Query languages for property graphs:
RPQs in theory and practice

Victor MARSAULT

Université Gustave-Eiffel, CNRS, LIGM

BAAM/ADA/MOA Seminar

2022-11-29

Introduction

General setting

Query

Answer

General setting

= DBMS = DataBase Management System

DBMS

-
A

Query

Answer

General setting

= DBMS = DataBase Management System

Query

Answer

s DM = Data Model = “The way data is structured"
= Relational 7 XML ? Property graph ? RDF 7 etc.

General setting

= DBMS = DataBase Management System

= Query language
= “What can users ask for?"

Query

—

Answer

s DM = Data Model = “The way data is structured”
= Relational ? XML ? Property graph ? RDF 7 etc.

General setting

= DBMS = DataBase Management System

= Query language
= “What can users ask for?"

—

Query

[_
SN —
-'.§> — Answer

m Semantics of query 4—‘

= “What does the query mean?"

s DM = Data Model = “The way data is structured”
= Relational ? XML ? Property graph ? RDF 7 etc.

Relational DBMS = tables

Example: DB for a small store

Client table

name address
Alice Wonderland
Bob 124 Conch St.

Charlie 1593 Broadway

with cross-references

Product table

name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Relational DBMS = tables with cross-references

Example: DB for a small store

Client table

name address

Alice Wonderland
Bob 124 Conch St.
Charlie 1593 Broadway

Order table

id buyer date

Product table
name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order-content table

0 Alice 01-11-1865
1 Bob 07-07-2022

order_id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

Relational DBMS = tables with cross-references

Example: DB for a small store

Client table

name address

Alice Wonderland
Bob 124 Conch St.
Charlie 1593 Broadway

Order table

id buyer date

Product table
name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order-content table

0 Alice 01-11-1865
1 Bob 07-07-2022

order_id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

Relational DBMS = tables with cross-references

Example: DB for a small store

Client table

name address

Alice Wonderland
Bob 124 Conch St.
Charlie 1593 Broadway

Order table

id buyer date

Product table
name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order-content table

0 Alice 01-11-1865
1 Bob 07-07-2022

order_id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

Relational DBMS = tables with cross-references

Example: DB for a small store

Client table

name address

Alice Wonderland
Bob 124 Conch St.
Charlie 1593 Broadway

Order table

id buyer date

Product table
name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order-content table

0 Alice 01-11-1865
1 Bob 07-07-2022

order_id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

Relational DBMS = tables with cross-references

Example: DB for a small store

Client table

name address

Alice Wonderland
Bob 124 Conch St.
Charlie 1593 Broadway

Order table

id buyer date

Product table
name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order-content table

0 Alice 01-11-1865
1 Bob 07-07-2022

order_id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

/4

Vast majority of DMBS's are relational, not graph 3

Document stores 10.4%

Graph DBMS 1.8%

Key-value stores 5.6%
Multivalue DBMS 0.2%
Native XML DBMS 0.3%
Object oriented DBMS 0.2%
RDF stores 0.4%

Wide column stores 2.9%

L

Time Series DBMS 1% \
Spatial DBMS 0.4%

Search engines 4.7%

CRelational DBMS 71.9%

Figure and data from db-engines.com, June 2022

db-engines.com

/4

Vast majority of DMBS's are relational, not graph 3

Document stores 10.4%

Graph DBMS 1.8% >

Key-value stores 5.6%
Multivalue DBMS 0.2%
Native XML DBMS 0.3%
Object oriented DBMS 0.2%
RDF stores 0.4%

Wide column stores 2.9%
’/
Time Series DBMS 1%
Spatial DBMS 0.4%

Search engines 4.7%

Relational DBMS 71.9%

Figure and data from db-engines.com, June 2022

db-engines.com

1y,

Graph DBMS is growing in popularity 4

+25% per year since 2013

Popularity Changes

1500

1250

1000

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Figure and data from db-engines.com, June 2022

db-engines.com

Why use graph databases 7

Some data have intrinsically the structure of graphs (e.g. networks)

Road, City
:length: 2 _
: max_speed: 40 :

lll,’

Why not store graphs in tables?

Road, City
: length: 2 :
: max_speed: 40 :

1
%

Why not store graphs in tables?

