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Integer base numeration systems

s hb>1
» Alphabet used to represent numbers: {0,1,...,b—1}

= vaL : {0,1,...,b-1}" — N
X+ X1X0 > Xpb" + -+ + xy bt + xgb°

In base b=2, VvAL(010011) = 0+23+0+0+21+20=19 .

mREP : N — {0,1,...,b-1}"
0 — £
n>0 +— REP(m)d, where (m, d) is the

Eucl. div of n by b.
In base 2, REP(19) = REP(9)1 = REP(4)11 = --- = 10011 .
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X is b-recognisable if REP(X) is a regular language.
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b-recognisable sets

Definition

X: a set of integers.

X is b-recognisable if 0*REP(X) is a regular language.

Ex.: the powers of two form a 2-recognisable set:

— Final/Initial
— Labelled by 0
—> Labelled by 1

Automaton accepting Legend
0*REP (2N)
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Theorem (folklore)

Eventually periodic sets are b-recognisable in all base b.
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= Alph.: {0,..., b-1} i ) N—

m State set: Z/pZ

Example 1: p=3 , R={2}
m [nitial state: O

m Transitions:
Y state s, VY digit x
X
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m Final-state set: R



b-recognisable sets (2)

Theorem (folklore)

n,

Eventually periodic sets are b-recognisable in all base b.

Example: R + pN
= Alph.: {0,. .., b—1}
m State set: Z/pZ
» Initial state: O

m Transitions:
V state s, VY digit x
5 N sb+ x

m Final-state set: R

) s

Example 1: p=3 , R={2}

Example 2: p=4, R={23}
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Theorem (Cobham, 1969)

b, c : two integer bases, multiplicatively independent .
X: a set of integers.

X is b-recognisable

X is c-recognisable } = X is eventually periodic

Tsuch that b’ # ¢ for all i, j > 0.

{ Eventually periodic sets } = { Sets b-recognisable for all b }



PERIODICITY problem

PERIODICITY

m Parameter: an integer base b > 1.
m Input: a deterministic finite automaton A

(hence the b-recognisable set X accepted by A).

m Question: is X eventually periodic ?

Theorem (Honkala, 1986)

PERIODICITY is decidable.

"\



Restating PERIODICITY in terms of logic

Theorem

X: a set of integers

X is eventually periodic < X is definable in FO|N, +]
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Theorem

X: a set of integers

X is eventually periodic < X is definable in FO|N, +]

Definition
V}, : function N — N that maps n to the greatest b/ that divides n

Ex. V2(2017) = 1 and V»(2016) = V»(32x63) =32
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Theorem

X: a set of integers

X is eventually periodic < X is definable in FO|N, +]

Definition
V}, : function N — N that maps n to the greatest b/ that divides n

Ex. V2(2017) = 1 and V»(2016) = V»(32x63) =32

Theorem [Biichi 1960] [Bruyére 1985]

X: a set of integers

X is b-recognisable <= X is definable in FO[N, +, V}|



Restating PERIODICITY in terms of logic (2)

PRESBUGER-DEFINABLE

m Parameter: an integer base b > 1.
» Input: a formula @ in FO[N, +, V}).

= Question: is there a formula of FO[N, +| equivalent to ® ?

\l
m>y
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Restating PERIODICITY in terms of logic (2) 7

PRESBUGER-DEFINABLE

m Parameter: an integer base b > 1.
» Input: a formula @ in FO[N, +, V}).

= Question: is there a formula of FO[N, +| equivalent to ® ?

PERIODICITY is equivalent to 1-PRESBURGER-DEFINABLE
(P has 1 free variable)



Best algorithms to solve PERIODICITY

Least Significant Digit First (LSDF) convention: the input au-
tomaton reads its entry “from right to left".

(0]
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Least Significant Digit First (LSDF) convention: the input au-
tomaton reads its entry “from right to left".

