe straight road

Yes

The road with 1 lap

No

The road with 2 laps

No

...

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q1 under trail semantics:

{ 0→ 0→ 3→ 3 }

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight roadThe straight road YesYes
The road with 1 lap

No

The road with 2 laps

No

...

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q1 under trail semantics:

{ 0→ 0→ 3→ 3, 0→ 0→ 1→ 2→ 3→ 30→ 0→ 1→ 2→ 3→ 3 }

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lapThe road with 1 lap

No

The road with 2 laps

No

...

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q1 under trail semantics:

{ 0→ 0→ 3→ 3, 0→ 0→ 1→ 2→ 3→ 3 }

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lapThe road with 1 lap NoNo
The road with 2 laps

No

...

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q1 under trail semantics:

{ 0→ 0→ 3→ 3, 0→ 0→ 1→ 2→ 3→ 3 }

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lap No
The road with 2 lapsThe road with 2 laps

No

...

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

22
lapslaps

Gas

Start End

Answer of Q1 under trail semantics:

{ 0→ 0→ 3→ 3, 0→ 0→ 1→ 2→ 3→ 3 }

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lap No
The road with 2 lapsThe road with 2 laps NoNo

...

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

22
lapslaps

Gas

Start End

Answer of Q1 under trail semantics:

{ 0→ 0→ 3→ 3, 0→ 0→ 1→ 2→ 3→ 3 }

Trail semantics (2) 52

Evaluating Q14

Q14 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lap No
The road with 2 laps No

...

... NoNo

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

> 2> 2
lapslaps

Gas

Start End

Answer of Q1 under trail semantics:

{ 0→ 0→ 3→ 3, 0→ 0→ 1→ 2→ 3→ 3 }

Trail semantics (3) 53

Exercice: evaluating some queries

Q15 = GR∗

Answer to Q15:
?

Q16 = S(R+F)∗G(R+F)∗E

Answer to Q16:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 53

Exercice: evaluating some queries

Q15 = GR∗

Answer to Q15:

{ 4→ 4 ,
4→ 4→ 1 ,
4→ 4→ 1→ 2 ,
4→ 4→ 1→ 2→ 3 ,
4→ 4→ 1→ 2→ 4 }

Q16 = S(R+F)∗G(R+F)∗E

Answer to Q16:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 53

Exercice: evaluating some queries

Q15 = GR∗

Answer to Q15:

{ 4→ 44→ 4 ,
4→ 4→ 1 ,
4→ 4→ 1→ 2 ,
4→ 4→ 1→ 2→ 3 ,
4→ 4→ 1→ 2→ 4 }

Q16 = S(R+F)∗G(R+F)∗E

Answer to Q16:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 53

Exercice: evaluating some queries

Q15 = GR∗

Answer to Q15:

{ 4→ 4 ,
4→ 4→ 14→ 4→ 1 ,
4→ 4→ 1→ 2 ,
4→ 4→ 1→ 2→ 3 ,
4→ 4→ 1→ 2→ 4 }

Q16 = S(R+F)∗G(R+F)∗E

Answer to Q16:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 53

Exercice: evaluating some queries

Q15 = GR∗

Answer to Q15:

{ 4→ 4 ,
4→ 4→ 1 ,
4→ 4→ 1→ 24→ 4→ 1→ 2 ,
4→ 4→ 1→ 2→ 3 ,
4→ 4→ 1→ 2→ 4 }

Q16 = S(R+F)∗G(R+F)∗E

Answer to Q16:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 53

Exercice: evaluating some queries

Q15 = GR∗

Answer to Q15:

{ 4→ 4 ,
4→ 4→ 1 ,
4→ 4→ 1→ 2 ,
4→ 4→ 1→ 2→ 34→ 4→ 1→ 2→ 3 ,
4→ 4→ 1→ 2→ 4 }

Q16 = S(R+F)∗G(R+F)∗E

Answer to Q16:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 53

Exercice: evaluating some queries

Q15 = GR∗

Answer to Q15:

{ 4→ 4 ,
4→ 4→ 1 ,
4→ 4→ 1→ 2 ,
4→ 4→ 1→ 2→ 3 ,
4→ 4→ 1→ 2→ 44→ 4→ 1→ 2→ 4 }

Q16 = S(R+F)∗G(R+F)∗E

Answer to Q16:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 53

Exercice: evaluating some queries

Q15 = GR∗

Answer to Q15:

{ 4→ 4 ,
4→ 4→ 1 ,
4→ 4→ 1→ 2 ,
4→ 4→ 1→ 2→ 3 ,
4→ 4→ 1→ 2→ 4 }

Q16 = S(R+F)∗G(R+F)∗E

Answer to Q16:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 53

Exercice: evaluating some queries

Q15 = GR∗

Answer to Q15:

{ 4→ 4 ,
4→ 4→ 1 ,
4→ 4→ 1→ 2 ,
4→ 4→ 1→ 2→ 3 ,
4→ 4→ 1→ 2→ 4 }

Q16 = S(R+F)∗G(R+F)∗E

Answer to Q16:

∅∅

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (4) 54

Pros and cons

Pros

Returns walks

Easy to explain

Enable vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the average time?”
“What is the connectedness level?”

