An efficient algorithm to decide periodicity of b-recognisable sets using MSDF convention

Victor Marsault joint work with Bernard Boigelot, Isabelle Mainz and Michel Rigo

Montefiore Institute and Department of Mathematics, Université de Liège, Belgium

Séminaire Automate de l'IRIF, Paris 2017-03-10

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p, R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

Integer base numeration systems

- $b>1$
- Alphabet used to represent numbers: $\{0,1, \ldots, b-1\}$
- VAL $:\{0,1, \ldots, b-1\}^{*} \longrightarrow \mathbb{N}$

$$
d_{n} \cdots d_{1} d_{0} \quad \longmapsto d_{n} b^{n}+\cdots+d_{1} b^{1}+d_{0} b^{0}
$$

In base $b=2, \operatorname{VAL}(010011)=0+2^{3}+0+0+2^{1}+2^{0}=19$.

- REP $: \mathbb{N} \longrightarrow\{0,1, \ldots, b-1\}^{*}$
$0 \longmapsto \varepsilon$
$n>0 \longmapsto \operatorname{REP}(m) d, \quad$ where (m, d) is the Eucl. div of n by b.

In base $b=2, \operatorname{REP}(19)=\operatorname{REP}(9) 1=\operatorname{REP}(4) 11=\cdots=10011$.

b-recognisable sets

Definition

X : a set of integers.
X is b-recognisable if $\operatorname{REP}(X)$ is a regular language.

b-recognisable sets

Definition

X : a set of integers.
X is b-recognisable if $\operatorname{REP}(X)$ is a regular language.

Theorem (folklore)

- Each eventually-periodic set is b-recognisable.

Automaton accepting
\longrightarrow Final/Initial
\longrightarrow Labelled by 0
\longrightarrow Labelled by 1
Legend

$$
0^{*} \operatorname{REP}(2+3 \mathbb{N})
$$

b-recognisable sets

Definition

X : a set of integers.
X is b-recognisable if $\operatorname{REP}(X)$ is a regular language.

Theorem (folklore)

- Each eventually-periodic set is b-recognisable.
- Some sets are 2-recognisable but not 3-recognisable.

Automaton accepting $0^{*} \operatorname{REP}(2+3 \mathbb{N})$

Automaton accepting $0^{*} \operatorname{REP}\left(\left\{2^{i} \mid i \in \mathbb{N}\right\}\right)$
\longrightarrow Final/Initial
\longrightarrow Labelled by 0
\longrightarrow Labelled by 1
Legend

b-recognisable sets (2)

Theorem (Cobham, 1969)
b, c : two integer bases, multiplicatively independent ${ }^{\dagger}$.
X : a set of integers.
$\left.\begin{array}{l}X \text { is } b \text {-recognisable } \\ X \text { is } c \text {-recognisable }\end{array}\right\} \Longrightarrow X$ is eventually periodic
${ }^{\dagger}$ such that $b^{i} \neq c^{j}$ for all $i, j>0$.

Corollary
$\{$ Eventually periodic sets $\}=\{$ Sets b-recognisable for all $b\}$

The Periodicity problem

Periodicity

- Parameter: an integer base $b>1$.
- Input: a deterministic finite automaton \mathcal{A}
(hence the b-recognisable set X accepted by \mathcal{A}).
- Question: is X eventually periodic?

Theorem (Honkala, 1986)
Periodicity is decidable.

Theorem (Muchnik, 1991)
A generalisation of Periodicity is decidable in triple-exponential time.

First efficient algorithms uses LSDF convention

Least Significant Digit First (LSDF) : the input automaton reads its entry from right to left.

Theorem (Leroux, 2005)
With LSDF convention, a generalisation of PERIODICITY is decidable in polynomial time.

First efficient algorithms uses LSDF convention

Least Significant Digit First (LSDF) : the input automaton reads its entry from right to left.

Theorem (Leroux, 2005)
With LSDF convention, a generalisation of PERIODICITY is decidable in polynomial time.

Remark

Making an automaton reads from right to left requires a transposition and a determinisation
\Rightarrow Exponential blow-up

Note (Allouche Rampersad Shallit, 2009)
Periodicity is decidable in exponential time.

Theorem (M.-Sakarovitch, 2013)
With LSDF convention, Periodicity is decidable in linear time if the input automaton is minimal.