TR . Road, City
: :length: 2 _
: max_speed: 40 :

length: 10

______ -

:';'tag: "Start"

length max_speed

id source_id target_id Road Ferry City
€01 0 1 true false false 10
e 1 2 true false true 10 40
€41 4 1 true false true
Graph Labels Properties

L/
"

Why not store graphs in tables?

TR . Road, City PR)
' :length: 2 ' '
: max_speed: 40 :

length: 10;
$

id source_id target_id Road Ferry City length max_speed

» eo1 0 1 true false false 10 <
e 1 2 true false true 10 40
es1 4 1 true false true

Graph Labels Properties

L/
"

Why not store graphs in tables?

— Model restriction allows specific algorithms and intuitive visualisation

RETTR . Road, City IR
: Road ‘length: 2 : Road
i length: 10 : max_speed: 40 :

______ 3

tag: "Start" :

id source_id target_id Road Ferry City length max_speed
eo1 0 1 true false false 10

e 1 2 true false true 10 40

es1 4 1 true false true

Graph Labels Properties

L/
"

History of query languages for property graphs

From RPQs to GQL: history and actors

1987 — RPQs are invented [Cruz-Mendelzon-Wood, 1987]

o

Academia

l

Regular
Path

Queries

From RPQs to GQL: history and actors

Since 1990's — RPQs are extended and studied in academia

o

Academia

(RO

From RPQs to GQL: history and actors

2011 — Cypher is designed by Neo4j

1%

Academia

(RO

From RPQs to GQL: history and actors 7

mid 2010's — Cypher is becoming a standard de facto. Standardize Cypher?

Agens!
ANZOQGRAPH

(RO

>
o2
>m
=

From RPQs to GQL: history and actors 7

mid 2010's — Cypher is becoming a standard de facto. Standardize Cypher?

Agens!
ANZOQGRAPH

(RO

>
o2
>m
=

From RPQs to GQL: history and actors 7

late 2010’s — Merge all existing languages instead of standardizing Cypher?

OR:iCLG LDlBC 8
?), TigerGraph
Academia \ "__‘/
"‘I\G—Core\':l
.neodj —

Agens!
ANZOQGRAPH

== redis

(RO

From RPQs to GQL: history and actors 7

2019-2021 — Two ISO projects: GQL [39075] and SQL/PGQ [9075-16.2]

LpBCc®
Academia K ‘\/
"‘ G—Core:'
.neodj —
o
ra~N
Path /\ «—h (o)
% Queries . v
Q‘ ECR\)QS ﬁl?ze(;:GHAPH

> redls

'\ MEM

“HH

From RPQs to GQL: history and actors 7
2019-2021 — Two ISO projects: GQL [39075] and SQL/PGQ [9075-16.2]
LpBc®

% TigerGraph i !
I’ \‘
\

Agens!
ANZOQGRAPH

(RO

From RPQs to GQL: history and actors

2023 (expected) — Publication of version 1 of GQL

Agens!
ANZOQGRAPH

(RO

Foundation of querying graph databases: RPQs

RPQs operates on labelled graphs

A graph consists of ...

Ferry

RPQs operates on labelled graphs

A graph consists of ...

m Vertices (or Nodes)

Ferry

RPQs operates on labelled graphs

A graph consists of ...

m Vertices (or Nodes)

m Edges (or Relationships)

Ferry

RPQs operates on labelled graphs

A graph consists of ...

m Vertices (or Nodes)

m Edges (or Relationships)

Ferry

= Edge labels: {R,F,G,S E}

RPQs operates on labelled graphs g2

A graph consists of ... Ferry

m Vertices (or Nodes)
m Edges (or Relationships)
= Edge labels: {R,F,G,S E}

Walk

m a.k.a. Path Gas
m Sequence of edges
= Can reuse vertices and edges

RPQs operates on labelled graphs g2

A graph consists of ... Ferry

m Vertices (or Nodes)
m Edges (or Relationships)
= Edge labels: {R,F,G,S E}

Walk

m a.k.a. Path Gas
m Sequence of edges
= Can reuse vertices and edges

0—-1—-2—4

RPQs operates on labelled graphs 8

A graph consists of ... Ferry

m Vertices (or Nodes)
m Edges (or Relationships)
= Edge labels: {R,F,G,S E}

Walk

m a.k.a. Path Gas
m Sequence of edges
= Can reuse vertices and edges

0—-1—-2—-4—4

RPQs operates on labelled graphs 8

A graph consists of ... Ferry

m Vertices (or Nodes)
m Edges (or Relationships)
= Edge labels: {R,F,G,S E}

Walk

m a.k.a. Path Gas
m Sequence of edges
= Can reuse vertices and edges

0—+1—-2—+4—-1—-2—-3

RPQ = Regular expression 0%

Q:= A
Q9
Q+9
Q*
where A is a label in the graph.