Cons

Inefficient in bad cases.
Ex: checking whether R∗GR∗ returns anything is NP-hard

“No repeated edge” is a filter that is sometimes counterintuitive
Ex: S(R+F)∗G(R+F)∗E had matches but the answer is empty

Trail semantics (4) 54

Pros and cons

Pros

Returns walks

Easy to explain

Enable vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the average time?”
“What is the connectedness level?”

Cons

Inefficient in bad cases.
Ex: checking whether R∗GR∗ returns anything is NP-hard

“No repeated edge” is a filter that is sometimes counterintuitive
Ex: S(R+F)∗G(R+F)∗E had matches but the answer is empty

Computing a finite answer 55

RPQ

Answer

User Graph DBMS

! Infinitely many matches but the user expects finite answer !

Different semantics for RPQs

Endpoint → Filters out all navigational information
Shortest → No vertical postprocessing and arbitrary metrics
Trail → Inefficient and sometimes discard meaningful matches

=⇒ No RPQ semantics is clearly superior

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·SparQL

PGQL

GSQL G-Core

Academia

SparQL and most academic work on RPQs use endpoint semantics
Cypher uses trail semantics
GSQL, PGQL and G-Core uses shortest semantics (and variants)
GQL and SQL/PGQ allow to switch between many RPQ semantics

Part II: Neo4j, Property graphs and
Cypher

Part II: Neo4j, Property graphs and Cypher

1. Data model: Property graphs

Components of a property graph 59

A node (≈vertex) encodes a
complex values.
It bears labels are for grouping.

Ex: t carries Teacher, Person
c carries Course

A Relation (≈edge) connects
nodes
It bears one type (≈label) pro-
vides the nature of the relation

Ex: e = t
TEACHES−−−−−→ c

A property describes an aspect
of a node or an relation
It maps

a key (described aspect)
to a pure value (description)

Ex: t has name:"Victor"
e has since:2023

A pure value (int, string,
etc) contains all the information
about itself.

Ex: "Victor" has 6 letters

First example of a property graph 60

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Nodes : N1,N2, · · · ,N5

Relations : r1, r2, · · · , r7

Types: follows, posted,
answers

Labels: User, Admin,
Message

Properties, that is
Key-Value pairs:

name:"Alice"
id:22
text:"Hello"

etc.

First example of a property graph 60

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Nodes : N1,N2, · · · ,N5

Relations : r1, r2, · · · , r7

Types: follows, posted,
answers

Labels: User, Admin,
Message

Properties, that is
Key-Value pairs:

name:"Alice"
id:22
text:"Hello"

etc.

First example of a property graph 60

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Nodes : N1,N2, · · · ,N5

Relations : r1, r2, · · · , r7

TypesTypes: follows, posted,
answers

Labels: User, Admin,
Message

Properties, that is
Key-Value pairs:

name:"Alice"
id:22
text:"Hello"

etc.

First example of a property graph 60

N1

UserUser

name:"Alice"

N2

UserUser

name:"Bob"

N3

UserUser , AdminAdmin

name:"Charlie"

N4

MessageMessage

id:22
text:"Hello"

N5

MessageMessage

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Nodes : N1,N2, · · · ,N5

Relations : r1, r2, · · · , r7

Types: follows, posted,
answers

LabelsLabels: User, Admin,
Message

Properties, that is
Key-Value pairs:

name:"Alice"
id:22
text:"Hello"

etc.

First example of a property graph 60

N1

User

name:"Alice"name:"Alice"

N2

User

name:"Bob"name:"Bob"

N3

User , Admin

name:"Charlie"name:"Charlie"

N4

Message

id:22id:22
text:"Hello"text:"Hello"

N5

Message

id:25id:25
text:"World"text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"on:"05-14"
r6

POSTED

on:"05-15"on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Nodes : N1,N2, · · · ,N5

Relations : r1, r2, · · · , r7

Types: follows, posted,
answers

Labels: User, Admin,
Message

PropertiesProperties, that is
Key-Value pairs:

name:"Alice"
id:22
text:"Hello"

etc.

Second example of a property graph 61

0 1 2 3

4

City Start

name: "Paris"
City End

name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

ROAD

length: 12

FERRY, length: 30, max speed: 60

Storing graph 1 in tables 62

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Node Relation
id id #src #tgt
1 1 1 2
2 2 2 1
...

