
Query languages for property graphs:

RPQs in theory and practice

Victor MARSAULT

Université Gustave-Eiffel, CNRS, LIGM

BAAM/ADA/MOA Seminar

2022-11-29

Introduction

General setting 1

DBMS = DataBase Management System

Query language
“What can users ask for?”

Query

Answer

User DBMS

Semantics of query
“What does the query mean?”

DM = Data Model = “The way data is structured”
Relational ? XML ? Property graph ? RDF ? etc.

General setting 1

DBMS = DataBase Management System

Query language
“What can users ask for?”

Query

Answer

User DBMS

Semantics of query
“What does the query mean?”

DM = Data Model = “The way data is structured”
Relational ? XML ? Property graph ? RDF ? etc.

General setting 1

DBMS = DataBase Management System

Query language
“What can users ask for?”

Query

Answer

User DBMS

DM

Semantics of query
“What does the query mean?”

DM = Data Model = “The way data is structured”
Relational ? XML ? Property graph ? RDF ? etc.

General setting 1

DBMS = DataBase Management System

Query language
“What can users ask for?”

Query

Answer

User DBMS

DM

Semantics of query
“What does the query mean?”

DM = Data Model = “The way data is structured”
Relational ? XML ? Property graph ? RDF ? etc.

General setting 1

DBMS = DataBase Management System

Query language
“What can users ask for?”

Query

Answer

User DBMS

DM

Semantics of query
“What does the query mean?”

DM = Data Model = “The way data is structured”
Relational ? XML ? Property graph ? RDF ? etc.

Relational DBMS = tables with cross-references 2

Example: DB for a small store

Client table

name address
Alice Wonderland
Bob 124 Conch St.

Charlie 1593 Broadway

Product table

name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order table

id buyer date
0 Alice 01-11-1865
1 Bob 07-07-2022

Order-content table

order id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

Relational DBMS = tables with cross-references 2

Example: DB for a small store

Client table

name address
Alice Wonderland
Bob 124 Conch St.

Charlie 1593 Broadway

Product table

name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order table

id buyer date
0 Alice 01-11-1865
1 Bob 07-07-2022

Order-content table

order id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

Relational DBMS = tables with cross-references 2

Example: DB for a small store

Client table

name address
Alice Wonderland
Bob 124 Conch St.

Charlie 1593 Broadway

Product table

name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order table

id buyer date
0 Alice 01-11-1865
1 Bob 07-07-2022

Order-content table

order id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

Relational DBMS = tables with cross-references 2

Example: DB for a small store

Client table

name address
Alice Wonderland
Bob 124 Conch St.

Charlie 1593 Broadway

Product table

name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order table

id buyer date
00 Alice 01-11-1865
1 Bob 07-07-2022

Order-content table

order id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

Relational DBMS = tables with cross-references 2

Example: DB for a small store

Client table

name address
Alice Wonderland
Bob 124 Conch St.

Charlie 1593 Broadway

Product table

name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order table

id buyer date
00 AliceAlice 01-11-1865
1 Bob 07-07-2022

Order-content table

order id product
0 Rabbit
0 Pocket Watch
1 Sponge
1 Broom

Relational DBMS = tables with cross-references 2

Example: DB for a small store

Client table

name address
Alice Wonderland
Bob 124 Conch St.

Charlie 1593 Broadway

Product table

name price
Sponge 1€
Broom 5€
Rabbit 0€

Pocket Watch 100€

Order table

id buyer date
00 AliceAlice 01-11-1865
1 Bob 07-07-2022

Order-content table

order id product
0 RabbitRabbit
0 Pocket WatchPocket Watch
1 Sponge
1 Broom

Vast majority of DMBS’s are relational, not graph 3

Figure and data from db-engines.com, June 2022

db-engines.com

Vast majority of DMBS’s are relational, not graph 3

Figure and data from db-engines.com, June 2022

db-engines.com

Graph DBMS is growing in popularity 4

+25% per year since 2013

Figure and data from db-engines.com, June 2022

db-engines.com

Why use graph databases ? 5

Some data have intrinsically the structure of graphs (e.g. networks)

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

Why not store graphs in tables? 6

→ Model restriction allows specific algorithms and intuitive visualisation

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

id source id target id Road Ferry City length max speed
e01 0 1 true false false 10
e12 1 2 true false true 10 40
e41 4 1 true false true
...

...
...

...
...

...
...

...

