An efficient algorithm to decide periodicity of *b*-recognisable sets using MSDF convention

Victor Marsault

joint work with Bernard Boigelot , Isabelle Mainz and Michel Rigo

Montefiore Institute and Department of Mathematics, Université de Liège, Belgium

Séminaire Automate de l'IRIF, Paris 2017-03-10

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p,R)}$ and its minimisation

- 4 Purely periodic case: characterisation
- 5 Purely periodic case: execution on an example
- **6** A word on the impurely periodic case

Integer base numeration systems

- *b* > 1
- Alphabet used to represent numbers: $\{0, 1, \dots, b-1\}$

• VAL :
$$\{0, 1, \dots, b-1\}^* \longrightarrow \mathbb{N}$$

 $d_n \cdots d_1 d_0 \longmapsto d_n b^n + \cdots + d_1 b^1 + d_0 b^0$

In base b = 2, $VAL(010011) = 0 + 2^3 + 0 + 0 + 2^1 + 2^0 = 19$.

• REP :
$$\mathbb{N} \longrightarrow \{0, 1, \dots, b-1\}^*$$

 $0 \longmapsto \varepsilon$
 $n > 0 \longmapsto \operatorname{REP}(m) d$, where (m, d) is the Eucl. div of n by b .

In base b = 2, $\operatorname{REP}(19) = \operatorname{REP}(9) 1 = \operatorname{REP}(4) 11 = \cdots = 10011$.

b-recognisable sets

Definition

- X: a set of integers.
- X is b-recognisable if REP(X) is a regular language.

b-recognisable sets

Definition

- X: a set of integers.
- X is b-recognisable if REP(X) is a regular language.

Theorem (folklore)

• Each eventually-periodic set is *b*-recognisable.

b-recognisable sets

Definition

- X: a set of integers.
- X is b-recognisable if REP(X) is a regular language.

Theorem (folklore)

- Each eventually-periodic set is *b*-recognisable.
- Some sets are 2-recognisable but not 3-recognisable.

Automaton accepting $0^* \operatorname{REP}(\{2^i \mid i \in \mathbb{N}\})$

b-recognisable sets (2)

Theorem (Cobham, 1969)

b,c : two integer bases, multiplicatively independent $^{\dagger}.$ $X\colon$ a set of integers.

 $\left. \begin{array}{c} X \text{ is } b \text{-recognisable} \\ X \text{ is } c \text{-recognisable} \end{array} \right\} \implies X \text{ is eventually periodic}$

[†]such that $b^i \neq c^j$ for all i, j > 0.

Corollary
$$\left\{ \text{ Eventually periodic sets } \right\} = \left\{ \text{ Sets b-recognisable for all } b \right\}$$

The $\operatorname{Periodicity}$ problem

Statement

PERIODICITY

- **Parameter**: an integer base b > 1.
- Input: a deterministic finite automaton A (hence the b-recognisable set X accepted by A).

• **Question**: is X eventually periodic ?

First answers

Theorem (Honkala, 1986)

PERIODICITY *is decidable*.

Theorem (Muchnik, 1991)

A generalisation of **PERIODICITY** is decidable in triple-exponential time.

First efficient algorithms uses LSDF convention

Least Significant Digit First (LSDF) : the input automaton reads its entry from right to left.

Theorem (Leroux, 2005)

With LSDF convention, a generalisation of PERIODICITY is decidable in polynomial time.

First efficient algorithms uses LSDF convention

Least Significant Digit First (LSDF) : the input automaton reads its entry from right to left.

Theorem (Leroux, 2005)

With LSDF convention, a generalisation of PERIODICITY is decidable in polynomial time.

Remark

Making an automaton reads from right to left requires a transposition and a determinisation ⇒ Exponential blow-up

Recent results

PERIODICITY *is decidable in exponential time*.

Theorem (M.-Sakarovitch, 2013)

With LSDF convention, PERIODICITY is decidable in linear time if the input automaton is minimal.

The **PERIODICITY** problem (4)

8

Our contribution

Theorem

PERIODICITY is decidable in $O(b n \log(n))$ time (where n is the state-set cardinal.)