...
...

...

Posted Message
#eideid #vidvid
5 4
6 5

On Id
#eideid val #vidvid val
5 "05-14" 4 22
6 "05-15" 5 25

Storing graph 1 in tables 62

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Node Relation
id id #src #tgt
1 1 1 2
2 2 2 1
...

...
...

...

Posted Message
#eideid #vidvid
5 4
6 5

On Id
#eideid val #vidvid val
5 "05-14" 4 22
6 "05-15" 5 25

Storing graph 1 in tables 62

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Node Relation
id id #src #tgt
1 1 1 2
2 2 2 1
...

...
...

...

Posted Message
#eideid #vidvid
5 4
6 5

On Id
#eideid val #vidvid val
5 "05-14" 4 22
6 "05-15" 5 25

Why so many tables?Why so many tables? 62

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Node Relation
id id #src #tgt
1 1 1 2
2 2 2 1
...

...
...

...

Posted Message
#eideid #vidvid
5 4
6 5

On Id
#eideid val #vidvid val
5 "05-14" 4 22
6 "05-15" 5 25

Property graphs are very flexible 63

0 1 2 3

4

City Start

name: "Paris"
City End

name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

ROAD

length: 12

FERRY, length: 30, max speed: 60

Relations with the same type may have different property keys
Nodes may have any number of labels and property keys

Why use property graph DBMS’s? 64

Native storage

Similar to ”adjacency lists” : each node knows its adjacent relations

Query answering is based on graph algorithms and not on joins
Ex: S(R+F)2, S(R+F)3, S(R+F)∗

Allows flexible schemas or a schema-less approach

NB: some graph DBMS do not use native storage

Specialized algorithms and languages

Restriction on the DM increases the liberty in the query language
Graph notions in the core of the language (path as values)
Graph algorithm directly available

“We never have to treat the case of non-binary relations”

NB: Relational DBMS require a graph-view (SQL/PGQ)

Why use property graph DBMS’s? 64

Native storage

Similar to ”adjacency lists” : each node knows its adjacent relations

Query answering is based on graph algorithms and not on joins
Ex: S(R+F)2, S(R+F)3, S(R+F)∗

Allows flexible schemas or a schema-less approach

NB: some graph DBMS do not use native storage

Specialized algorithms and languages

Restriction on the DM increases the liberty in the query language
Graph notions in the core of the language (path as values)
Graph algorithm directly available

“We never have to treat the case of non-binary relations”

NB: Relational DBMS require a graph-view (SQL/PGQ)

Part II: Neo4j, Property graphs and Cypher

2. General presentation of Cypher

Generalities 66

A Cypher query
queries a property graph
returns a table

Is a sequence of clauses
(3 clauses on the right)

Last clause is always RETURN

manipulates a working table
uses variables, which refer to col-
umn names

Example of Cypher query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.id = 22

RETURN u1.name AS uname,

p1.on AS date,

m1.text AS msg

Example Returned table

uname date msg

"Alice" "05-14" "Hello"

Generalities 66

A Cypher query
queries a property graph
returns a table

Is a sequence of clauses
(3 clauses on the right)

Last clause is always RETURN

manipulates a working table
uses variables, which refer to col-
umn names

Example of Cypher query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.id = 22

RETURN u1.name AS uname,

p1.on AS date,

m1.text AS msg

Example Returned table

uname date msg

"Alice" "05-14" "Hello"

Generalities 66

A Cypher query
queries a property graph
returns a table

Is a sequence of clauses
(3 clauses on the right)

Last clause is always RETURN

manipulates a working table
uses variables, which refer to col-
umn names

Example of Cypher query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.id = 22

RETURN u1.name AS uname,

p1.on AS date,

m1.text AS msg

Example Returned table

uname date msg

"Alice" "05-14" "Hello"

Values in Cypher 67

Values are the elements that may appear in tables
Pure values are the values with no reference to the graph
Property is a key to pure values

Values are

Base values Ex: true, 42, "NoSQL"

Graph elements Ex: nodes, relations

Paths (alternate lists of nodes and relations)

List of values Ex: [1,"Hello",true,"World,n1]

Property dictionary Ex: {name:"Victor", age:35}

How evaluation works 68

Clause 1
MATCH ...

Property
Graph

Clause 2
WITH ...

· · · Last Clause
RETURN ...

Table 1

a
...

Table 2

a b
...

Table returned
by the query

e f g
...

Table n

c d
...

The first clause produces a table from the property graph
Subsequent clauses produces a new table from the property graph
and the prior table
Until we reach the last clause, which produces the table to return

How evaluation works 68

Clause 1
MATCH ...

Property
Graph

Clause 2
WITH ...

· · · Last Clause
RETURN ...

Table 1

a
...