An RPQ denotes a set of words

S (F+R)*E denotes the words of the shape S<something> E
—_————

Any number of F and R, in any order

RPQ = Regular expression 0%

Q:= A
Q9
Q+9
Q*
where A is a label in the graph.

An RPQ denotes a set of words

S (F+R)*E denotes the words of the shape S<something> E
—_————

Any number of F and R, in any order

Matches

A match for Q is any walk w such that O denotes the label of w

lll,,

First example 10§

Ferry

Query RR matches...

...walks of two Road-edges

First example

Query RR matches...

...walks of two Road-edges

0—-1—2 2—+4—1
1-2—-3 4—-1—2
1—-2—3

Ferry

Gas

lll,,

102

First example

Query RR matches...

...walks of two Road-edges

0—-1—2 2—+4—1
1-2—-3 4—-1—2
1—-2—3

Ferry

Gas

lll,,

102

lll,,

The queries Q7 and O, 11§

Ferry

O = S(R+F)* E

Q1 matches...

Gas

lll,,

The queries Q7 and O, 11§

Ferry

O = S(R+F)* E

Q1 matches...

Gas

lll,,

The queries Q7 and O, 11§

Ferry

O = S(R+F)* E

Q1 matches...
m The ferry

Gas

lll,,

The queries Q7 and O, 11§

Ferry

O = S(R+F)* E

Q1 matches...
m The ferry
m The direct road

Gas

The queries Q7 and O,

Q; =S(R+F)*E

Q1 matches...

m The ferry

m The direct road

m Roads with laps in the circuit

Ferry

Gas

W,
-
118

The queries Q7 and O, 11§

Ferry

O = S(R+F)* E

Q1 matches...

m The ferry

m The direct road

m Roads with laps in the circuit

9, =S(R+F)"G(R+F)*E Gas

Q> matches...

The queries Q7 and O, 11§

Ferry

O = S(R+F)* E

Q1 matches...

m The ferry

m The direct road

m Roads with laps in the circuit

9, =S(R+F)"G(R+F)*E Gas

Q> matches...

The queries Q7 and O, 11§

Ferry

Q; =S(R+F)*E

Q1 matches...

m The ferry

m The direct road

m Roads with laps in the circuit

9, =S(R+F)"G(R+F)*E Gas

Q> matches...
m Roads with laps in the circuit

lll,’

Fundamental challenge with RPQs 12§

~
RPQ

~

— ﬂ =T

g 1

Answer

N Infinitely many matches but finite answer N

. . lll,,
Homomorphism semantics

Main theoretical semantics [Angles et al. 2017] (used in SparQL)

Ferry

Definition

m Returns the endpoints of
matches

R

Start

3 &)

End

Gas

Homomorphism semantics 13%

Main theoretical semantics [Angles et al. 2017] (used in SparQL)

Ferry

Definition

m Returns the endpoints of
matches

Q1= S (R+F)* E

9= S(R+F)"G (R+F)*E
G
m All matches are of the form: *

0—.--—3
= Qp and Qy return {(0,3)}

Homomorphism semantics (2)

Pros and cons

Pros

m Efficient algorithms
m Well grounded theory

Homomorphism semantics (2)

Pros and cons

Pros

m Efficient algorithms
m Well grounded theory

Cons

m Very limited information in the answer

= User: “l want to go from Paris to Lyon by car”
= Database: “Yes you can”