Graph Labels Properties

Why not store graphs in tables? 6

→ Model restriction allows specific algorithms and intuitive visualisation

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

id source id target id Road Ferry City length max speed
e01 0 1 true false false 10
e12 1 2 true false true 10 40
e41 4 1 true false true
...

...
...

...
...

...
...

...

Graph Labels Properties

Why not store graphs in tables? 6

→ Model restriction allows specific algorithms and intuitive visualisation

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

id source id target id Road Ferry City length max speed
▶ e01 0 1 true false false 10 ◀

e12 1 2 true false true 10 40
e41 4 1 true false true
...

...
...

...
...

...
...

...

Graph Labels Properties

Why not store graphs in tables? 6

→ Model restriction allows specific algorithms and intuitive visualisation

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

id source id target id Road Ferry City length max speed
e01 0 1 true false false 10
e12 1 2 true false true 10 40
e41 4 1 true false true
...

...
...

...
...

...
...

...

Graph Labels Properties

History of query languages for property graphs

From RPQs to GQL: history and actors 7

1987 – RPQs are invented [Cruz-Mendelzon-Wood, 1987]

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

From RPQs to GQL: history and actors 7

Since 1990’s – RPQs are extended and studied in academia

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

From RPQs to GQL: history and actors 7

2011 – Cypher is designed by Neo4j

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

From RPQs to GQL: history and actors 7

mid 2010’s – Cypher is becoming a standard de facto. Standardize Cypher?

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

From RPQs to GQL: history and actors 7

mid 2010’s – Cypher is becoming a standard de facto. Standardize Cypher?

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

From RPQs to GQL: history and actors 7

late 2010’s – Merge all existing languages instead of standardizing Cypher?

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

From RPQs to GQL: history and actors 7

2019-2021 – Two ISO projects: GQL [39075] and SQL/PGQ [9075-16.2]

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

From RPQs to GQL: history and actors 7

2019-2021 – Two ISO projects: GQL [39075] and SQL/PGQ [9075-16.2]

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

From RPQs to GQL: history and actors 7

2023 (expected) – Publication of version 1 of GQL

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

Foundation of querying graph databases: RPQs

RPQs operates on labelled graphs 8

A graph consists of ...

Vertices (or Nodes)

Edges (or Relationships)

Edge labels: {R,F,G,S,E}

Walk

a.k.a. Path
Sequence of edges
Can reuse vertices and edges

0→ 1→ 2→ 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

RPQs operates on labelled graphs 8

A graph consists of ...

Vertices (or Nodes)

Edges (or Relationships)

Edge labels: {R,F,G,S,E}

Walk

a.k.a. Path
Sequence of edges
Can reuse vertices and edges

0→ 1→ 2→ 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

RPQs operates on labelled graphs 8

A graph consists of ...

Vertices (or Nodes)

Edges (or Relationships)

Edge labels: {R,F,G,S,E}

Walk

a.k.a. Path
Sequence of edges
Can reuse vertices and edges

0→ 1→ 2→ 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

RPQs operates on labelled graphs 8

A graph consists of ...

Vertices (or Nodes)

Edges (or Relationships)

Edge labels: {R,F,G,S,E}

Walk

a.k.a. Path
Sequence of edges
Can reuse vertices and edges

0→ 1→ 2→ 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

RPQs operates on labelled graphs 8

A graph consists of ...

Vertices (or Nodes)

Edges (or Relationships)

Edge labels: {R,F,G,S,E}

Walk

a.k.a. Path
Sequence of edges
Can reuse vertices and edges

0→ 1→ 2→ 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

RPQs operates on labelled graphs 8

A graph consists of ...

Vertices (or Nodes)

Edges (or Relationships)

Edge labels: {R,F,G,S,E}

Walk

a.k.a. Path
Sequence of edges
Can reuse vertices and edges

0→ 1→ 2→ 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

RPQs operates on labelled graphs 8

A graph consists of ...

Vertices (or Nodes)

Edges (or Relationships)

Edge labels: {R,F,G,S,E}

Walk

a.k.a. Path
Sequence of edges
Can reuse vertices and edges

0→ 1→ 2→ 4→ 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

RPQs operates on labelled graphs 8

A graph consists of ...

Vertices (or Nodes)

Edges (or Relationships)

Edge labels: {R,F,G,S,E}

Walk

a.k.a. Path
Sequence of edges
Can reuse vertices and edges

0→ 1→ 2→ 4→ 1→ 2→ 3

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

RPQ = Regular expression 9

Q ::= A
QQ
Q+Q
Q∗

where A is a label in the graph.