Theorem

With LSDF convention,
= PRESBUGER-DEFINABLE is P-TIME  [Leroux 2005]

m PERIODICITY is Linear-TIME if the input is minimal
[M-Sakarovitch 2013].
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Best algorithms to solve PERIODICITY 8

Least Significant Digit First (LSDF) convention: the input au-
tomaton reads its entry “from right to left".

Theorem

With LSDF convention,
= PRESBUGER-DEFINABLE is P-TIME  [Leroux 2005]
m PERIODICITY is Linear-TIME if the input is minimal
[M-Sakarovitch 2013].

Remark

Making an automaton reads from right to left
requires a transposition and a determinisation
= Exponential blow-up



Our contribution

Theorem

PERIODICITY is decidable in O(b nlog(n)) time
(where n is the state-set cardinal.)

©
TN
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Definition
A, M: two complete DFA
@: a function {states of A} — {states of M}

¢ is a pseudo-morphism A — M if
m ¢ maps the initial state of A to the initial state of M

Bs—sinA = o(s) — o(s’) in M

(A pseudo-morphism is a morphism with no condition on final states.)
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Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.
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Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.
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ny
Definition
A: a complete DFA.

s,s’: states of A.
m: an integer.

s and s’ are m-ultimately-equivalent (w.r.t. A),
ifYword u of length m, [ s — t and s’ — t’ implies t = t' ].

m By and B, are 1-ult.-equiv.

&) G.

@ m All others pairs are not ult.-equiv.,
as witnessed by the family 0*.
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Ultimate Equivalence (1)

Definition
A: a complete DFA.

s,s’: states of A.
m: an integer.

s and s’ are m-ultimately-equivalent (w.r.t. A),

ifYword u of length m, [ s — t and s’ — t’ implies t = t' ].

(-

By and B, are 1-ult.-equiv.
B> and Bj are 2-ult.-equiv.
Bz and Bj are 2-ult.-equiv.
A1 and A; are 3-ult.-equiv.

All others pairs are not ult.-equiv.,
as witnessed by the family 0*.
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Ultimate Equivalence (2) 138
(1\)

A: a DFA.
n: the number of states in A.
b: the size of the alphabet.

By using the automaton product A X A, it is known that:

Lemma (folklore)

Ultimate-equivalence relation of A can be computed in O(bn?) time.

There exists a better algorithm:

Theorem (Béal-Crochemore, 2007)

Ultimate-equivalence relation of A can be computed in O(b n log(n))
time.
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Characterisation theorem J4s

Ap denotes the naive automaton accepting pN.

Theorem
A: a minimal DFA.
X: the b-recognisable set accepted by A.
€: the total number of states in O-circuits.
X is purely periodic if and only if
» 3 a pseudo-morphism ¢ : A — A0,
m states s, s’ such that ¢(s) = ¢(s’), are ultimately equivalent;

m the initial state of A bears a 0-loop.



Execution on an example

M@ Start from a minimal
complete DFA A.

Count the number ¢ of
states in O-circuits.

Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.
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0-ult.-equiv.
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Execution on an example
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C 0-ult.-equiv.

C 1-ult.-equiv.

2-ult.-equiv.

3-ult.-equiv.

0-ult.-equiv.

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.



Execution on an example

|

0-ult.-equiv.

2-ult.-equiv.

3-ult.-equiv.

Then, the period is
b x £ =23x5=40

0-ult.-equiv.

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.
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Main theorem

PERIODICITY is decidable in 0(b nlog(n)) time
(where n is the state-set cardinal.)
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Main theorem

PERIODICITY is decidable in 0(b nlog(n)) time
(where n is the state-set cardinal.)

Possible future work

m Design efficient data structure for integer set.

m Consider sets of real numbers.

= Extend result to multi-dimensional sets of N¥

m Represent integers with a non-standard numeration systems.



A2,45,7)) as the product A X Az

a8
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