Table 2

a b
...

Table returned
by the query

e f g
...

Table n

c d
...

The first clause produces a table from the property graph

Subsequent clauses produces a new table from the property graph
and the prior table
Until we reach the last clause, which produces the table to return

How evaluation works 68

Clause 1
MATCH ...

Property
Graph

Clause 2
WITH ...

· · · Last Clause
RETURN ...

Table 1

a
...

Table 2

a b
...

Table returned
by the query

e f g
...

Table n

c d
...

The first clause produces a table from the property graph
Subsequent clauses produces a new table from the property graph
and the prior table

Until we reach the last clause, which produces the table to return

How evaluation works 68

Clause 1
MATCH ...

Property
Graph

Clause 2
WITH ...

· · · Last Clause
RETURN ...

Table 1

a
...

Table 2

a b
...

Table returned
by the query

e f g
...

Table n

c d
...

The first clause produces a table from the property graph
Subsequent clauses produces a new table from the property graph
and the prior table
Until we reach the last clause, which produces the table to return

Overview of read-only Cypher 69

MATCH is for pattern matching
RPQ-like
Trail semantics
Projects paths into a table
Inner join with the input table
The variant OPTIONAL MATCH

does an outer join instead

WHERE filters rows
Subclause of WITH and MATCH

UNWIND splits rows for each ele-
ment in a list

WITH is for:
Column manipulation (add,
remove, rename, etc.)
Aggregation

Vertical
Horizontal (reduce)

Order and limit output size
(ORDER BY, SKIP and LIMIT)

RETURN is a mandatory WITH at
the end of the query

UNION and UNION ALL are for set
and bag union.

Part II: Neo4j, Property graphs and Cypher

3. Pattern matching with MATCH

Matching nodes (1) 71

N1

UserUser

name:"Alice"

N2

UserUser

name:"Bob"

N3

UserUser , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:User)

Result:

u1

N1

N2

N3

Matching nodes (1) 71

N1

UserUser

name:"Alice"

N2

UserUser

name:"Bob"

N3

UserUser , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:User)

Result:

u1

N1

N2

N3

Matching nodes (2) 72

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

UserUser , AdminAdmin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:User:Admin)

Result:

u1

N3

Matching nodes (3) 73

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1{id:22})

Result:

u1

N4

Matching nodes (4) 74

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

Result:

?

Matching nodes (4) 74

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

Result:

u1

N1

N2

N3

N4

N5

Matching relations (1) 75

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[p1]->()

Result:

p1

r1
r2
r3
r4
r5
r6
r7

Matching relations (2) 76

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

Result:

u1 p1 m1

N1 r5 N4

N2 r6 N5

Matching relations (3) 77

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

Result:

u1

N1

N2

N2

N3

Cypher has bag semantics:
N2 has two outgoing follows

relations ⇒ two lines N2

Matching joined relations (1) 78

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

-[:POSTED]->(m1)

Result:

u1 m1

N1 N5

N2 N4

N3 N5

Matching joined relations (1) 78

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

-[:POSTED]->(m1)

Result:

u1 m1

N1 N5

N2 N4

N3 N5

Matching joined relations (1) 78

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

-[:POSTED]->(m1)

Result:

u1 m1

N1 N5

N2 N4

N3 N5

Matching joined relations (1) 78

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

-[:POSTED]->(m1)

Result:

u1 m1

N1 N5

N2 N4

N3 N5

Matching joined relations (2) 79

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

Result:

u1 m2 m2

N1 N5 N2

! Cypher allows backward
relations

Matching joined relations (2) 79

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

Result:

u1 m2 m2

N1 N5 N2

! Cypher allows backward
relations

Implicit join on variable reuse 80

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

-[:FOLLOWS]->(u1)

Result:

u1 u2 m2

N1 N5 N2

This path is invalid: two differ-
ent nodes for u1.

Variable reuse =⇒ equality

Implicit join on variable reuse 80

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

-[:FOLLOWS]->(u1)

Result:

u1 u2 m2

N1 N5 N2

This path is invalid: two differ-
ent nodes for u1.

Variable reuse =⇒ equality

Implicit join on variable reuse 80

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

-[:FOLLOWS]->(u1)

Result:

u1 u2 m2

N1 N5 N2

This path is invalid: two differ-
ent nodes for u1.

Variable reuse =⇒ equality

Implicit join on variable reuse 80

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

-[:FOLLOWS]->(u1)

Result:

u1 u2 m2

N1 N5 N2

This path is invalid: two differ-
ent nodes for u1.

Variable reuse =⇒ equality

Matching paths (1) 81

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the Kleene star
means one or more.

Matching paths (1) 81

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , AdminAdmin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the Kleene star
means one or more.

