An efficient algorithm to decide periodicity of
b-recognisable sets using MSDF convention

Victor Marsault

jointwork with Bernard Boigelot , Isabelle Mainz
and Michel Rigo

Montefiore Institute and Department of Mathematics,
University of Liege, Belgium

ICALP 2017
Warsaw

Plan

Introduction

Key notions

Description of the algorithm in the purely periodic case

Integer base numeration systems

m b>1
» Alphabet used to represent numbers: {0,1,...,b—1}

Integer base numeration systems

s hb>1
» Alphabet used to represent numbers: {0,1,...,b—1}

= vaL : {0,1,...,b-1}" — N
X+ X1X0 > Xpb" + -+ + xy bt + xgb°

In base b=2, VvAL(010011) = 0+23+0+0+21+20=19 .

Integer base numeration systems

s hb>1
» Alphabet used to represent numbers: {0,1,...,b—1}

= vaL : {0,1,...,b-1}" — N
X+ X1X0 > Xpb" + -+ + xy bt + xgb°

In base b=2, VvAL(010011) = 0+23+0+0+21+20=19 .

mREP : N — {0,1,...,b-1}"
0 — £
n>0 +— REP(m)d, where (m, d) is the

Eucl. div of n by b.
In base 2, REP(19) = REP(9)1 = REP(4)11 = --- = 10011 .

b-recognisable sets

Definition

X: a set of integers.

X is b-recognisable if REP(X) is a regular language.

b-recognisable sets

Definition

X: a set of integers.

X is b-recognisable if 0*REP(X) is a regular language.

b-recognisable sets

Definition

X: a set of integers.

X is b-recognisable if 0*REP(X) is a regular language.

Ex.: the powers of two form a 2-recognisable set:

— Final/Initial
— Labelled by 0
—> Labelled by 1

Automaton accepting Legend
0*REP (2N)

n,

b-recognisable sets (2) 3

Theorem (folklore)

Eventually periodic sets are b-recognisable in all base b.

n,

b-recognisable sets (2) 3

Theorem (folklore)

Eventually periodic sets are b-recognisable in all base b.

Example: R + pN

= Alph.: {0,..., b-1} i) N—

m State set: Z/pZ

Example 1: p=3 , R={2}
m [nitial state: O

m Transitions:
Y state s, VY digit x
X

s —> sb+x

m Final-state set: R

b-recognisable sets (2)

Theorem (folklore)

n,

Eventually periodic sets are b-recognisable in all base b.

Example: R + pN
= Alph.: {0,. .., b—1}
m State set: Z/pZ
» Initial state: O

m Transitions:
V state s, VY digit x
5 N sb+ x

m Final-state set: R

) s

Example 1: p=3 , R={2}

Example 2: p=4, R={23}

b-recognisable sets (2) 4

Theorem (Cobham, 1969)

b, c : two integer bases, multiplicatively independent .
X: a set of integers.

X is b-recognisable

X is c-recognisable } = X is eventually periodic

Tsuch that b’ # ¢ for all i, j > 0.

{ Eventually periodic sets } = { Sets b-recognisable for all b }

PERIODICITY problem

PERIODICITY

m Parameter: an integer base b > 1.
m Input: a deterministic finite automaton A

(hence the b-recognisable set X accepted by A).

m Question: is X eventually periodic ?

Theorem (Honkala, 1986)

PERIODICITY is decidable.

"\

Restating PERIODICITY in terms of logic

Theorem

X: a set of integers

X is eventually periodic < X is definable in FO|N, +]

Y

Y

Restating PERIODICITY in terms of logic 6

Theorem

X: a set of integers

X is eventually periodic < X is definable in FO|N, +]

Definition
V}, : function N — N that maps n to the greatest b/ that divides n

Ex. V2(2017) = 1 and V»(2016) = V»(32x63) =32

Yy

Restating PERIODICITY in terms of logic 6

Theorem

X: a set of integers

X is eventually periodic < X is definable in FO|N, +]

Definition
V}, : function N — N that maps n to the greatest b/ that divides n

Ex. V2(2017) = 1 and V»(2016) = V»(32x63) =32

Theorem [Biichi 1960] [Bruyére 1985]

X: a set of integers

X is b-recognisable <= X is definable in FO[N, +, V}|

Restating PERIODICITY in terms of logic (2)

PRESBUGER-DEFINABLE

m Parameter: an integer base b > 1.
» Input: a formula @ in FO[N, +, V}).