The Periodicity problem (4)

Our contribution

Theorem

Periodicity is decidable in $O(b n \log (n))$ time (where n is the state-set cardinal.)

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p, R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

Pseudo-morphism (1) - Definition \& Example

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{d} s^{\prime}$ in $\mathcal{A} \Longrightarrow \varphi(s) \xrightarrow{d} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphism (1) - Definition \& Example

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{d} s^{\prime}$ in $\mathcal{A} \Longrightarrow \varphi(s) \xrightarrow{d} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphism (1) - Definition \& Example

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{d} s^{\prime}$ in $\mathcal{A} \Longrightarrow \varphi(s) \xrightarrow{d} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphism (1) - Definition \& Example

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{d} s^{\prime}$ in $\mathcal{A} \Longrightarrow \varphi(s) \xrightarrow{d} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Pseudo-morphism (2) - Computation

Lemma

\mathcal{A}, \mathcal{M} : two complete DFA
n : the number of state of \mathcal{A}
The pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, can be computed in $O(b n)$ time.

Ultimate equivalence (1) - Definition

Definition

\mathcal{A} : a complete DFA.
s, t : states of \mathcal{A}.
m : an integer.
s and t are m-ultimately-equivalent (w.r.t. \mathcal{A}) if,
\forall word u of length $m,\left[s \xrightarrow{u} s^{\prime}\right.$ and $t \xrightarrow{u} t^{\prime}$ implies $\left.s^{\prime}=t^{\prime}\right]$.

Remarks

- s and t are not m-ult-equiv

$$
\begin{aligned}
& \text { ult-equiv } \\
& \Longleftrightarrow \exists \text { word } u \text { of length } m,\left\{\begin{array}{l}
s \xrightarrow{s} s^{\prime} \\
t \xrightarrow{u} t^{\prime} \\
s^{\prime} \neq t^{\prime}
\end{array}\right.
\end{aligned}
$$

- s and t are m-ult-equiv $\Longrightarrow s$ and t are $(m+1)$-ult-equiv.

Ultimate equivalence (2) - Example

- B_{1} and B_{2} are 1-ult-equiv.

- All others pairs are not ult-equiv, as witnessed by the family 0^{*}.

Ultimate equivalence (2) - Example

- B_{1} and B_{2} are 1-ult-equiv.
- All others pairs are not ult-equiv, as witnessed by the family 0^{*}.

Ultimate equivalence (2) - Example

Lemma

\mathcal{A} : a complete DFA. s, t : states of \mathcal{A}. m : an integer.
\forall digit $d, \quad s_{d}$: state such that $s \xrightarrow{d} s_{d}$.
t_{d} : state such that $t \xrightarrow{d} t_{d}$.
s and t are m-ult-equiv
$\Longleftrightarrow \forall$ digit d, s_{d} and t_{d} are $(m-1)$-ult-equiv.

- B_{1} and B_{2} are 1-ult-equiv.
- All others pairs are not ult-equiv, as witnessed by the family 0^{*}.

Ultimate equivalence (2) - Example

Lemma

\mathcal{A} : a complete DFA. s, t : states of \mathcal{A}. m : an integer.
\forall digit $d, \quad s_{d}$: state such that $s \xrightarrow{d} s_{d}$.
t_{d} : state such that $t \xrightarrow{d} t_{d}$.
s and t are m-ult-equiv
$\Longleftrightarrow \forall$ digit d, s_{d} and t_{d} are $(m-1)$-ult-equiv.

- B_{1} and B_{2} are 1-ult-equiv.
- B_{2} and B_{3} are 2-ult-equiv.
- B_{3} and B_{1} are 2-ult-equiv.
- All others pairs are not ult-equiv, as witnessed by the family 0^{*}.

Ultimate equivalence (2) - Example

Lemma

\mathcal{A} : a complete DFA. s, t : states of \mathcal{A}. m : an integer.
\forall digit $d, \quad s_{d}$: state such that $s \xrightarrow{d} s_{d}$.
t_{d} : state such that $t \xrightarrow{d} t_{d}$.
s and t are m-ult-equiv
$\Longleftrightarrow \forall$ digit d, s_{d} and t_{d} are $(m-1)$-ult-equiv.