. Wy,
Shortest-walk semantics

15%
w
Used in PGQL (Oracle), in GSQL (TigerGraph), in G-core [Angles et al. 2018]
Definition
= Return the walk with the least Ferry

number of edges

Road Road

0 @

Road
2 /3 8
Start % < End

[°g
Gas

%y 1o

lll,,
Shortest-walk semantics

15§
N
Used in PGQL (Oracle), in GSQL (TigerGraph), in G-core [Angles et al. 2018]
Definition
= Return the walk with the least Ferry

number of edges

Q1= S(R+F)*E

m Q7 returns 1 walk
= the ferry

m Walks taking the road have
more edges

Gas

"I,,
Shortest-walk semantics

15§
N
Used in PGQL (Oracle), in GSQL (TigerGraph), in G-core [Angles et al. 2018]
Definition
= Return the walk with the least Ferry

number of edges

Q1= S(R+F)*E

m Q7 returns 1 walk
= the ferry

m Walks taking the road have
more edges

Gas

Q= S (R+F)" G (R+F)*E

m Q7 returns 1 walk
= the one-lap road

Shortest walk semantics (2) 162

Pros and cons

Pros

m Returns walks

m Efficient algorithms

m Horizontal post-processing
= Horizontal = along the walk
= “Is there a gas station on the way?"
= “What is the length of the walk?”

Shortest walk semantics (2) 162

Pros and cons

Pros

m Returns walks

m Efficient algorithms

m Horizontal post-processing
= Horizontal = along the walk
= “Is there a gas station on the way?"
= “What is the length of the walk?”

Cons

= No vertical post-processing
= Vertical = accross the walks with the same endpoints
= “What is the shortest walk in time?”
= “What is the connectedness level?”

= No coverage of the space of matches

Trail semantics 175

Used in Cypher (Neo4j) [Francis et al. 2018] [Green et al. 2019]

Definition

Ferry

m Return walks
m Forbid to repeat edges

Gas

Trail semantics 175

Used in Cypher (Neo4j) [Francis et al. 2018] [Green et al. 2019]

Definition

Ferry

m Return walks
m Forbid to repeat edges

Q1= S(R+F)*E

m O returns 2 walks
= the ferry
= the straight road

Gas

Trail semantics 178

Used in Cypher (Neo4j) [Francis et al. 2018] [Green et al. 2019]

Definition

Ferry

m Return walks
m Forbid to repeat edges

Q1= S(R+F)*E

m Q7 returns 2 walks
= the ferry
= the straight road

m Walks with circuit laps repeat
the middle edge

Gas

Trail semantics 178

Used in Cypher (Neo4j) [Francis et al. 2018] [Green et al. 2019]

Definition

Ferry

m Return walks
m Forbid to repeat edges

Q1= S(R+F)*E

m Q7 returns 2 walks
= the ferry
= the straight road
m Walks with circuit laps repeat

the middle edge Gas

Q= S(R+F)" G (R+F)*E

Q> returns nothing

Trail semantics (2) 185

Pros and cons

Pros

= Returns walks

= Counting matches is possible

= Horizontal and vertical post-processing
m Some coverage of the space of matches

Trail semantics (2) 185

Pros and cons

Pros

= Returns walks

= Counting matches is possible

= Horizontal and vertical post-processing
m Some coverage of the space of matches

Cons

= All problems are computationally hard [Martens et al. 2020]
= Counting, enumeration, existence
= Checking whether @» returns anything — Already NP-hard

m Part of the space of matches might be uncovered

Fundamental challenge with RPQs 19

TN\

Graph DBMS
RPQ -

Answer e

N Infinitely many matches but finite answer N

m Several way to ensure finiteness
= Homomorphism — Filters out most information
= Shortest-walk — Bad coverage of the space of matches
= Traill — Computationally hard
= Other variants have similar issues.

= No solution is clearly superior

Run-based semantics

New theoretical compromise [David-Francis-Marsault 2027]

. Ferry
Definition

m Returns walks

m Each edge may match each
atom only once

Road Road Road
@ /®
P §
Start % <

Gas

Run-based semantics

New theoretical compromise [David-Francis-Marsault 2027]

. Ferry
Definition

m Returns walks

m Each edge may match each
atom only once

Road

Start End
Q>

S (R+F)" G (R+F)*E

Run-based semantics

New theoretical compromise [David-Francis-Marsault 2027]

. Ferry
Definition

m Returns walks

m Each edge may match each
atom only once

Road

Start End
Q>

S (R+F)" G (R+F)*E

m Returns the 1-lap road only

Run-based semantics

New theoretical compromise [David-Francis-Marsault 2027]

. Ferry
Definition

m Returns walks

m Each edge may match each
atom only once

Road

Start End
Q>

S (R+F)" G (R+F)*E

m Returns the 1-lap road only
= Before G — use the left R

Run-based semantics

New theoretical compromise [David-Francis-Marsault 2027]