= Question: is there a formula of FO[N, +| equivalent to ® ?

\l
m>y

m>y

Restating PERIODICITY in terms of logic (2) 7

PRESBUGER-DEFINABLE

m Parameter: an integer base b > 1.
» Input: a formula @ in FO[N, +, V}).

= Question: is there a formula of FO[N, +| equivalent to ® ?

PERIODICITY is equivalent to 1-PRESBURGER-DEFINABLE
(P has 1 free variable)

Best algorithms to solve PERIODICITY

Least Significant Digit First (LSDF) convention: the input au-
tomaton reads its entry “from right to left".

(0]
an

an

Best algorithms to solve PERIODICITY 8

Least Significant Digit First (LSDF) convention: the input au-
tomaton reads its entry “from right to left".

Theorem

With LSDF convention,
= PRESBUGER-DEFINABLE is P-TIME [Leroux 2005]

m PERIODICITY is Linear-TIME if the input is minimal
[M-Sakarovitch 2013].

an®

Best algorithms to solve PERIODICITY 8

Least Significant Digit First (LSDF) convention: the input au-
tomaton reads its entry “from right to left".

Theorem

With LSDF convention,
= PRESBUGER-DEFINABLE is P-TIME [Leroux 2005]
m PERIODICITY is Linear-TIME if the input is minimal
[M-Sakarovitch 2013].

Remark

Making an automaton reads from right to left
requires a transposition and a determinisation
= Exponential blow-up

Our contribution

Theorem

PERIODICITY is decidable in O(b nlog(n)) time
(where n is the state-set cardinal.)

©
TN

Plan

Introduction

Key notions

Description of the algorithm in the purely periodic case

10

'l‘. \)

-

-

Pseudo-morphisms (1) 103

(1\

Definition
A, M: two complete DFA
@: a function {states of A} — {states of M}

¢ is a pseudo-morphism A — M if
m ¢ maps the initial state of A to the initial state of M

Bs—sinA = o(s) — o(s’) in M

(A pseudo-morphism is a morphism with no condition on final states.)

-

Pseudo-morphisms (1) 103

(1\

Definition
A, M: two complete DFA
@: a function {states of A} — {states of M}

¢ is a pseudo-morphism A — M if
m ¢ maps the initial state of A to the initial state of M

Bs—sinA = o(s) — o(s’) in M

(A pseudo-morphism is a morphism with no condition on final states.)

105

'l‘. \)

Pseudo-morphisms (1)

Definition
A, M: two complete DFA
@: a function {states of A} — {states of M}

¢ is a pseudo-morphism A — M if
m ¢ maps the initial state of A to the initial state of M

Bs—sinA = o(s) — o(s’) in M

(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

° 9
ﬂgu? M

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

© O

A 8‘9 M

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

Pseudo-morphisms (2) 11§

Lemma

Computing the pseudo-morphism ¢ : A — M, if it exists, may be
done in O(b n) time.

O O

0 - "'
Ultimate Equivalence (1) 128
ny
Definition
A: a complete DFA.

s,s’: states of A.
m: an integer.

s and s’ are m-ultimately-equivalent (w.r.t. A),
ifYword u of length m, [s — t and s’ — t’ implies t = t'].

m By and B, are 1-ult.-equiv.

&) G.

@ m All others pairs are not ult.-equiv.,
as witnessed by the family 0*.