An RPQ denotes a set of words

S (F+R)∗E denotes the words of the shape S<something>︸ ︷︷ ︸
Any number of F and R, in any order

E

Matches

A match for Q is any walk w such that Q denotes the label of w

RPQ = Regular expression 9

Q ::= A
QQ
Q+Q
Q∗

where A is a label in the graph.

An RPQ denotes a set of words

S (F+R)∗E denotes the words of the shape S<something>︸ ︷︷ ︸
Any number of F and R, in any order

E

Matches

A match for Q is any walk w such that Q denotes the label of w

First example 10

Query RR matches...

...walks of two Road-edges

0→ 1→ 2
1→ 2→ 3
1→ 2→ 3

2→ 4→ 1
4→ 1→ 2

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

First example 10

Query RR matches...

...walks of two Road-edges

0→ 1→ 20→ 1→ 2
1→ 2→ 3
1→ 2→ 3

2→ 4→ 1
4→ 1→ 2

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

First example 10

Query RR matches...

...walks of two Road-edges

0→ 1→ 2
1→ 2→ 3
1→ 2→ 3

2→ 4→ 12→ 4→ 1
4→ 1→ 2

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

The queries Q1 and Q2 11

Q1 = S (R+F)∗ E

Q1 matches...

The ferry
The direct road
Roads with laps in the circuit

Q2 = S (R+F)∗G (R+F)∗ E

Q2 matches...
Roads with laps in the circuit

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

The queries Q1 and Q2 11

Q1 = SS (R+F)∗ EE

Q1 matches...

The ferry
The direct road
Roads with laps in the circuit

Q2 = S (R+F)∗G (R+F)∗ E

Q2 matches...
Roads with laps in the circuit

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

The queries Q1 and Q2 11

Q1 = S (R+F)∗ E

Q1 matches...
The ferry

The direct road
Roads with laps in the circuit

Q2 = S (R+F)∗G (R+F)∗ E

Q2 matches...
Roads with laps in the circuit

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

The queries Q1 and Q2 11

Q1 = S (R+F)∗ E

Q1 matches...
The ferry
The direct road

Roads with laps in the circuit

Q2 = S (R+F)∗G (R+F)∗ E

Q2 matches...
Roads with laps in the circuit

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

The queries Q1 and Q2 11

Q1 = S (R+F)∗ E

Q1 matches...
The ferry
The direct road
Roads with laps in the circuit

Q2 = S (R+F)∗G (R+F)∗ E

Q2 matches...
Roads with laps in the circuit

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

The queries Q1 and Q2 11

Q1 = S (R+F)∗ E

Q1 matches...
The ferry
The direct road
Roads with laps in the circuit

Q2 = S (R+F)∗G (R+F)∗ E

Q2 matches...

Roads with laps in the circuit

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

The queries Q1 and Q2 11

Q1 = S (R+F)∗ E

Q1 matches...
The ferry
The direct road
Roads with laps in the circuit

Q2 = SS (R+F)∗GG (R+F)∗ EE

Q2 matches...

Roads with laps in the circuit

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

The queries Q1 and Q2 11

Q1 = S (R+F)∗ E

Q1 matches...
The ferry
The direct road
Roads with laps in the circuit

Q2 = S (R+F)∗G (R+F)∗ E

Q2 matches...
Roads with laps in the circuit

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Fundamental challenge with RPQs 12

RPQ

Answer

User Graph DBMS

! Infinitely many matches but finite answer !

Several way to ensure finiteness
Homomorphism → Filters out most information
Shortest-walk → Bad coverage of the space of matches
Trail → Computationally hard
Other variants have similar issues.

No solution is clearly superior

Homomorphism semantics 13

Main theoretical semantics [Angles et al. 2017] (used in SparQL)

Definition

Returns the endpoints of
matches

Q1 = S (R+F)∗ E

Q2 = S (R+F)∗ G (R+F)∗ E

All matches are of the form:
0→ · · · → 3
⇒ Q1 and Q2 return {(0, 3)}

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Homomorphism semantics 13

Main theoretical semantics [Angles et al. 2017] (used in SparQL)

Definition

Returns the endpoints of
matches

Q1 = S (R+F)∗ E

Q2 = S (R+F)∗ G (R+F)∗ E

All matches are of the form:
0→ · · · → 3
⇒ Q1 and Q2 return {(0, 3)}

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Homomorphism semantics (2) 14