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p,R)}$ and its minimisation

- 4 Purely periodic case: characterisation
- 5 Purely periodic case: execution on an example
- **6** A word on the impurely periodic case

Definition

 $\mathcal{A}, \mathcal{M}: \text{ two complete DFA}$ $\varphi: \text{ a function } \{\text{states of } \mathcal{A}\} \rightarrow \{\text{states of } \mathcal{M}\}$

 φ is a **pseudo-morphism** $\mathcal{A} \to \mathcal{M}$ if

• φ maps the initial state of ${\mathcal A}$ to the initial state of ${\mathcal M}$

•
$$s \xrightarrow{d} s'$$
 in $\mathcal{A} \implies \varphi(s) \xrightarrow{d} \varphi(s')$ in \mathcal{M}

WIII

Definition

 $\mathcal{A}, \mathcal{M}: \text{ two complete DFA}$ $\varphi: \text{ a function } \{\text{states of } \mathcal{A}\} \rightarrow \{\text{states of } \mathcal{M}\}$

 φ is a **pseudo-morphism** $\mathcal{A} \to \mathcal{M}$ if

• φ maps the initial state of $\mathcal A$ to the initial state of $\mathcal M$

•
$$s \xrightarrow{d} s'$$
 in $\mathcal{A} \implies \varphi(s) \xrightarrow{d} \varphi(s')$ in \mathcal{M}

Definition

 $\mathcal{A}, \mathcal{M}: \text{ two complete DFA} \\ \varphi: \text{ a function } \{\text{states of } \mathcal{A}\} \rightarrow \{\text{states of } \mathcal{M}\}$

 φ is a **pseudo-morphism** $\mathcal{A} \to \mathcal{M}$ if

• φ maps the initial state of ${\mathcal A}$ to the initial state of ${\mathcal M}$

•
$$s \xrightarrow{d} s'$$
 in $\mathcal{A} \implies \varphi(s) \xrightarrow{d} \varphi(s')$ in \mathcal{M}

MILL

Definition

 $\mathcal{A}, \mathcal{M}: \text{ two complete DFA}$ $\varphi: \text{ a function } \{\text{states of } \mathcal{A}\} \rightarrow \{\text{states of } \mathcal{M}\}$

 φ is a **pseudo-morphism** $\mathcal{A} \to \mathcal{M}$ if

• φ maps the initial state of ${\mathcal A}$ to the initial state of ${\mathcal M}$

•
$$s \xrightarrow{d} s'$$
 in $\mathcal{A} \implies \varphi(s) \xrightarrow{d} \varphi(s')$ in \mathcal{M}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

 \mathcal{A}, \mathcal{M} : two complete DFA n: the number of state of \mathcal{A}

Ultimate equivalence (1) – Definition

Definition

A: a complete DFA.
s,t: states of A.
m: an integer.

s and *t* are *m*-ultimately-equivalent (*w.r.t.* \mathcal{A}) if, \forall word *u* of length *m*, $\left[s \xrightarrow{u} s' \text{ and } t \xrightarrow{u} t' \text{ implies } s' = t'\right]$.

Remarks

•
$$s$$
 and t are **not** m -ult-equiv
 $\iff \exists$ word u of length m , $\begin{cases} s \xrightarrow{u} s' \\ t \xrightarrow{u} t' \\ s' \neq t' \end{cases}$
• s and t are m -ult-equiv $\implies s$ and t are $(m + 1)$ -ult-equiv.

• B_1 and B_2 are 1-ult-equiv.

 All others pairs are not ult-equiv, as witnessed by the family 0*.

 All others pairs are not ult-equiv, as witnessed by the family 0*.

Lemma

s and t are m-ult-equiv

 $\iff \forall \text{ digit } d, \ s_d \text{ and } t_d \text{ are } (m-1)\text{-ult-equiv.}$

- All others pairs are not ult-equiv, as witnessed by the family 0*.

Lemma

s and t are m-ult-equiv

 $\iff \forall \text{ digit } d, \ s_d \text{ and } t_d \text{ are } (m-1)\text{-ult-equiv.}$

- B_1 and B_2 are 1-ult-equiv.
- B_2 and B_3 are 2-ult-equiv.
- B_3 and B_1 are 2-ult-equiv.
- All others pairs are not ult-equiv, as witnessed by the family 0*.

Lemma

s and t are m-ult-equiv

 $\iff \forall \text{ digit } d, \ s_d \text{ and } t_d \text{ are } (m-1)\text{-ult-equiv.}$

- B_1 and B_2 are 1-ult-equiv.
- B_2 and B_3 are 2-ult-equiv.
- B_3 and B_1 are 2-ult-equiv.
- A_1 and A_2 are 3-ult-equiv.
- All others pairs are not ult-equiv, as witnessed by the family 0*.

Ultimate equivalence (3) - Computation

A: a DFA.
n: the number of states in *A*.
b: the size of the alphabet.

Using the automaton product $\mathcal{A} \times \mathcal{A}$, it is known that:

Lemma (folklore)

Ultimate-equivalence w.r.t. \mathcal{A} can be computed in $O(bn^2)$ time.