- B_{1} and B_{2} are 1-ult-equiv.
- B_{2} and B_{3} are 2-ult-equiv.
- B_{3} and B_{1} are 2-ult-equiv.
- A_{1} and A_{2} are 3-ult-equiv.
- All others pairs are not ult-equiv, as witnessed by the family 0^{*}.

Ultimate equivalence (3) - Computation

$\mathcal{A}:$ a DFA.
n : the number of states in \mathcal{A}.
b : the size of the alphabet.

Using the automaton product $\mathcal{A} \times \mathcal{A}$, it is known that:
Lemma (folklore)
Ultimate-equivalence w.r.t. \mathcal{A} can be computed in $O\left(b n^{2}\right)$ time.

There exists a better algorithm:
Theorem (Béal-Crochemore, 2007)
Ultimate-equivalence w.r.t. \mathcal{A} can be computed in $O(b n \log (n))$ time.
$111 \geqslant$

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p, R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

Purely periodic set

Definition

A purely periodic set is a set of the form $R+p \mathbb{N}$ with
p : an integer
R : a set of remainders modulo p

Convention

In the following, p is assumed to be the smallest period of $R+p \mathbb{N}$.

The naive automaton $\mathcal{A}_{(p, R)}$ accepting $R+p \mathbb{N}$
b: the base.
p : the period.
R : remainder set $\bmod p$.
b: the base.
p : the period.
R : remainder set $\bmod p$.

Example 1: $p=3, \quad R=\{2\}$

Definition

$\mathcal{A}_{(p, R)}$:

- State set: $\mathbb{Z} / p \mathbb{Z}$
- Initial state: 0
- Transitions:
\forall state $s, \quad \forall$ digit d

$$
s \xrightarrow{d} s b+d
$$

- Final-state set: R
b: the base.
p : the period.
R : remainder set $\bmod p$.

Example 1: $p=3, ~ R=\{2\}$

Definition

$\mathcal{A}_{(p, R)}$:

- State set: $\mathbb{Z} / p \mathbb{Z}$
- Initial state: 0

Example 2: $p=4, \quad R=\{2,3\}$

- Transitions: \forall state $s, \quad \forall$ digit d

$$
s \xrightarrow{d} s b+d
$$

- Final-state set: R
b: the base.
p : the period.
R : remainder set $\bmod p$.

Example 1: $p=3, ~ R=\{2\}$

Definition

$\mathcal{A}_{(p, R)}$:

- State set: $\mathbb{Z} / p \mathbb{Z}$
- Initial state: 0
- Transitions:
\forall state $s, \quad \forall$ digit d

$$
s \xrightarrow{d} s b+d
$$

- Final-state set: R

Example 2: $p=4, \quad R=\{2,3\}$

Example 3: $p=5, \quad R=\{1\}$

Property of $\mathcal{A}_{(p, R)}$ in special cases

b: the base.
p : the period.
R : remainder set $\bmod p$.

Lemma
 p and b are coprime $\Longrightarrow \mathcal{A}_{(p, R)}$ is a group automaton.

(\forall digit d, "reading d " is permutation of the states of $\mathcal{A}_{(p, R)}$)

Lemma

p divides a power of $b \Longrightarrow$ all states of $\mathcal{A}_{(p, R)}$ are ult-equiv.

$\mathcal{A}_{(p, R)}$ as the product $\mathcal{A}_{(k, ?)} \times \mathcal{A}_{(d, ?)}$

Notation

b : the base
p : the period
k, d, j : integers s. t.

- $p=k d$
- k coprime with b
- d divides b^{j}
- k coprime with d

Ex.: with $p=12$,

- $12=4 \times 3$
- 4 divides 2^{2}
- 3 is coprime with 2

The "vertical" pseudo-morphism $\mathcal{A}_{(p, R)} \rightarrow \mathcal{A}_{(k, ?)}$
b : the base
$p=k d$: the period
k is coprime with b d divides b^{j}

Lemma

\exists a pseudo-morphism

$$
\psi: \mathcal{A}_{(p, R)} \rightarrow \mathcal{A}_{(k, ?)}
$$

Lemma

s, t : states
If $\psi(s)=\psi(t)$, then
s and t are ult-equiv.