Pros and cons

Pros

Efficient algorithms
Well grounded theory

Cons

Very limited information in the answer
User: “I want to go from Paris to Lyon by car”
Database: “Yes you can”

Homomorphism semantics (2) 14

Pros and cons

Pros

Efficient algorithms
Well grounded theory

Cons

Very limited information in the answer
User: “I want to go from Paris to Lyon by car”
Database: “Yes you can”

Shortest-walk semantics 15

Used in PGQL (Oracle), in GSQL (TigerGraph), in G-core [Angles et al. 2018]

Definition

Return the walk with the least
number of edges

Q1 = S (R+F)∗ E

Q1 returns 1 walk

the ferry

Walks taking the road have
more edges

Q2 = S (R+F)∗ G (R+F)∗ E

Q1 returns 1 walk

the one-lap road

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest-walk semantics 15

Used in PGQL (Oracle), in GSQL (TigerGraph), in G-core [Angles et al. 2018]

Definition

Return the walk with the least
number of edges

Q1 = S (R+F)∗ E

Q1 returns 1 walk
the ferry

Walks taking the road have
more edges

Q2 = S (R+F)∗ G (R+F)∗ E

Q1 returns 1 walk

the one-lap road

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest-walk semantics 15

Used in PGQL (Oracle), in GSQL (TigerGraph), in G-core [Angles et al. 2018]

Definition

Return the walk with the least
number of edges

Q1 = S (R+F)∗ E

Q1 returns 1 walk
the ferry

Walks taking the road have
more edges

Q2 = S (R+F)∗ G (R+F)∗ E

Q1 returns 1 walk
the one-lap road

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest walk semantics (2) 16

Pros and cons

Pros

Returns walks
Efficient algorithms
Horizontal post-processing

Horizontal = along the walk
“Is there a gas station on the way?”
“What is the length of the walk?”

Cons

No vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the shortest walk in time?”
“What is the connectedness level?”

No coverage of the space of matches

Shortest walk semantics (2) 16

Pros and cons

Pros

Returns walks
Efficient algorithms
Horizontal post-processing

Horizontal = along the walk
“Is there a gas station on the way?”
“What is the length of the walk?”

Cons

No vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the shortest walk in time?”
“What is the connectedness level?”

No coverage of the space of matches

Trail semantics 17

Used in Cypher (Neo4j) [Francis et al. 2018] [Green et al. 2019]

Definition

Return walks
Forbid to repeat edges

Q1 = S (R+F)∗ E

Q1 returns 2 walks

the ferry
the straight road

Walks with circuit laps repeat
the middle edge

Q2 = S (R+F)∗ G (R+F)∗ E

Q2 returns nothing

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics 17

Used in Cypher (Neo4j) [Francis et al. 2018] [Green et al. 2019]

Definition

Return walks
Forbid to repeat edges

Q1 = S (R+F)∗ E

Q1 returns 2 walks
the ferry
the straight road

Walks with circuit laps repeat
the middle edge

Q2 = S (R+F)∗ G (R+F)∗ E

Q2 returns nothing

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics 17

Used in Cypher (Neo4j) [Francis et al. 2018] [Green et al. 2019]

Definition

Return walks
Forbid to repeat edges

Q1 = S (R+F)∗ E

Q1 returns 2 walks
the ferry
the straight road

Walks with circuit laps repeat
the middle edge

Q2 = S (R+F)∗ G (R+F)∗ E

Q2 returns nothing

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics 17

Used in Cypher (Neo4j) [Francis et al. 2018] [Green et al. 2019]

Definition

Return walks
Forbid to repeat edges

Q1 = S (R+F)∗ E

Q1 returns 2 walks
the ferry
the straight road

Walks with circuit laps repeat
the middle edge

Q2 = S (R+F)∗ G (R+F)∗ E

Q2 returns nothing

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (2) 18

Pros and cons

Pros

Returns walks
Counting matches is possible
Horizontal and vertical post-processing
Some coverage of the space of matches

Cons

All problems are computationally hard [Martens et al. 2020]
Counting, enumeration, existence
Checking whether Q2 returns anything → Already NP-hard

Part of the space of matches might be uncovered

Trail semantics (2) 18

Pros and cons

Pros

Returns walks
Counting matches is possible
Horizontal and vertical post-processing
Some coverage of the space of matches

Cons

All problems are computationally hard [Martens et al. 2020]
Counting, enumeration, existence
Checking whether Q2 returns anything → Already NP-hard

Part of the space of matches might be uncovered

Fundamental challenge with RPQs 19

RPQ

Answer

User Graph DBMS

! Infinitely many matches but finite answer !

