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Integer base numeration systems 1

b > 1
Alphabet used to represent numbers:

{

0, 1, . . . , b− 1
}

val :
{

0, 1, . . . , b− 1
}∗

−→ N

dn · · · d1d0 7−→ dnb
n + · · · + d1b

1 + d0b
0

In base b = 2, val(010011) = 0 + 23 + 0 + 0 + 21 + 20 = 19 .

rep : N −→
{

0, 1, . . . , b− 1
}∗

0 7−→ ε

n > 0 7−→ rep(m) d , where (m, d) is the
Eucl. div of n by b.

In base b = 2, rep(19) = rep(9) 1 = rep(4) 11 = · · · = 10011 .



b-recognisable sets 2

Definition

X: a set of integers.

X is b-recognisable if rep(X) is a regular language.
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b-recognisable sets 2

Definition

X: a set of integers.

X is b-recognisable if rep(X) is a regular language.

Theorem (folklore)

Each eventually-periodic set is b-recognisable.
Some sets are 2-recognisable but not 3-recognisable.

0 1 2

Automaton accepting
0∗

rep(2 + 3N)
Automaton accepting
0∗

rep
(

{2i | i ∈ N}
)

Final/Initial

Labelled by 0

Labelled by 1

Legend



b-recognisable sets (2) 3

Theorem (Cobham, 1969)

b, c : two integer bases, multiplicatively independent†.
X: a set of integers.

X is b-recognisable
X is c-recognisable

}

=⇒ X is eventually periodic

†such that bi 6= cj for all i, j > 0.

Corollary
{

Eventually periodic sets

}

=

{

Sets b-recognisable for all b

}



The Periodicity problem 4

Statement

Periodicity

Parameter: an integer base b > 1.

Input: a deterministic finite automaton A
(hence the b-recognisable set X accepted by A).

Question: is X eventually periodic ?



The Periodicity problem (2) 5

First answers

Theorem (Honkala, 1986)

Periodicity is decidable.

Theorem (Muchnik, 1991)

A generalisation of Periodicity is decidable in triple-exponential
time.



The Periodicity problem (3) 6

First efficient algorithms uses LSDF convention

Least Significant Digit First (LSDF) : the input automaton reads
its entry from right to left.

Theorem (Leroux, 2005)

With LSDF convention, a generalisation of Periodicity is decid-
able in polynomial time.



The Periodicity problem (3) 6

First efficient algorithms uses LSDF convention

Least Significant Digit First (LSDF) : the input automaton reads
its entry from right to left.

Theorem (Leroux, 2005)

With LSDF convention, a generalisation of Periodicity is decid-
able in polynomial time.

Remark

Making an automaton reads from right to left
requires a transposition and a determinisation

⇒ Exponential blow-up



The Periodicity problem (3) 7

Recent results

Note (Allouche Rampersad Shallit, 2009)

Periodicity is decidable in exponential time.

Theorem (M.-Sakarovitch, 2013)

With LSDF convention, Periodicity is decidable in linear time if
the input automaton is minimal.



The Periodicity problem (4) 8

Our contribution

Theorem

Periodicity is decidable in O(b n log(n)) time
(where n is the state-set cardinal.)
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Pseudo-morphism (1) – Definition & Example 9

Definition

A,M: two complete DFA
ϕ: a function {states of A} → {states of M}

ϕ is a pseudo-morphism A→M if

ϕ maps the initial state of A to the initial state of M

s
d

−−A s′ in A =⇒ ϕ(s)
d

−−A ϕ(s′) in M

(A pseudo-morphism is a morphism with no condition on final states.)

A M
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Pseudo-morphism (2) – Computation 10

Lemma

A,M: two complete DFA
n: the number of state of A

The pseudo-morphism ϕ : A → M, if it exists, can be computed
in O(bn) time.

A M
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Ultimate equivalence (1) – Definition 11

Definition

A: a complete DFA.
s, t: states of A.
m: an integer.

s and t are m-ultimately-equivalent (w.r.t. A) if,

∀ word u of length m,

[

s
u

−−A s′ and t
u

−−A t′ implies s′ = t′
]

.

Remarks

s and t are not m-ult-equiv

⇐⇒ ∃ word u of length m,











s
u

−−A s′

t
u

−−A t′

s′ 6= t′

s and t are m-ult-equiv =⇒ s and t are (m+ 1)-ult-equiv.



Ultimate equivalence (2) – Example 12

C

B1

B2

B1 and B2 are 1-ult-equiv.

All others pairs are not ult-equiv, as
witnessed by the family 0∗.
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Ultimate equivalence (2) – Example 12

Lemma

A: a complete DFA. s, t: states of A. m: an integer.

∀ digit d,
sd: state such that s

d
−−A sd .

td: state such that t
d

−−A td .

s and t are m-ult-equiv
⇐⇒ ∀ digit d, sd and td are (m−1)-ult-equiv.
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All others pairs are not ult-equiv, as
witnessed by the family 0∗.
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d
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C

B1

B2

B3
B1 and B2 are 1-ult-equiv.
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Ultimate equivalence (2) – Example 12

Lemma

A: a complete DFA. s, t: states of A. m: an integer.