Matching paths (1) 81

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , AdminAdmin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the Kleene star
means one or more.

Matching paths (1) 81

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , AdminAdmin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the Kleene star
means one or more.

Matching paths (1) 81

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , AdminAdmin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the Kleene star
means one or more.

Matching paths (1) 81

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the Kleene star
means one or more.

An interesting query 82

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u2:)-[:FOLLOWS]->(u1)

<-[:FOLLOWS]-(u3)

Result:

u2 u1 u3

N3 N1 N2

N2 N1 N3

Line 1: N3
r4−→ N1

r2←− N2

Line 2: N2
r2−→ N1

r4←− N3

No (N3, N1, N3) due to trail
semantics

An interesting query 82

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u2:)-[:FOLLOWS]->(u1)

<-[:FOLLOWS]-(u3)

Result:

u2 u1 u3

N3 N1 N2

N2 N1 N3

Line 1: N3
r4−→ N1

r2←− N2

Line 2: N2
r2−→ N1

r4←− N3

No (N3, N1, N3) due to trail
semantics

An interesting query 82

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u2:)-[:FOLLOWS]->(u1)

<-[:FOLLOWS]-(u3)

Result:

u2 u1 u3

N3 N1 N2

N2 N1 N3

Line 1: N3
r4−→ N1

r2←− N2

Line 2: N2
r2−→ N1

r4←− N3

No (N3, N1, N3) due to trail
semantics

An interesting query 82

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u2:)-[:FOLLOWS]->(u1)

<-[:FOLLOWS]-(u3)

Result:

u2 u1 u3

N3 N1 N2

N2 N1 N3

Line 1: N3
r4−→ N1

r2←− N2

Line 2: N2
r2−→ N1

r4←− N3

No (N3, N1, N3) due to trail
semantics

Matching paths (2) 83

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

-[l1:POSTED|ANSWERS *]->(m1)

Result:

u1 l1 m1

N2 [r6, r7] N4

N5 [r7] N4

N2 [r6] N5

Matching paths (2) 83

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

-[l1:POSTED|ANSWERS *]->(m1)

Result:

u1 l1 m1

N2 [r6, r7] N4

N5 [r7] N4

N2 [r6] N5

Matching paths (2) 83

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

-[l1:POSTED|ANSWERS *]->(m1)

Result:

u1 l1 m1

N2 [r6, r7] N4

N5 [r7] N4

N2 [r6] N5

Matching paths (2) 83

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

-[l1:POSTED|ANSWERS *]->(m1)

Result:

u1 l1 m1

N2 [r6, r7] N4

N5 [r7] N4

N2 [r6] N5

Recap of MATCH 84

MATCH allows RPQ-like pattern-matching

Computes paths
Uses trail semantics to keep the output finite
Project paths on variables

MATCH does not allow the full extent of regular expressions

Only disjunction of atoms under star Ex: (R∗G)∗ and (RR)∗

Disjunction only for atoms Ex. R∗ + F and RR+ FF)

MATCH goes beyond RPQs

Matching against properties Ex: MATCH ({id:22})

Taking relation backward Ex: MATCH ()<-[e]-()

Implicit join on variable reuse Ex: MATCH (a)<-[*]-(a)

Sequence of MATCH clauses 85

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1 m1 u2 u3

N2 N5 N1 N3

N2 N5 N3 N1

Sequence of MATCH clauses 85

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1 m1 u2 u3

N2 N5 N1 N3

N2 N5 N3 N1

Sequence of MATCH clauses 85

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1u1 m1 u2 u3

N1 N4 · ·
N2 N5 · ·

Sequence of MATCH clauses 85

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1u1 m1 u2 u3

N1 N4 · ·
N2 N5 · ·

Sequence of MATCH clauses 85

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1u1 m1 u2 u3

N1 N4 · ·
N2 N5 · ·

Sequence of MATCH clauses 85

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1u1 m1 u2 u3

N1 N4 · ·
N2 N5 · ·

Sequence of MATCH clauses 85

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1 m1 u2 u3

N2 N5 N1 N3

N2 N5 N3 N1

Exercice 86

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

The two following queries com-
pute similar thing:

MATCH (a)⟨pat1⟩(b)⟨pat2⟩(c)

MATCH (a)⟨pat1⟩(b)
MATCH (b)⟨pat2⟩(c)

1 Compute their answer for
⟨pat1⟩ = -[:FOLLOWS]->

⟨pat1⟩ = -[:POSTED]->

2 Can you find patterns ⟨pat1⟩
and ⟨pat2⟩ for which their an-
swer is different?

Part II: Neo4j, Property graphs and Cypher

4. Usage of WITH (or RETURN)

Column manipulation 88

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WITH clause

u1 p1 t1

N1 r5
N2 r6

Column manipulation 88

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1u1, p1p1, m1.text AS t1t1

After the MATCH clause

u1u1 p1p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WITH clause

u1u1 p1p1 t1t1

N1 r5
N2 r6

Column manipulation 88

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.textm1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WITH clause

u1 p1 t1

N1 r5
N2 r6

Column manipulation 88

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.textm1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4N4