Several way to ensure finiteness
Homomorphism → Filters out most information
Shortest-walk → Bad coverage of the space of matches
Trail → Computationally hard
Other variants have similar issues.

No solution is clearly superior

Run-based semantics 20

New theoretical compromise [David-Francis-Marsault 202?]

Definition

Returns walks
Each edge may match each
atom only once

Q2 = S (R(R+F)∗ G (R(R+F)∗ E

Returns the 1-lap road only

Before G → use the left R
After G → use the right R

> 1 circuit lap ⇒ some edge
use the same atom twice

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Q1 = S (R+F)∗ E

Returns the ferry and the
straight road

Run-based semantics 20

New theoretical compromise [David-Francis-Marsault 202?]

Definition

Returns walks
Each edge may match each
atom only once

Q2 = S (R(R+F)∗ G (R(R+F)∗ E

Returns the 1-lap road only

Before G → use the left R
After G → use the right R

> 1 circuit lap ⇒ some edge
use the same atom twice

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Q1 = S (R+F)∗ E

Returns the ferry and the
straight road

Run-based semantics 20

New theoretical compromise [David-Francis-Marsault 202?]

Definition

Returns walks
Each edge may match each
atom only once

Q2 = S (R(R+F)∗ G (R(R+F)∗ E

Returns the 1-lap road only

Before G → use the left R
After G → use the right R

> 1 circuit lap ⇒ some edge
use the same atom twice

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Q1 = S (R+F)∗ E

Returns the ferry and the
straight road

Run-based semantics 20

New theoretical compromise [David-Francis-Marsault 202?]

Definition

Returns walks
Each edge may match each
atom only once

Q2 = S (RR(R+F)∗ G (R(R+F)∗ E

Returns the 1-lap road only
Before G → use the left R

After G → use the right R

> 1 circuit lap ⇒ some edge
use the same atom twice

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Q1 = S (R+F)∗ E

Returns the ferry and the
straight road

Run-based semantics 20

New theoretical compromise [David-Francis-Marsault 202?]

Definition

Returns walks
Each edge may match each
atom only once

Q2 = S (R(R+F)∗ G (RR(R+F)∗ E

Returns the 1-lap road only
Before G → use the left R
After G → use the right R

> 1 circuit lap ⇒ some edge
use the same atom twice

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Q1 = S (R+F)∗ E

Returns the ferry and the
straight road

Run-based semantics 20

New theoretical compromise [David-Francis-Marsault 202?]

Definition

Returns walks
Each edge may match each
atom only once

Q2 = S (R(R+F)∗ G (R(R+F)∗ E

Returns the 1-lap road only
Before G → use the left R
After G → use the right R

> 1 circuit lap ⇒ some edge
use the same atom twice

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Q1 = S (R+F)∗ E

Returns the ferry and the
straight road

Run-based semantics 20

New theoretical compromise [David-Francis-Marsault 202?]

Definition

Returns walks
Each edge may match each
atom only once

Q2 = S (R(R+F)∗ G (R(R+F)∗ E

Returns the 1-lap road only
Before G → use the left R
After G → use the right R

> 1 circuit lap ⇒ some edge
use the same atom twice

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Q1 = S (R+F)∗ E

Returns the ferry and the
straight road

Run-based semantics (2) 21

Pros and cons

Pros

Returns walks
Horizontal and vertical post-processing
”Reasonable” coverage of the space of matches
Counting results is possible
Emptyness and Enumeration are efficient

Gives some expressivity to the user

Cons

Counting results is computationally hard
Answer depends on the way the query is written

R∗ allows no lap in the circuit
(R+ R)∗ allows 1 lap in the circuit

Run-based semantics (2) 21

Pros and cons

Pros

Returns walks
Horizontal and vertical post-processing
”Reasonable” coverage of the space of matches
Counting results is possible
Emptyness and Enumeration are efficient

Gives some expressivity to the user

Cons

Counting results is computationally hard
Answer depends on the way the query is written

R∗ allows no lap in the circuit
(R+ R)∗ allows 1 lap in the circuit

Run-based semantics (2) 21

Pros and cons

Pros

Returns walks
Horizontal and vertical post-processing
”Reasonable” coverage of the space of matches
Counting results is possible
Emptyness and Enumeration are efficient
Gives some expressivity to the user

Cons

Counting results is computationally hard
Answer depends on the way the query is written

R∗ allows no lap in the circuit
(R+ R)∗ allows 1 lap in the circuit

Property graphs and real query languages

Back to our example property graph 22

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

Vertices and edges may bear:
zero or more labels
zero or more properties

Property = key-value pair
Key = string
Value = bool, int, str, ...