∀ digit d,
sd: state such that s

d
−−A sd .

td: state such that t
d

−−A td .

s and t are m-ult-equiv
⇐⇒ ∀ digit d, sd and td are (m−1)-ult-equiv.

C

B1

B2

B3

A1

A2

B1 and B2 are 1-ult-equiv.

B2 and B3 are 2-ult-equiv.

B3 and B1 are 2-ult-equiv.

A1 and A2 are 3-ult-equiv.

All others pairs are not ult-equiv, as
witnessed by the family 0∗.



Ultimate equivalence (3) – Computation 13

A: a DFA.
n: the number of states in A.
b: the size of the alphabet.

Using the automaton product A×A, it is known that:

Lemma (folklore)

Ultimate-equivalence w.r.t. A can be computed in O(bn2) time.

There exists a better algorithm:

Theorem (Béal-Crochemore, 2007)

Ultimate-equivalence w.r.t. A can be computed in O(b n log(n))
time.
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Purely periodic set 14

Definition

A purely periodic set is a set of the form R+ pN with
p: an integer
R: a set of remainders modulo p

Convention

In the following, p is assumed to be the smallest period of R+pN.



The naive automaton A(p,R) accepting R + pN 15

b: the base.
p: the period.
R: remainder set mod p.
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p: the period.
R: remainder set mod p.

Definition

A(p,R):

State set: Z/pZ

Initial state: 0

Transitions:
∀ state s, ∀ digit d

s
d

−−A sb+ d

Final-state set: R

0 1 2

Example 1: p = 3 , R = {2}
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A(p,R):

State set: Z/pZ

Initial state: 0

Transitions:
∀ state s, ∀ digit d

s
d

−−A sb+ d

Final-state set: R

0 1 2

Example 1: p = 3 , R = {2}

0 2 1 3

Example 2: p = 4 , R = {2, 3}



The naive automaton A(p,R) accepting R + pN 15

b: the base.
p: the period.
R: remainder set mod p.

Definition

A(p,R):

State set: Z/pZ

Initial state: 0

Transitions:
∀ state s, ∀ digit d

s
d

−−A sb+ d

Final-state set: R

0 1 2

Example 1: p = 3 , R = {2}

0 2 1 3

Example 2: p = 4 , R = {2, 3}

0 1 3 2 4

Example 3: p = 5 , R = {1}



Property of A(p,R) in special cases 16

b: the base.
p: the period.
R: remainder set mod p.

Lemma

p and b are coprime =⇒ A(p,R) is a group automaton.

(∀ digit d, “reading d” is permutation of the states of A(p,R))

Lemma

p divides a power of b =⇒ all states of A(p,R) are ult-equiv.



A(p,R) as the product A(k,?) ×A(d,?) 17

Notation

b: the base
p: the period

k, d, j: integers s. t.
p = kd
k coprime with b
d divides bj

k coprime with d

Ex.: with p = 12,
12 = 4 × 3
4 divides 22

3 is coprime with 2
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Notation

b: the base
p: the period

k, d, j: integers s. t.
p = kd
k coprime with b
d divides bj

k coprime with d

Ex.: with p = 12,
12 = 4 × 3
4 divides 22

3 is coprime with 2

0 1 2

A(3,?)

2

1

3

0

A(4,?)

0 4 8

6 10 2

9 1 5

3 7 11

A(12,{5,7})



The “vertical” pseudo-morphism A(p,R) → A(k,?) 18

b: the base
p = k d: the period
k is coprime with b
d divides bj

Lemma

∃ a pseudo-morphism
ψ : A(p,R) → A(k,?)

Lemma

s, t: states

If ψ(s) =ψ(t), then
s and t are ult-equiv.

0 1 2

A(3,?)

2

1

3

0

A(4,?)

0 4 8

6 10 2

9 1 5

3 7 11

A(12,{5,7})



Transition labelled by 0 in A(p,R) 19

b: the base
p = k d: the period
k is coprime with b
d divides bj

Lemma

In A(k,?), all states
belong to a 0-circuit;

0 1 2

A(3,?)

2

1

3

0

A(4,?)

0 4 8

6 10 2

9 1 5

3 7 11

A(12,{5,7})
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b: the base
p = k d: the period
k is coprime with b
d divides bj

Lemma

In A(k,?), all states
belong to a 0-circuit;

In A(d,?), only the
initial state is part of
a 0-circuit.

0 1 2

A(3,?)

2

1

3

0

A(4,?)

0 4 8

6 10 2

9 1 5

3 7 11

A(12,{5,7})



Transition labelled by 0 in A(p,R) 19

b: the base
p = k d: the period
k is coprime with b
d divides bj

Lemma

In A(k,?), all states
belong to a 0-circuit;

In A(d,?), only the
initial state is part of
a 0-circuit.

In A(p,R), k states
are part of a 0-circuit:
one by column.

0 1 2

A(3,?)

2

1

3

0

A(4,?)