N2 r6 N5

Execution of the WITH clause

u1 p1 t1

N1 r5 "Hello""Hello"

N2 r6

Column manipulation 88

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5N5

Execution of the WITH clause

u1 p1 t1

N1 r5 "Hello"

N2 r6 "World""World"

Column manipulation 88

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Final result

u1 p1 t1

N1 r5 "Hello"

N2 r6 "World"

Elimination of duplicate rows 89

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

WITH DISTINCT u1

After MATCH:

u1

N1

N2

N2

N3

After WITH:

u1

N1

N2

N3

Vertical Aggregation 90

WITH ⟨columns⟩, ⟨aggr⟩(⟨expr⟩)

Grouping is implicit: every variable used in ⟨columns⟩ is used for
grouping

⟨aggr⟩ in a built-int aggregation function, that is, a function from list
to a single value.

Example: count, sum, min, collect, etc.

Counting the Message nodes 91

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

MessageMessage

id:22
text:"Hello"

N5

MessageMessage

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (m1:Message)

WITH count(m1) AS c

After MATCH:

m1

N4

N5

After WITH:

c

2

Collecting names of followers 92

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)<-[:FOLLOWS]-(u2)

WITH u1, collect(u2.name) AS n

Result after WITH:

u1 n

N1 ["Bob","Charlie"]
N2 ["Alice"]
N3 ["Bob"]

! Grouping by u1

Exercice: what does this compute? 93

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTED]->()

WITH max(e.on) AS d

MATCH ()-[:POSTED

{on:d}]->(m1)

WITH m1.text as txt

e

r5
r6

d

"05-15"

d m1

"05-15" N5

txt

"World"

Exercice: what does this compute? 93

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTEDPOSTED]->()

WITH max(e.on) AS d

MATCH ()-[:POSTED

{on:d}]->(m1)

WITH m1.text as txt

ee

r5r5
r6r6

d

"05-15"

d m1

"05-15" N5

txt

"World"

Exercice: what does this compute? 93

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"on:"05-14"
r6

POSTED

on:"05-15"on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTED]->()

WITH maxmax(e.onon) AS d

MATCH ()-[:POSTED

{on:d}]->(m1)

WITH m1.text as txt

e

r5
r6

d

"05-15""05-15"

d m1

"05-15" N5

txt

"World"

Exercice: what does this compute? 93

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTEDPOSTED

on:"05-15"on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTED]->()

WITH max(e.on) AS d

MATCH ()-[:POSTEDPOSTED

{on:don:d}]->(m1)

WITH m1.text as txt

e

r5
r6

d

"05-15"

d m1

"05-15" N5N5

txt

"World"

Exercice: what does this compute? 93

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTED]->()

WITH max(e.on) AS d

MATCH ()-[:POSTED

{on:d}]->(m1)

WITH m1.texttext as txt

e

r5
r6

d

"05-15"

d m1

"05-15" N5

txt

"World""World"

Horizontal aggregation 94

Syntax

reduce(⟨acc⟩ = ⟨init⟩, ⟨var⟩ IN ⟨list⟩ | ⟨update⟩)

Equivalent to the following pseudo code
⟨acc⟩ := ⟨init⟩
for ⟨var⟩ in ⟨list⟩:

⟨acc⟩ := ⟨update⟩

Computing the length of a path 95

0 1 2 3

4

City Start

name: "Paris"
City End

name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

ROAD

length: 12

FERRY, length: 30, max speed: 60

MATCH (:Start)-[e:ROAD|FERRY*]->(:End)

WITH reduce(acc=0, x IN e | acc+x.length) AS l

Computing the duration of a path 96

0 1 2 3

4

City Start

name: "Paris"
City End

name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

ROAD

length: 12

FERRY, length: 30, max speed: 60

MATCH (:Start)-[e:ROAD|FERRY*]->(:End)

WITH reduce(acc = 0, x IN e

| acc + x.length*coalesce(x.max_speed,80)) AS d

Why “horizontal” and “vertical” aggregation 97

Part II: Neo4j, Property graphs and Cypher

5. Subclauses of MATCH and/or WITH

Filtering rows with WHERE (1) 99

Syntax

MATCH ... WHERE ⟨condition⟩
or
WITH ... WHERE ⟨condition⟩

Remove from the table computed by MATCH or WHERE the row that make
⟨condition⟩ false

Filtering rows with WHERE (2) 100

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.on > "05-14"