Transition labelled by 0 in $\mathcal{A}_{(p, R)}$

(111)

b : the base
 $p=k d$: the period
 k is coprime with b d divides b^{j}

Lemma

- In $\mathcal{A}_{(k, ?)}$, all states belong to a O-circuit;

Transition labelled by 0 in $\mathcal{A}_{(p, R)}$

b : the base
$p=k d$: the period
k is coprime with b d divides b^{j}

Lemma

- In $\mathcal{A}_{(k, ?)}$, all states belong to a O-circuit;
- In $\mathcal{A}_{(d, ?)}$, only the initial state is part of a 0 -circuit.
b: the base
$p=k d$: the period
k is coprime with b d divides b^{j}

b: the base
$p=k d$: the period
k is coprime with b d divides b^{j}

Lemma

States in different columns are never merged by minimisation.

Ex., Ab absurdo: $0 \sim 4$
$\Longrightarrow 0 \sim 4 \sim 8$
$\Longrightarrow 9 \sim 1 \sim 5$
$\Longrightarrow 6 \sim 10 \sim 2$
$\Longrightarrow 4$ is a period <12
\Longrightarrow Contradiction

b: the base
$p=k d$: the period
k is coprime with b d divides b^{j}

Lemma

States in different columns are never merged by minimisation.

Ex., Ab absurdo: $0 \sim 4$
$\Longrightarrow 0 \sim 4 \sim 8$
$\Longrightarrow 9 \sim 1 \sim 5$
$\Longrightarrow 6 \sim 10 \sim 2$
$\Longrightarrow 4$ is a period <12
\Longrightarrow Contradiction

$\mathcal{M}_{(p, R)}$, the minimisation of $\mathcal{A}_{(p, R)}$
b: the base
$p=k d$: the period
k is coprime with b d divides b^{j}

Lemma

States in different columns are never merged by minimisation.

Ex., Ab absurdo: $0 \sim 4$
$\Longrightarrow 0 \sim 4 \sim 8$
$\Longrightarrow 9 \sim 1 \sim 5$
$\Longrightarrow 6 \sim 10 \sim 2$
$\Longrightarrow 4$ is a period <12
\Longrightarrow Contradiction

Extracting information from $\mathcal{M}_{(p, R)}$.

b : the base
$p=k d$: the period
k is coprime with b d divides b^{j}

Proposition

$\mathcal{M}_{(p, R)}$: minim. of $\mathcal{A}_{(p, R)}$

- k states of $\mathcal{M}_{(p, R)}$ are part of a 0 -circuit

Extracting information from $\mathcal{M}_{(p, R)}$.

b : the base
$p=k d$: the period
k is coprime with b d divides b^{j}

Proposition

$\mathcal{M}_{(p, R)}$: minim. of $\mathcal{A}_{(p, R)}$

- k states of $\mathcal{M}_{(p, R)}$ are part of a 0 -circuit
- \exists a pseudo-morphism

$$
\theta: \mathcal{M}_{(p, R)} \rightarrow \mathcal{A}_{(k, ?)}
$$

Extracting information from $\mathcal{M}_{(p, R)}$.

b : the base
$p=k d$: the period
k is coprime with b d divides b^{j}

Proposition

$\mathcal{M}_{(p, R)}$: minim. of $\mathcal{A}_{(p, R)}$

- k states of $\mathcal{M}_{(p, R)}$ are part of a 0 -circuit
- \exists a pseudo-morphism

$$
\theta: \mathcal{M}_{(p, R)} \rightarrow \mathcal{A}_{(k, ?)}
$$

- If $\theta(s)=\theta(t)$, then s and t are ult-equiv.

Plan

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p, R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

Characterisation theorem

Theorem

A: a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.
X is purely periodic if and only if

- \exists a pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$;
- states s, t such that $\varphi(s)=\varphi(t)$, are ultimately equivalent;
- the initial state of \mathcal{A} bears a 0 -loop.

Forward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\exists p, R, \quad X=R+p \mathbb{N}$

Forward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\exists p, R, \quad X=R+p \mathbb{N}$
- \mathcal{A} is minimal $\Rightarrow \mathcal{A}$ is the minimisation of $\mathcal{A}_{(p, R)}$

Forward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\exists p, R, \quad X=R+p \mathbb{N}$
- \mathcal{A} is minimal $\Rightarrow \mathcal{A}$ is the minimisation of $\mathcal{A}_{(p, R)}$
$\Rightarrow \mathcal{A}=\mathcal{M}_{(p, R)}$

Forward direction

\mathcal{A} : a minimal DFA.