Cypher features 23

Trail semantics

Restricted RPQs (in fact UC2RPQs) with the following restrictions:
Under a Kleene star, only unions of atoms are allowed:

Backward atoms are allowed e.g. Ferry
(
Road−1

)∗
ASCII-art syntax

Cypher is graph-to-tables

Chaining of clauses

Cypher features 23

Trail semantics

Restricted RPQs (in fact UC2RPQs) with the following restrictions:
Under a Kleene star, only unions of atoms are allowed:

Backward atoms are allowed e.g. Ferry
(
Road−1

)∗
ASCII-art syntax

Cypher is graph-to-tables

Chaining of clauses

Cypher features 23

Trail semantics

Restricted RPQs (in fact UC2RPQs) with the following restrictions:
Under a Kleene star, only unions of atoms are allowed:

Backward atoms are allowed e.g. Ferry
(
Road−1

)∗
ASCII-art syntax

Cypher is graph-to-tables

Chaining of clauses

Cypher features 23

Trail semantics

Restricted RPQs (in fact UC2RPQs) with the following restrictions:
Under a Kleene star, only unions of atoms are allowed:

Backward atoms are allowed e.g. Ferry
(
Road−1

)∗

ASCII-art syntax

Cypher is graph-to-tables

Chaining of clauses

Cypher features 23

Trail semantics

Restricted RPQs (in fact UC2RPQs) with the following restrictions:
Under a Kleene star, only unions of atoms are allowed:

Backward atoms are allowed e.g. Ferry
(
Road−1

)∗
ASCII-art syntax

Cypher is graph-to-tables

Chaining of clauses

Cypher features 23

Trail semantics

Restricted RPQs (in fact UC2RPQs) with the following restrictions:
Under a Kleene star, only unions of atoms are allowed:

Backward atoms are allowed e.g. Ferry
(
Road−1

)∗
ASCII-art syntax

Cypher is graph-to-tables

Chaining of clauses

ASCII-art syntax 24

Vertices: MATCH (:Gas)

MATCH tag:"Start"

Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()

Disjunction: MATCH ()-[:Road|Ferry]->()

Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()

Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q1 and Q2

MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferry*]->

(:Gas)-[:Road|Ferry*]->({tag:"End"})

ASCII-art syntax 24

Vertices: MATCH (:Gas) MATCH tag:"Start"

Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()

Disjunction: MATCH ()-[:Road|Ferry]->()

Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()

Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q1 and Q2

MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferry*]->

(:Gas)-[:Road|Ferry*]->({tag:"End"})

ASCII-art syntax 24

Vertices: MATCH (:Gas) MATCH tag:"Start"

Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()

Disjunction: MATCH ()-[:Road|Ferry]->()

Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()

Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q1 and Q2

MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferry*]->

(:Gas)-[:Road|Ferry*]->({tag:"End"})

ASCII-art syntax 24

Vertices: MATCH (:Gas) MATCH tag:"Start"

Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()

Disjunction: MATCH ()-[:Road|Ferry]->()

Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()

Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q1 and Q2

MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferry*]->

(:Gas)-[:Road|Ferry*]->({tag:"End"})

ASCII-art syntax 24

Vertices: MATCH (:Gas) MATCH tag:"Start"

Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()

Disjunction: MATCH ()-[:Road|Ferry]->()

Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()

Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q1 and Q2

MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferry*]->

(:Gas)-[:Road|Ferry*]->({tag:"End"})

ASCII-art syntax 24

Vertices: MATCH (:Gas) MATCH tag:"Start"

Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()

Disjunction: MATCH ()-[:Road|Ferry]->()

Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()

Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q1 and Q2

MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferry*]->

(:Gas)-[:Road|Ferry*]->({tag:"End"})

ASCII-art syntax 24

Vertices: MATCH (:Gas) MATCH tag:"Start"

Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()

Disjunction: MATCH ()-[:Road|Ferry]->()

Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()

Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q1 and Q2

MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferry*]->

(:Gas)-[:Road|Ferry*]->({tag:"End"})

ASCII-art syntax 24

Vertices: MATCH (:Gas) MATCH tag:"Start"

Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()