After the WITH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WHERE clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Filtering rows with WHERE (2) 100

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"on:"05-14"
r6

POSTED

on:"05-15"on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.on > "05-14"

After the WITH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WHERE clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Filtering rows with WHERE (2) 100

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.on > "05-14"

After the WITH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Final result

u1 p1 m1

N1 r5 N4

ORDER BY, LIMIT and SKIP 101

Syntax

WITH ... ORDER BY ⟨oexpr1⟩
optional︷ ︸︸ ︷
DESC , . . .︸ ︷︷ ︸

optional

SKIP ⟨sexpr⟩︸ ︷︷ ︸
optional

LIMIT ⟨lexpr⟩︸ ︷︷ ︸
optional

Order the table by ⟨oexpr1⟩
Ties are broken by the value of ⟨oexpr2⟩, remaining ties are broken
by ⟨oexpr3⟩, etc
DESC means the order is descending.
! We might end up with ties → Nondeterminism

Then, remove the first ⟨sexpr⟩ rows
Then, keep the first ⟨lexpr⟩ rows, at most

Compute the User with the most followers 102

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)<-[:FOLLOWS]-(u2)

WITH u1, count(b) AS c

ORDER BY c

LIMIT 1 DESC

u1 c

N1 2

Compute the twotwo User with the most followers 103

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)<-[:FOLLOWS]-(u2)

WITH u1, count(b) AS c

ORDER BY c DESC

LIMIT 22

Since Charlie and Bob both
have 1 follower, the final table
is either:

u1 c

N1 2
N2 1

u1 c

N1 2
N3 1

Compute the two User with the most followers 103

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)<-[:FOLLOWS]-(u2)

WITH u1, count(b) AS c

ORDER BY c DESC

LIMIT 2

Since Charlie and Bob both
have 1 follower, the final table
is either:

u1 c

N1 2
N2N2 1

u1 c

N1 2
N3N3 1

Part II: Neo4j, Property graphs and Cypher

6. Updating the property graph

How evaluation works with update clauses 105

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

· · · Last Clause
RETURN ...

Table 1

a
...

Side-effects

Table 2

a b
...

Modified Graph

Table returned
by the query

e f g
...

Table n

c d
...

Neo4j complies to ACID

A =⇒ Modifications are undone if evaluation fails
C =⇒ The PG must complies to IC at the end of evaluation only
I =⇒ Modifications are invisible to concurrent queries

How evaluation works with update clauses 105

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

· · · Last Clause
RETURN ...

Table 1

a
...

Side-effects

Table 2

a b
...

Modified Graph

Table returned
by the query

e f g
...

Table n

c d
...

Neo4j complies to ACID

A =⇒ Modifications are undone if evaluation fails
C =⇒ The PG must complies to IC at the end of evaluation only
I =⇒ Modifications are invisible to concurrent queries

How evaluation works with update clauses 105

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

· · · Last Clause
RETURN ...

Table 1

a
...

Side-effects

Table 2

a b
...

Modified Graph

Table returned
by the query

e f g
...

Table n

c d
...

Neo4j complies to ACID

A =⇒ Modifications are undone if evaluation fails
C =⇒ The PG must complies to IC at the end of evaluation only
I =⇒ Modifications are invisible to concurrent queries

How evaluation works with update clauses 105

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

· · · Last Clause
RETURN ...

Table 1

a
...

Side-effects

Table 2

a b
...

Modified Graph

Table returned
by the query

e f g
...

Table n

c d
...

Neo4j complies to ACID

A =⇒ Modifications are undone if evaluation fails
C =⇒ The PG must complies to IC at the end of evaluation only
I =⇒ Modifications are invisible to concurrent queries

How evaluation works with update clauses 105

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

· · · Last Clause
RETURN ...

Table 1

a
...

Side-effects

Table 2

a b
...

Modified Graph

Table returned
by the query

e f g
...

Table n

c d
...

Neo4j complies to ACID

A =⇒ Modifications are undone if evaluation fails
C =⇒ The PG must complies to IC at the end of evaluation only
I =⇒ Modifications are invisible to concurrent queries

Create nodes and relations (1) 106

CREATE (a:User {name:"Alice"})

Creates a new node
Stores it in column a

CREATE (a)-[e:POSTED {on:"12-07"}]->(b)

Creates a new relation from a to b

If a the input table has no column named a, creates a new node
Idem for b
Stores the new relation in column e

Create nodes and relations (2) 107

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (a {name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

Table after MATCH clause:

a

N3

Table after CREATE clause:

a b

N3 N6

Create nodes and relations (2) 107

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

UserUser

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWSFOLLOWS

FOLLOWS

Query:

MATCH (a {name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

Table after MATCH clause:

a

N3

Table after CREATE clause:

a b

N3 N6

Create nodes and relations (2) 107

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (a {name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