X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\exists p, R, \quad X=R+p \mathbb{N}$
- \mathcal{A} is minimal $\Rightarrow \mathcal{A}$ is the minimisation of $\mathcal{A}_{(p, R)}$

$$
\Rightarrow \mathcal{A}=\mathcal{M}_{(p, R)}
$$

- Notation: $k, \quad d, \quad j, \quad \theta: \mathcal{M}_{(p, R)} \rightarrow \mathcal{A}(k, ?)$

Forward direction

\mathcal{A} : a minimal DFA.

X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\exists p, R, \quad X=R+p \mathbb{N}$
- \mathcal{A} is minimal $\Rightarrow \mathcal{A}$ is the minimisation of $\mathcal{A}_{(p, R)}$

$$
\Rightarrow \mathcal{A}=\mathcal{M}_{(p, R)}
$$

- Notation: $k, \quad d, \quad j, \quad \theta: \mathcal{M}_{(p, R)} \rightarrow \mathcal{A}(k, ?)$
- Prop. of $\mathcal{M}_{(p, R)} \Rightarrow\left\{\begin{array}{l}\text { It holds } k=\ell \\ \text { Let } \varphi=\theta \\ \text { states } s, t \text { such that } \theta(s)=\theta(t) \\ \text { are ultimately-equivalent. }\end{array}\right.$

Backward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\left\{\begin{array}{l}\exists \varphi, \text { pseudo-morphism } \mathcal{A} \rightarrow \mathcal{A}(\ell, ?) \\ \text { states } s, t \text { such that } \varphi(s)=\varphi(t) \text { are ult-equiv. }\end{array}\right.$

Backward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\left\{\begin{array}{l}\exists \varphi, \text { pseudo-morphism } \mathcal{A} \rightarrow \mathcal{A}(\ell, ?) \\ \text { states } s, t \text { such that } \varphi(s)=\varphi(t) \text { are ult-equiv. }\end{array}\right.$
- Notation: m the maximal bound for ultimate-equivalence.

Backward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\left\{\begin{array}{l}\exists \varphi, \text { pseudo-morphism } \mathcal{A} \rightarrow \mathcal{A}(\ell, ?) \\ \text { states } s, t \text { such that } \varphi(s)=\varphi(t) \text { are ult-equiv. }\end{array}\right.$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^{m} \ell$

Backward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\left\{\begin{array}{l}\exists \varphi, \text { pseudo-morphism } \mathcal{A} \rightarrow \mathcal{A}(\ell, ?) \\ \text { states } s, t \text { such that } \varphi(s)=\varphi(t) \text { are ult-equiv. }\end{array}\right.$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^{m} \ell$
- Let u, u^{\prime} two words such that $\operatorname{VAL}(u)=\operatorname{vaL}\left(u^{\prime}\right)\left[b^{m} \ell\right]$.

Backward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\left\{\begin{array}{l}\exists \varphi, \text { pseudo-morphism } \mathcal{A} \rightarrow \mathcal{A}(\ell, ?) \\ \text { states } s, t \text { such that } \varphi(s)=\varphi(t) \text { are ult-equiv. }\end{array}\right.$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^{m} \ell$
- Let u, u^{\prime} two words such that $\operatorname{vaL}(u)=\operatorname{vaL}\left(u^{\prime}\right)\left[b^{m} \ell\right]$.
- Notation: $u=v w$ and $u^{\prime}=v^{\prime} w^{\prime}$ with $|w|=\left|w^{\prime}\right|=m$

Backward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\left\{\begin{array}{l}\exists \varphi, \text { pseudo-morphism } \mathcal{A} \rightarrow \mathcal{A}(\ell, ?) \\ \text { states } s, t \text { such that } \varphi(s)=\varphi(t) \text { are ult-equiv. }\end{array}\right.$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^{m} \ell$
- Let u, u^{\prime} two words such that $\operatorname{VaL}(u)=\operatorname{val}\left(u^{\prime}\right)\left[b^{m} \ell\right]$.
- Notation: $u=v w$ and $u^{\prime}=v^{\prime} w^{\prime}$ with $|w|=\left|w^{\prime}\right|=m$
- $\operatorname{VAL}(u)=\operatorname{VAL}\left(u^{\prime}\right)\left[b^{m}\right] \Rightarrow w=w^{\prime}$