Disjunction: MATCH ()-[:Road|Ferry]->()

Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()

Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q1 and Q2

MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferry*]->

(:Gas)-[:Road|Ferry*]->({tag:"End"})

ASCII-art syntax 24

Vertices: MATCH (:Gas) MATCH tag:"Start"

Edges: MATCH -[:Road]->

Concatenation: MATCH ()-[:Road]->(:Gas)-[:Road]->()

Disjunction: MATCH ()-[:Road|Ferry]->()

Kleene star: MATCH ()-[:Road*]->()

Variables: MATCH ()-[:Road]->(x)-[:Road]->()

Implicit join: MATCH (x)-[:Road*]->(x)

Cypher queries for Q1 and Q2

MATCH ({tag:"Start"})-[:Road|Ferry*]->({tag:"End"})

MATCH ({tag:"Start"})-[:Road|Ferry*]->

(:Gas)-[:Road|Ferry*]->({tag:"End"})

Cypher returns a table... 25

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

Query

MATCH (s)-[:City]->(t)

Result

s t

1 2
2 4
4 1

Cypher returns a table... 25

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

Query

MATCH (s)-[:City]->(t)

Result

s t

1 2
2 4
4 1

Cypher returns a table... 25

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

Query

MATCH (s)-[:City]->(t)

Result

s t

1 2
2 4
4 1

Cypher returns a table... 25

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

Query

MATCH (s)-[:City]->(t)

Result

s t

1 2
2 4
4 1

Cypher returns a table... but computes walks 25

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

Query

MATCH

(s {tag:"Start"})

-[:Road|Ferry*]->

(t {tag:"End"})

Result

s t

0 3

← The ferry

0 3

← The direct road

Cypher returns a table... but computes walks 25

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

Query

MATCH

(s {tag:"Start"})

-[:Road|Ferry*]->

(t {tag:"End"})

Result

s t

0 3 ← The ferry
0 3 ← The direct road

Other Cypher features 26

ORDER BY: orders row

WHERE: filters row

WITH or RETURN:
adds/renames columns
horizontal aggregation (e.g. with keyword reduce)
vertical aggregation (e.g. with keyword count, max)

CREATE/DELETE/SET: updates the property graph

A Cypher query actually chain clauses 27

Clause

1

e.g. MATCH ...

Property
Graph

Table

a
...

Clause 2
e.g. WITH ...

Table

a b
...

etc...

Example

Clause 1 makes some pattern matching
Clause 2 aggregates over the result of Clause 1

⇒ Trail semantics (rich post-processing at the cost of efficiency)

A Cypher query actually chain clauses 27

Clause 1
e.g. MATCH ...

Property
Graph

Table 1

a
...

Clause 2
e.g. WITH ...

Table

a b
...

etc...

Example

Clause 1 makes some pattern matching
Clause 2 aggregates over the result of Clause 1

⇒ Trail semantics (rich post-processing at the cost of efficiency)

A Cypher query actually chain clauses 27

Clause 1
e.g. MATCH ...

Property
Graph

Table 1

a
...

Clause 2
e.g. WITH ...

Table 2

a b
...

etc...

Example

Clause 1 makes some pattern matching
Clause 2 aggregates over the result of Clause 1

⇒ Trail semantics (rich post-processing at the cost of efficiency)

A Cypher query actually chain clauses 27

Clause 1
e.g. MATCH ...

Property
Graph

Table 1

a
...

Clause 2
e.g. WITH ...

Table 2

a b
...

etc...

Example

Clause 1 makes some pattern matching
Clause 2 aggregates over the result of Clause 1

⇒ Trail semantics (rich post-processing at the cost of efficiency)

A Cypher query actually chain clauses 27

Clause 1
e.g. MATCH ...

Property
Graph

Table 1

a
...

Clause 2
e.g. WITH ...

Table 2

a b
...

etc...

Example

Clause 1 makes some pattern matching
Clause 2 aggregates over the result of Clause 1

⇒ Trail semantics (rich post-processing at the cost of efficiency)

A Cypher query actually chain clauses 27

Clause 1
e.g. MATCH ...

Property
Graph

Table 1

a
...

Clause 2
e.g. WITH ...

Table 2

a b
...

etc...