There exists a better algorithm:

Theorem (Béal-Crochemore, 2007)

Ultimate-equivalence w.r.t. $\mathcal A$ can be computed in $O(b \, n \log(n))$ time.

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p,R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

Definition

A purely periodic set is a set of the form $R + p\mathbb{N}$ with

p: an integer

 $R: \mbox{ a set of remainders modulo } p$

Convention

In the following, p is assumed to be the **smallest period** of $R + p\mathbb{N}$.

The naive automaton $\mathcal{R}_{(p,R)}$ accepting $R + p\mathbb{N}$

b: the base.

- *p*: the period.
- R: remainder set mod p.

The naive automaton $\mathcal{R}_{(p,R)}$ accepting $R + p\mathbb{N}$

b: the base. p: the period. R: remainder set mod p.

Definition

 $\mathcal{A}_{(p,R)}$:

- State set: $\mathbb{Z}/p\mathbb{Z}$
- Initial state: 0
- Transitions: \forall state s, \forall digit d $s \xrightarrow{d} sb + d$
- Final-state set: R

Example 1: p=3 , $R=\{2\}$

The naive automaton $\mathcal{A}_{(p,R)}$ accepting $R + p\mathbb{N}$

b: the base. p: the period. R: remainder set mod p.

Definition

- $\mathcal{A}_{(p,R)}$:
 - State set: ℤ/pℤ
 - Initial state: 0
 - Transitions: \forall state s, \forall digit d $s \xrightarrow{d} sb + d$
 - Final-state set: R

Example 1: p = 3 , $R = \{2\}$

The naive automaton $\mathcal{R}_{(p,R)}$ accepting $R + p\mathbb{N}$

b: the base. p: the period. R: remainder set mod p.

Definition

- $\mathcal{A}_{(p,R)}$:
 - State set: $\mathbb{Z}/p\mathbb{Z}$
 - Initial state: 0
 - Transitions: \forall state s, \forall digit d $s \xrightarrow{d} sb + d$
 - Final-state set: R

0 = 1 = 2Example 1: p = 3, $R = \{2\}$

Property of $\mathcal{A}_{(p,R)}$ in special cases

b: the base. p: the period. R: remainder set mod p.

Lemma

 $p \text{ and } b \text{ are coprime } \implies \mathcal{A}_{(p,R)}$ is a group automaton.

 $(\forall \text{ digit } d, \text{ "reading } d" \text{ is permutation of the states of } \mathcal{R}_{(p,R)})$

Lemma

 $p \text{ divides a power of } b \implies \text{ all states of } \mathcal{A}_{(p,R)} \text{ are ult-equiv.}$

$\mathcal{A}_{(p,R)}$ as the product $\mathcal{A}_{(k,?)} imes \mathcal{A}_{(d,?)}$

Notation

- b: the base
- p: the period
- k, d, j: integers s. t.
 - $\bullet \ p = kd$
 - k coprime with b
 - d divides b^j
 - k coprime with d
- Ex.: with p = 12,
 - $12 = 4 \times 3$
 - 4 divides 2²
 - 3 is coprime with 2

$\mathcal{A}_{(p,R)}$ as the product $\mathcal{A}_{(k,?)} imes \mathcal{A}_{(d,?)}$

Notation

b: the base p: the period

- k, d, j: integers s. t.
 - p = kd
 - k coprime with b
 - d divides b^j
 - k coprime with d
- Ex.: with p = 12,
 - $12 = 4 \times 3$
 - 4 divides 2²
 - 3 is coprime with 2

The "vertical" pseudo-morphism $\mathcal{A}_{(p,R)} \rightarrow \mathcal{A}_{(k,?)}$

b: the base p = k d: the period k is coprime with bd divides b^{j}

Lemma

 \exists a pseudo-morphism $\psi: \mathcal{A}_{(p,R)} \to \mathcal{A}_{(k,?)}$

Lemma

s,t: states

If $\psi(s) = \psi(t)$, then s and t are ult-equiv.

Transition labelled by 0 in $\mathcal{A}_{(p,R)}$

b: the base p = k d: the period k is coprime with bd divides b^{j}

Lemma

 In A_(k,?), all states belong to a 0-circuit;

Transition labelled by 0 in $\mathcal{A}_{(p,R)}$

b: the base p = k d: the period k is coprime with bd divides b^{j}

Lemma

- In A_(k,?), all states belong to a 0-circuit;
- In A_(d,?), only the initial state is part of a 0-circuit.