Backward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\left\{\begin{array}{l}\exists \varphi, \text { pseudo-morphism } \mathcal{A} \rightarrow \mathcal{A}(\ell, ?) \\ \text { states } s, t \text { such that } \varphi(s)=\varphi(t) \text { are ult-equiv. }\end{array}\right.$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^{m} \ell$
- Let u, u^{\prime} two words such that $\operatorname{VAL}(u)=\operatorname{vaL}\left(u^{\prime}\right)\left[b^{m} \ell\right]$.
- Notation: $u=v w$ and $u^{\prime}=v^{\prime} w^{\prime}$ with $|w|=\left|w^{\prime}\right|=m$
- $\operatorname{VAL}(u)=\operatorname{VAL}\left(u^{\prime}\right)\left[b^{m}\right] \Rightarrow w=w^{\prime}$
- Arithmetic... $\Rightarrow \operatorname{VaL}(v)=\operatorname{VaL}\left(v^{\prime}\right)[\ell]$

Backward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\left\{\begin{array}{l}\exists \varphi, \text { pseudo-morphism } \mathcal{A} \rightarrow \mathcal{A}(\ell, ?) \\ \text { states } s, t \text { such that } \varphi(s)=\varphi(t) \text { are ult-equiv. }\end{array}\right.$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^{m} \ell$
- Let u, u^{\prime} two words such that $\operatorname{VAL}(u)=\operatorname{vaL}\left(u^{\prime}\right)\left[b^{m} \ell\right]$.
- Notation: $u=v w$ and $u^{\prime}=v^{\prime} w^{\prime}$ with $|w|=\left|w^{\prime}\right|=m$
- $\operatorname{VAL}(u)=\operatorname{VAL}\left(u^{\prime}\right)\left[b^{m}\right] \Rightarrow w=w^{\prime}$
- Arithmetic... $\Rightarrow \operatorname{VaL}(v)=\operatorname{Val}\left(v^{\prime}\right)[\ell]$
- In \mathcal{A}, v and v^{\prime} reach states whose images by φ are equal

Backward direction

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.

Sketch

- Hypothesis: $\left\{\begin{array}{l}\exists \varphi, \text { pseudo-morphism } \mathcal{A} \rightarrow \mathcal{A}(\ell, ?) \\ \text { states } s, t \text { such that } \varphi(s)=\varphi(t) \text { are ult-equiv. }\end{array}\right.$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^{m} \ell$
- Let u, u^{\prime} two words such that $\operatorname{VAL}(u)=\operatorname{vaL}\left(u^{\prime}\right)\left[b^{m} \ell\right]$.
- Notation: $u=v w$ and $u^{\prime}=v^{\prime} w^{\prime}$ with $|w|=\left|w^{\prime}\right|=m$
- $\operatorname{VAL}(u)=\operatorname{VAL}\left(u^{\prime}\right)\left[b^{m}\right] \Rightarrow w=w^{\prime}$
- Arithmetic... $\Rightarrow \operatorname{VaL}(v)=\operatorname{Val}\left(v^{\prime}\right)[\ell]$
- In \mathcal{A}, v and v^{\prime} reach states whose images by φ are equal
- In $\mathcal{A}, u=v w$ and $u^{\prime}=v^{\prime} w$ reach the same state.

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p, R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=\mathbf{5}$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=\mathbf{5}$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

O 1-ult.-equiv.

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=\mathbf{5}$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

\bigcirc
0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

$\binom{$ Then, the period is }{$b^{m} \times \ell=2^{3} \times 5=40}$
0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p, R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

Impurely periodic sets

Definition

A set S is impurely periodic

S is eventually periodic but not purely periodic

Impurely periodic sets

Definition
A set S is impurely periodic

S is eventually periodic but not purely periodic

Theorem

A: a minimal DFA.
S : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits minus one.
S is impurely periodic if and only if

- \exists a pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$;
- every non-initial states s, s^{\prime} such that $\varphi(s)=\varphi\left(s^{\prime}\right)$, are ultimately equivalent;
- the initial state of \mathcal{A} bears a 0 -loop and has no other incoming transitions.

Conclusion

Eventually periodic sets are either purely or impurely periodic, hence:

Theorem

Periodicity is decidable in $O(b n \log (n))$ time (where n is the state-set cardinal.)

Future work

- Extension to multi-dimensional sets.
- Extension to non-standard numeration systems.