Example

Clause 1 makes some pattern matching
Clause 2 aggregates over the result of Clause 1

⇒ Trail semantics (rich post-processing at the cost of efficiency)

GQL, standard query language for property graphs 28

Features inherited from Cypher

ASCII-art syntax
Graph-to-tables
Chaining of clauses
No nested Kleene stars

New features

Arbitrary union under star

Undirected edges
Query multiple database at the same time
Subqueries

Deduplication based on ”binding path”

GQL, standard query language for property graphs 28

Features inherited from Cypher

ASCII-art syntax
Graph-to-tables
Chaining of clauses
No nested Kleene stars

New features

Arbitrary union under star

Undirected edges
Query multiple database at the same time
Subqueries

Deduplication based on ”binding path”

GQL, standard query language for property graphs 28

Features inherited from Cypher

ASCII-art syntax
Graph-to-tables
Chaining of clauses
No nested Kleene stars

New features

Arbitrary union under star
Undirected edges
Query multiple database at the same time
Subqueries

Deduplication based on ”binding path”

GQL, standard query language for property graphs 28

Features inherited from Cypher

ASCII-art syntax
Graph-to-tables
Chaining of clauses
No nested Kleene stars

New features

Arbitrary union under star
Undirected edges
Query multiple database at the same time
Subqueries
Deduplication based on ”binding path”

GQL and the fundamental challenge with RPQs 29

An RPQ may have infinitely many matches

GQL has to ensure finiteness of answer
No solution is clearly superior

GQL does not choose

Trail semantics → keyword TRAIL

Shortest-walk semantics → keyword SHORTEST

Syntax restriction → keyword WALK

Others

→ Could we add run-based semantics in GQL 2.0?

GQL and the fundamental challenge with RPQs 29

An RPQ may have infinitely many matches

GQL has to ensure finiteness of answer
No solution is clearly superior

GQL does not choose

Trail semantics → keyword TRAIL

Shortest-walk semantics → keyword SHORTEST

Syntax restriction → keyword WALK

Others

→ Could we add run-based semantics in GQL 2.0?

GQL and the fundamental challenge with RPQs 29

An RPQ may have infinitely many matches

GQL has to ensure finiteness of answer
No solution is clearly superior

GQL does not choose

Trail semantics → keyword TRAIL

Shortest-walk semantics → keyword SHORTEST

Syntax restriction → keyword WALK

Others

→ Could we add run-based semantics in GQL 2.0?

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

Thank you for your attention!Thank you for your attention!

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

· · ·

PGQL

GSQL G-Core

Academia

Thank you for your attention!Thank you for your attention!

Navigable outline 31

Introduction
• General setting 1

• Relational DBMS. 2
• Graph DBMS in practice 3
• Graph vs relational 5

History of query languages for
property graphs

Foundation of querying graph
databases: RPQs

• Graph as database. 8
• RPQ = Regular expression . . . 9
• Main queries 11
• Homomorphism semantics . . 13

• Shortest walk 15
• Trail semantics 17
• Run-based semantics 20

Property graphs and real query
languages

• Cypher . 23
• GQL. 28

GQL will be usable from SQL 32

Graph pattern

Property Graph

Processor output

Relational DBMS

Graph DBMS

table

graph view

new graph

Output of GQL: set of path bindings
Path binding = walk annotated with variables

GQL will be usable from SQL 32

Graph pattern

Property Graph

Processor output

Relational DBMS

Graph DBMS

table

graph view

new graph

Output of GQL: set of path bindings
Path binding = walk annotated with variables

GQL path-bindings in one slide 33

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

MATCH TRAIL (a WHERE a.tag="Start")

[-[r:Road]-> | -[c:City]->]* (b WHERE b.tag="End")

0 → 1 → 2 → 3
a r r r b

0 → 1 → 2 → 3
a r c r b

GQL path-bindings in one slide 33

0 1 2 3

4

tag: "Start" tag: "End"Gas

Road

length: 10

Road, City

length: 2
max speed: 40

Road, City

length: 1
Road, City

Road

length: 12

Ferry, length: 30

MATCH TRAIL (a WHERE a.tag="Start")

[-[r:Road]-> | -[c:City]->]* (b WHERE b.tag="End")

0 → 1 → 2 → 3
a r rr r b

0 → 1 → 2 → 3
a r cc r b

	Introduction
	General setting
	Relational DBMS
	Graph DBMS in practice
	Graph vs relational

	History of query languages for property graphs
	Foundation of querying graph databases: RPQs
	Graph as database
	RPQ=Regular expression
	Main queries
	Homomorphism semantics
	Shortest walk
	Trail semantics
	Run-based semantics

	Property graphs and real query languages
	Cypher
	GQL

	Appendix
	Path bindings