Definition
m Returns walks

m Each edge may match each
atom only once

Ferry

Road

(0 S (R+F)" G (R+F)*E

m Returns the 1-lap road only
= Before G — use the left R
= After G — use the right R

End

1y,

YU

Run-based semantics

\\

ll\\‘
New theoretical compromise [David-Francis-Marsault 2027]

Ferry

Definition

= Returns walks
m Each edge may match each
atom only once

Road

End
9= S(R+F)"G (R+F)*E
m Returns the 1-lap road only

= Before G — use the left R
= After G — use the right R

= > 1 circuit lap = some edge
use the same atom twice

Run-based semantics

New theoretical compromise [David-Francis-Marsault 2027]

. Ferry
Definition

m Returns walks

m Each edge may match each
atom only once

o
9= S(R+F)"G (R+F)*E %
m Returns the 1-lap road only

= Before G — use the left R
= After G — use the right R Q1= S(R+F)*E

= > 1 circuit lap = some edge
use the same atom twice

m Returns the ferry and the
straight road

1y,

N\

Run-based semantics (2)

2Ls
KT

Pros and cons

Pros

Returns walks

Horizontal and vertical post-processing
"Reasonable” coverage of the space of matches
Counting results is possible

Emptyness and Enumeration are efficient

1y,

N\

Run-based semantics (2)

21§
KT

Pros and cons

Pros

Returns walks

Horizontal and vertical post-processing
"Reasonable” coverage of the space of matches
Counting results is possible

Emptyness and Enumeration are efficient

Cons

m Counting results is computationally hard

= Answer depends on the way the query is written
= R* allows no lap in the circuit
* (R+ R)* allows 1 lap in the circuit

1y,

N\

Run-based semantics (2)

21§
KT

Pros and cons

Pros

Returns walks

Horizontal and vertical post-processing
"Reasonable” coverage of the space of matches
Counting results is possible

Emptyness and Enumeration are efficient

m Gives some expressivity to the user

Cons

m Counting results is computationally hard

= Answer depends on the way the query is written
= R* allows no lap in the circuit
* (R+ R)* allows 1 lap in the circuit

Property graphs and real query languages

Back to our example property graph

[EETIRI) Road, City : (PRI
' ' “length: 2 ‘ Road _
- max_speed: 40 : :length: 12 :

e, . tag: "End" :
Road, Clty TR LTI .
‘length:1

Vertices and edges may bear: m Property = key-value pair

m zero or more labels m Key = string
m Zero or more properties m Value = bool, int, str, ...

Cypher features

m Trail semantics

» Restricted RPQs (in fact UC2RPQs) with the following restrictions:
= Under a Kleene star, only unions of atoms are allowed:

Cypher features 3%

m Trail semantics

» Restricted RPQs (in fact UC2RPQs) with the following restrictions:
= Under a Kleene star, only unions of atoms are allowed:
= Backward atoms are allowed e.g. Ferry (Road™1)"

Cypher features 22

m Trail semantics

» Restricted RPQs (in fact UC2RPQs) with the following restrictions:
= Under a Kleene star, only unions of atoms are allowed:

= Backward atoms are allowed e.g. Ferry (Road™1)"

m ASCll-art syntax

Cypher features =2

m Trail semantics

» Restricted RPQs (in fact UC2RPQs) with the following restrictions:
= Under a Kleene star, only unions of atoms are allowed:

= Backward atoms are allowed e.g. Ferry (Road™1)"
m ASCll-art syntax
m Cypher is graph-to-tables

m Chaining of clauses

ASClI-art syntax

m Vertices: MATCH (:Gas)

MATCH tag:"Start"

ASClI-art syntax

= Vertices: MATCH (:Gas) MATCH tag:"Start"
m Edges: MATCH -[:Road]->

"1,,
ASClI-art syntax

= Vertices: MATCH (:Gas) MATCH tag:"Start"
m Edges: MATCH -[:Road]->

m Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]l->()

ASCll-art syntax =04%

= Vertices: MATCH (:Gas) MATCH tag:"Start"
m Edges: MATCH -[:Road]->

m Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()
» Disjunction: MATCH ()-[:Road|Ferry]l->()

ASClI-art syntax £04%

= Vertices: MATCH (:Gas) MATCH tag:"Start"
Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]l->()
Disjunction: MATCH ()-[:Road|Ferry]->()
Kleene star: MATCH ()-[:Road*]->()