0 4 8

6 10 2

9 1 5

3 7 11

A(12,{5,7})



M(p,R), the minimisation of A(p,R) 20

b: the base
p = k d: the period
k is coprime with b
d divides bj

Lemma

States in different
columns are never
merged by minimisation.

Ex., Ab absurdo: 0 ∼ 4
=⇒ 0 ∼ 4 ∼ 8
=⇒ 9 ∼ 1 ∼ 5
=⇒ 6 ∼ 10 ∼ 2
=⇒ 4 is a period < 12
=⇒ Contradiction
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1
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A(12,{5,7})
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b: the base
p = k d: the period
k is coprime with b
d divides bj

Proposition

M(p,R): minim. of A(p,R)

k states of M(p,R)

are part of a 0-circuit
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b: the base
p = k d: the period
k is coprime with b
d divides bj

Proposition

M(p,R): minim. of A(p,R)

k states of M(p,R)

are part of a 0-circuit

∃ a pseudo-morphism
θ :M(p,R) → A(k,?)
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b: the base
p = k d: the period
k is coprime with b
d divides bj

Proposition

M(p,R): minim. of A(p,R)

k states of M(p,R)

are part of a 0-circuit

∃ a pseudo-morphism
θ :M(p,R) → A(k,?)

If θ(s) = θ(t), then s
and t are ult-equiv.

0 1 2

A(3,?)

2

1

3

0

A(4,?)

0 4 8

9 5

7 11

M(12,{5,7})
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Characterisation theorem 22

Theorem

A: a minimal DFA.
X: the b-recognisable set accepted by A.
ℓ: the total number of states in 0-circuits.

X is purely periodic if and only if

∃ a pseudo-morphism ϕ : A→ A(ℓ,?);

states s, t such that ϕ(s) = ϕ(t), are ultimately equivalent;

the initial state of A bears a 0-loop.



Forward direction 23

A: a minimal DFA.
X: the b-recognisable set accepted by A.
ℓ: the total number of states in 0-circuits.

Sketch

Hypothesis: ∃p,R, X = R+ pN
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Forward direction 23

A: a minimal DFA.
X: the b-recognisable set accepted by A.
ℓ: the total number of states in 0-circuits.

Sketch

Hypothesis: ∃p,R, X = R+ pN

A is minimal ⇒ A is the minimisation of A(p,R)

⇒ A =M(p,R)

Notation: k, d, j, θ :M(p,R) → A(k, ?)

Prop. of M(p,R) ⇒



















It holds k = ℓ
Let ϕ = θ
states s, t such that θ(s) = θ(t)

are ultimately-equivalent.
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Backward direction 24

A: a minimal DFA.
X: the b-recognisable set accepted by A.
ℓ: the total number of states in 0-circuits.

Sketch

Hypothesis:

{

∃ϕ, pseudo-morphism A→ A(ℓ, ?)

states s, t such that ϕ(s) = ϕ(t) are ult-equiv.

Notation: m the maximal bound for ultimate-equivalence.

Claim: X is purely periodic of period bm ℓ
Let u, u′ two words such that val(u) = val(u′) [bm ℓ] .

Notation: u = vw and u′ = v′w′ with |w| = |w′| = m

val(u) = val(u′) [bm] ⇒ w = w′

Arithmetic... ⇒ val(v) = val(v′) [ℓ]
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A: a minimal DFA.
X: the b-recognisable set accepted by A.
ℓ: the total number of states in 0-circuits.

Sketch

Hypothesis:

{

∃ϕ, pseudo-morphism A→ A(ℓ, ?)

states s, t such that ϕ(s) = ϕ(t) are ult-equiv.

Notation: m the maximal bound for ultimate-equivalence.

Claim: X is purely periodic of period bm ℓ
Let u, u′ two words such that val(u) = val(u′) [bm ℓ] .

Notation: u = vw and u′ = v′w′ with |w| = |w′| = m

val(u) = val(u′) [bm] ⇒ w = w′

Arithmetic... ⇒ val(v) = val(v′) [ℓ]

In A, v and v′ reach states whose images by ϕ are equal

In A, u= vw and u′ = v′w reach the same state.
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0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A→ A(ℓ,?).

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.
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Then, the period is
bm × ℓ = 23 × 5 = 40
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A set S is impurely periodic ⇐⇒
S is eventually periodic
but not purely periodic
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Definition

A set S is impurely periodic ⇐⇒
S is eventually periodic
but not purely periodic

Theorem

A: a minimal DFA.
S: the b-recognisable set accepted by A.
ℓ: the total number of states in 0-circuits minus one.

S is impurely periodic if and only if

∃ a pseudo-morphism ϕ : A→ A(ℓ,?);

every non-initial states s, s′ such that ϕ(s) = ϕ(s′), are
ultimately equivalent;

the initial state of A bears a 0-loop and has no other
incoming transitions.
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Eventually periodic sets are either purely or impurely periodic,
hence:

Theorem

Periodicity is decidable in O(b n log(n)) time
(where n is the state-set cardinal.)

Future work

Extension to multi-dimensional sets.

Extension to non-standard numeration systems.
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