Table after MATCH clause:

a

N3

Table after CREATE clause:

a b

N3 N6

The example graph stored as CREATE clauses 108

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

CREATE

(n1:User{name:"Alice"}),

(n2:User{name:"Bob"}),

(n3:User:Admin

{name:"Charlie"}),

(n4:Message {id:22,

text:"Hello"}),

(n5:Message {id:25,

text:"World"})

CREATE

(n1)-[:FOLLOWS]->(n2),

(n1)-[:POSTED

{on:"05-04"}]->(n4),

(n2)-[:FOLLOWS]->(n1),

(n2)-[:FOLLOWS]->(n3),

(n2)-[:POSTED

{on:"05-04"}]->(n5),

(n3)-[:FOLLOWS]->(n1),

(n5)-[:ANSWERS]->(n4),

Delete nodes and relations 109

DELETE a

If column a contains relations, delete them
If column a contains node:

if none of them has adjacent relation, delete them
otherwise the query fails.

DETACH DELETE a

If column a contains relations, delete them
If column a contains nodes, delete them as well as every adjacent
relations.

Modifying labels and properties (1) 110

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (a{name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

SET b:Admin, b.name="Eve"

Table after CREATE clause:

a b

N3 N6

Modifying labels and properties (1) 110

N1

User

name:"Alice"

N2

User

name:"Bob"

N3

User , Admin

name:"Charlie"

N4

Message

id:22
text:"Hello"

N5

Message

id:25
text:"World"

N6

User , AdminAdmin

name:"Eve"name:"Eve"

r1

FOLLOWS

r2

r3r4

r5
POSTED

on:"05-14"
r6

POSTED

on:"05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (a{name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

SET b:Admin, b.name="Eve"

Table after CREATE clause:

a b

N3 N6

Bulk updates 111

0 1 2 3

4

City Start

name: "Paris"
City End

name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

ROAD

length: 12

FERRY, length: 30, max speed: 60

MATCH ()-[e:ROAD]->()

WHERE e.max_speed IS NULL

SET e.max_speed=80

=⇒ Adds the property
max speed:80 to all ROAD
that do not have one.

Appendix

Navigable outline I 113

Introduction
About this PDF

Overview of query answering

Property graphs vs Relational

History of query languages for PG’s

Outline

Part I: Theoretical foundations
Reminder about sets and bag

1 Data model: labeled graphs

Definition

Limits to our data model

2 Graph DM vs Relational DM

Translation: Graph to Tables

Translation: Tables to Graph

Having non-binary relations in graphs

3 Regular Path Queries

Reminders about regular expressions

RPQs matching

Matching RPQs

Computing matches

4 The most common RPQ semantics

Endpoint semantics

Shortest semantics

Trail semantics

Navigable outline II 114

Part II: Neo4j, Property
graphs and Cypher

1 Data model: Property graphs

2 General presentation of Cypher

Generalities

Values in Cypher

How evaluation works

Overview of read-only Cypher

3 Pattern matching with MATCH

Matching nodes

Matching relations

Matching joined relations

Implicit join on variable reuse

Matching paths

Recap of pattern matching

Sequence of MATCH clauses

4 Usage of WITH (or RETURN)

Column manipulation

Elimination of duplicate rows

Vertical Aggregation

Horizontal aggregation

5 Subclauses of MATCH and/or WITH

Filtering rows with WHERE

Controling order and size of the
output

6 Updating the property graph

Create nodes and relations

Delete nodes and relations

Modifying labels and properties

Cypher allows flexible bulk updates

English-French translation I 115

English French

Acyclic Acyclique, Acircuitique

Bag, multiset Multi-ensemble

Data model (DM) Modèle de données

Edge Arête, Arc

Endpoints Extrémités

Key Clef

Label Etiquette

Match

Node Noeud

Path Chemin

Pattern matching Recherche de motif

Property, Attribute Propriété, Attribut

English-French translation II 116

Property Graph (PG) Graphe à propriétés, Graphe de pro-
priété, Graphe attribué

Regular Path Query (RPQ)

Semantics Semantique

Set Ensemble

Source Source

Target Destination

Trail

Type Type

Value Valeur

Vertex Sommet

Walk Chemin, Marche

	Introduction
	Part 1!II: Theoretical foundations
	Data model: labeled graphs
	Graph DM vs Relational DM
	Regular Path Queries
	The most common RPQ semantics

	Part 2!I: Neo4j, Property graphs and Cypher
	Data model: Property graphs
	General presentation of Cypher
	Pattern matching with keywordcolorMATCH
	Usage of keywordcolorWITH (or keywordcolorRETURN)
	Subclauses of keywordcolorMATCH and/or keywordcolorWITH
	Updating the property graph

	Appendix