ASClI-art syntax £04%

= Vertices: MATCH (:Gas) MATCH tag:"Start"
Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]l->()
Disjunction: MATCH ()-[:Road|Ferry]->()
Kleene star: MATCH ()-[:Road*]->()

m Variables: MATCH ()-[:Road]->(x)-[:Road]->()

ASClI-art syntax £04%

= Vertices: MATCH (:Gas) MATCH tag:"Start"
Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]l->()
Disjunction: MATCH ()-[:Road|Ferry]l->()
Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()
Implicit join: MATCH (x)-[:Road*]->(x)

ASClI-art syntax £04%

= Vertices: MATCH (:Gas) MATCH tag:"Start"
Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]l->()
Disjunction: MATCH ()-[:Road|Ferry]l->()
Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()
Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q; and Q,
MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferryx]->
(:Gas)-[:Road|Ferry*]->({tag:"End"})

Cypher returns a table... £25%
S

e, . : : Road, City UTTOT)
: ‘ - length: 2 5 ‘ Road :
maxspeed 40

Road, City L :
‘length:1

Query Result

MATCH (s)-[:City]l->(t)

AN =0
=B N

Cypher returns a table... £25%
S

e, . : : Road, City UTTOT)
: ‘ - length: 2 5 ‘ Road :
maxspeed 40

Road, City L :
‘length:1

Query Result

MATCH (s)-[:City]l->(t)

AN =0
=B N

Cypher returns a table... £25%
S

e, . : : Road, City UTTOT)
: ‘ - length: 2 5 ‘ Road :
maxspeed 40

Road, City L :
‘length:1

Query Result

MATCH (s)-[:City]l->(t)

AN =0
[~ N o

Cypher returns a table... £25%
S

e, . : : Road, City UTTOT)
: ‘ - length: 2 5 ‘ Road :
maxspeed 40

Road, City L :
‘length:1

Query Result

MATCH (s)-[:City]l->(t)

AN =0
=B N

Cypher returns a table... but computes walks 3208
“nS

e, . : : Road, City UTTOT)
: : : length: 2 5 5 Road :
maxspeed 40

Road, City L :
‘length:1

Query Result
MATCH s t
(s {tag:"Start"}) 0 3
-[:Road|Ferry*]-> 0 3

(t {tag:"End"})

Cypher returns a table... but computes walks 3208
“nS

e, . : : Road, City UTTUT)
: : : length: 2 5 5 Road :
maxspeed 40

Road, City L :
‘length:1

Query Result
MATCH s t
(s {tag:"Start"}) 0 3 <« The ferry
-[:Road|Ferryx*]-> 0 3 < The direct road

(t {tag:"End"})

Other Cypher features

= ORDER BY:

orders row
m WHERE: filters row
m WITH or RETURN:

= adds/renames columns

= horizontal aggregation (e.g. with keyword reduce)

= vertical aggregation (e.g. with keyword count, max)
= CREATE/DELETE/SET: updates the property graph

A Cypher query actually chain clauses

Property
Graph

Clause
e.g. MATCH ...

.J

Table

iy,
$ (4

| §
2>

=
%

A Cypher query actually chain clauses

Property

Graph ﬂ
Clause 1 Clause 2
e.g. MATCH ... e.g. WITH ...

Table 1

iy,
$ (4

2§
7 NI
2>

A Cypher query actually chain clauses

Clause 1 Clause 2
e.g. MATCH ... e.g. WITH ...
Table 1

a

Property
Graph

.J

Table 2

\\\\\"I,,
| §
2>

=
%

A Cypher query actually chain clauses

Clause 1 Clause 2
e.g. MATCH ... e.g. WITH ...
Table 1

a

Property
Graph

.J

Table 2

\\\\\"I,,
| §
2>

=
%

etc...