L[/

Ultimate Equivalence (1) 128
ny
Definition
A: a complete DFA.

s,s’: states of A.
m: an integer.

s and s’ are m-ultimately-equivalent (w.r.t. A),
ifYword u of length m, [s — t and s’ — t’ implies t = t'].

m By and B, are 1-ult.-equiv.

@ m B, and Bj; are 2-ult.-equiv.
@ G m B3 and Bj are 2-ult.-equiv.
@ m All others pairs are not ult.-equiv.,

as witnessed by the family 0*.

Ultimate Equivalence (1)

Definition
A: a complete DFA.

s,s’: states of A.
m: an integer.

s and s’ are m-ultimately-equivalent (w.r.t. A),

ifYword u of length m, [s — t and s’ — t’ implies t = t'].

(-

By and B, are 1-ult.-equiv.
B> and Bj are 2-ult.-equiv.
Bz and Bj are 2-ult.-equiv.
A1 and A; are 3-ult.-equiv.

All others pairs are not ult.-equiv.,
as witnessed by the family 0*.

L[/

12§

M\

L[/

Ultimate Equivalence (2) 138
(1\)

A: a DFA.
n: the number of states in A.
b: the size of the alphabet.

By using the automaton product A X A, it is known that:

Lemma (folklore)

Ultimate-equivalence relation of A can be computed in O(bn?) time.

There exists a better algorithm:

Theorem (Béal-Crochemore, 2007)

Ultimate-equivalence relation of A can be computed in O(b n log(n))
time.

Plan

Introduction

Key notions

Description of the algorithm in the purely periodic case

Characterisation theorem J4s

Ap denotes the naive automaton accepting pN.

Theorem
A: a minimal DFA.
X: the b-recognisable set accepted by A.
€: the total number of states in O-circuits.
X is purely periodic if and only if
» 3 a pseudo-morphism ¢ : A — A0,
m states s, s’ such that ¢(s) = ¢(s’), are ultimately equivalent;

m the initial state of A bears a 0-loop.

Execution on an example

M@ Start from a minimal
complete DFA A.

Count the number ¢ of
states in O-circuits.

Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

",’
L150%

Yt

Execution on an example

[Start from a minimal
complete DFA A.

Count the number ¢ of
states in O-circuits.

Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

L[/

s,
=165
S

Execution on an example

CO—0O—0—0

M@ Start from a minimal
complete DFA A.

Count the number ¢ of
states in O-circuits.

Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Execution on an example

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Execution on an example

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Execution on an example

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Execution on an example

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Execution on an example

0-ult.-equiv.

0-ult.-equiv.

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Execution on an example

O
O
O
O

i 0-ult.-equiv.

0-ult.-equiv.

1-ult.-equiv.

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Execution on an example

O

O O O

O O

0-ult.-equiv.

0-ult.-equiv.

2-ult.-equiv.

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Execution on an example
O—0O O O

C 0-ult.-equiv.

C 1-ult.-equiv.

2-ult.-equiv.

3-ult.-equiv.

0-ult.-equiv.

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Execution on an example

|

0-ult.-equiv.

2-ult.-equiv.

3-ult.-equiv.

Then, the period is
b x £ =23x5=40

0-ult.-equiv.

M@ Start from a minimal
complete DFA A.

Count the number ¢ of

states in O-circuits.
Build A,.

Compute the pseudo-
morphism ¢ : A — Apg.

Check that states s, t
such that ¢(s) = ¢(t) are
ult-equiv.

Conclusion

Main theorem

PERIODICITY is decidable in 0(b nlog(n)) time
(where n is the state-set cardinal.)

Conclusion £21%

Main theorem

PERIODICITY is decidable in 0(b nlog(n)) time
(where n is the state-set cardinal.)

Possible future work

m Design efficient data structure for integer set.

m Consider sets of real numbers.

= Extend result to multi-dimensional sets of N¥

m Represent integers with a non-standard numeration systems.

A2,45,7)) as the product A X Az

a8

	Introduction
	Key notions
	Description of the algorithm in the purely periodic case