A Cypher query actually chain clauses

Clause 1 Clause 2
Table 1 Table 2
b

a a

Property
Graph

.J

Example

m Clause 1 makes some pattern matching
m Clause 2 aggregates over the result of Clause 1

R
NI

s

7 NI
TN

=
)

R

s
2, S
TN

=
-,

A Cypher query actually chain clauses

Clause 1 Clause 2
Table 1 Table 2
b

a a

Property
Graph

.J

Example

m Clause 1 makes some pattern matching
m Clause 2 aggregates over the result of Clause 1

= Trail semantics (rich post-processing at the cost of efficiency)

GQL, standard query language for property graphs

Features inherited from Cypher

m ASCll-art syntax
m Graph-to-tables

m Chaining of clauses

= No nested Kleene stars

\\l/
SO
[
/]

s
S

-,
U

GQL, standard query language for property graphs

Features inherited from Cypher

m ASCll-art syntax

m Graph-to-tables

m Chaining of clauses

= No nested Kleene stars

New features

m Arbitrary union under star

m Undirected edges
= Query multiple database at the same time

m Subqueries

\Ll/
P
:

0§

-,
K

R\

]

GQL, standard query language for property graphs

Features inherited from Cypher

m ASCll-art syntax

m Graph-to-tables

m Chaining of clauses

= No nested Kleene stars

New features

m Arbitrary union under star

m Undirected edges

= Query multiple database at the same time
m Subqueries

m Deduplication based on "binding path”

0
oz
208§
7 N
iy

N

R\
i

GQL and the fundamental challenge with RPQs

An RPQ may have infinitely many matches

m GQL has to ensure finiteness of answer
= No solution is clearly superior

N 1y

n,
N
W

QW
U

¢\

\W/
N %

GQL and the fundamental challenge with RPQs £20%

220§
K

An RPQ may have infinitely many matches

m GQL has to ensure finiteness of answer
= No solution is clearly superior

GQL does not choose

m Trail semantics — keyword TRAIL

m Shortest-walk semantics — keyword SHORTEST
m Syntax restriction — keyword WALK

m Others

\W/
N %

GQL and the fundamental challenge with RPQs £20%

220§
K

An RPQ may have infinitely many matches

m GQL has to ensure finiteness of answer
= No solution is clearly superior

GQL does not choose

m Trail semantics — keyword TRAIL

m Shortest-walk semantics — keyword SHORTEST
m Syntax restriction — keyword WALK

m Others

— Could we add run-based semantics in GQL 2.0?

{ ORACLE

B
4 @) TigerGraph i LDBC
i \ v

Agens!
ANZOPGRAPH

=
A/ MEM =
GRAPH _—

SADd

{ C)RziCLE LDlBC 8
? @) TigerGraph
Academia \ /

Agens!
ANZOPGRAPH

== redis

Thank you for your attention!

Wy,

Navigable outline £31%
21
= [ntroduction m Foundation of querying graph
e General setting.............. 1 databases: RPQs
e Relational DBMS............ 2 e Graph as database........... 8
e Graph DBMS in practice. 3 e RPQ = Regular expression... 9
e Graph vs relational 5 e Main queries............... 11
) e Homomorphism semantics.. 13
= History of query languages for e Shortest walk 15
property graphs e Trail semantics............. 17
e Run-based semantics....... 20

m Property graphs and real query
languages
e Cypher 23

i/,

GQL will be usable from SQL

— =
Z205S
KT

Relational DBMS

Graph pattern

!

‘ Processor H output]
Property Graph \\-{ Graph DBMS H graph view

!

\\L1/

GQL will be usable from SQL

Graph pattern Relational DBMS
‘ Processor H] table

— =
20<S
KT

!

output

Property Graph \\-{ Graph DBMS H graph view

new graph

-

!
i

Output of GQL: set of path bindings
Path binding = walk annotated with variables

GQL path-bindings in one slide N7

— =
%S
KT

e,) Road, City
: ' : length: 2 _
- max_speed: 40 :

Road, City LR
‘length:1

MATCH TRAIL (a WHERE a.tag="Start")
[-[r:Road]-> | -[c:City]->]* (b WHERE b.tag="End")

iz,

GQL path-bindings in one slide

— =
% S
KT

§~onad, City
: length: 2 _
- max_speed: 40 :

MATCH TRAIL (a WHERE a.tag="Start")
[-[r:Road]-> | -[c:City]->]* (b WHERE b.tag="End")

0O -1 = 2 — 0O -1 = 2 —
a r r T a r c T

3 3
b b

	Introduction
	General setting
	Relational DBMS
	Graph DBMS in practice
	Graph vs relational

	History of query languages for property graphs
	Foundation of querying graph databases: RPQs
	Graph as database
	RPQ=Regular expression
	Main queries
	Homomorphism semantics
	Shortest walk
	Trail semantics
	Run-based semantics

	Property graphs and real query languages
	Cypher
	GQL

	Appendix
	Path bindings