Transition labelled by 0 in $\mathcal{A}_{(p,R)}$

b: the base p = k d: the period k is coprime with bd divides b^{j}

Lemma

- In A_(k,?), all states belong to a 0-circuit;
- In A_(d,?), only the initial state is part of a 0-circuit.
- In A_(p,R), k states are part of a 0-circuit: one by column.

$\mathcal{M}_{(p,R)}$, the minimisation of $\mathcal{R}_{(p,R)}$

b: the base p = k d: the period k is coprime with bd divides b^j

Lemma

States in different columns are never merged by minimisation.

- Ex., Ab absurdo: $0\sim4$
- $\implies 0 \sim 4 \sim 8$
- $\implies 9 \sim 1 \sim 5$
- $\implies 6 \sim 10 \sim 2$
- \implies 4 is a period < 12
- \implies Contradiction

$\mathcal{M}_{(p,R)}$, the minimisation of $\mathcal{R}_{(p,R)}$

b: the base p = k d: the period k is coprime with bd divides b^j

Lemma

States in different columns are never merged by minimisation.

Ex., Ab absurdo: $0\sim4$

- $\implies 0 \sim 4 \sim 8$
- $\implies 9 \sim 1 \sim 5$
- $\implies 6 \sim 10 \sim 2$
- \implies 4 is a period < 12
- \implies Contradiction

$\mathcal{M}_{(p,R)}$, the minimisation of $\mathcal{R}_{(p,R)}$

b: the base p = k d: the period k is coprime with bd divides b^j

Lemma

States in different columns are never merged by minimisation.

- Ex., Ab absurdo: $0\sim4$
- $\implies 0 \sim 4 \sim 8$
- $\implies 9 \sim 1 \sim 5$
- $\implies 6 \sim 10 \sim 2$
- \implies 4 is a period < 12
- \implies Contradiction

Extracting information from $\mathcal{M}_{(p,R)}$.

b: the base p = k d: the period k is coprime with bd divides b^j

Proposition

 $\mathcal{M}_{(p,R)}$: minim. of $\mathcal{R}_{(p,R)}$

 k states of M_(p,R) are part of a 0-circuit

Extracting information from $\mathcal{M}_{(p,R)}$.

b: the base p = k d: the period k is coprime with bd divides b^j

Proposition

- $\mathcal{M}_{(p,R)}$: minim. of $\mathcal{R}_{(p,R)}$
- k states of M_(p,R) are part of a 0-circuit
- \exists a pseudo-morphism $\theta: \mathcal{M}_{(p,R)} \to \mathcal{A}_{(k,?)}$

Extracting information from $\mathcal{M}_{(p,R)}$.

b: the base p = k d: the period k is coprime with bd divides b^{j}

Proposition

- $\mathcal{M}_{(p,R)}$: minim. of $\mathcal{R}_{(p,R)}$
- k states of M_(p,R) are part of a 0-circuit
- \exists a pseudo-morphism $\theta: \mathcal{M}_{(p,R)} \rightarrow \mathcal{R}_{(k,?)}$
- If $\theta(s) = \theta(t)$, then s and t are ult-equiv.

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p,R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

22

Theorem

- A: a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- ℓ : the total number of states in 0-circuits.

 \boldsymbol{X} is purely periodic if and only if

- \exists a pseudo-morphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$;
- states s,t such that $\varphi(s) = \varphi(t)$, are ultimately equivalent;
- the initial state of $\mathcal R$ bears a 0-loop.

 $\mathcal{A}:$ a minimal DFA.

- X: the b-recognisable set accepted by $\mathcal{R}.$
- $\ell :$ the total number of states in 0-circuits.

${\sf Sketch}$

• Hypothesis: $\exists p, R$, $X = R + p\mathbb{N}$

 \mathcal{A} : a minimal DFA.

- X: the b-recognisable set accepted by $\mathcal{R}.$
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\exists p, R$, $X = R + p\mathbb{N}$
- $\mathcal A$ is minimal $\ \Rightarrow \ \mathcal A$ is the minimisation of $\mathcal A_{(p,R)}$

 \mathcal{A} : a minimal DFA.

- X: the b-recognisable set accepted by $\mathcal{R}.$
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\exists p, R$, $X = R + p\mathbb{N}$
- \mathcal{A} is minimal $\Rightarrow \mathcal{A}$ is the minimisation of $\mathcal{A}_{(p,R)}$ $\Rightarrow \mathcal{A} = \mathcal{M}_{(p,R)}$

 \mathcal{A} : a minimal DFA.

- X: the b-recognisable set accepted by $\mathcal{R}.$
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\exists p, R$, $X = R + p\mathbb{N}$
- \mathcal{A} is minimal $\Rightarrow \mathcal{A}$ is the minimisation of $\mathcal{A}_{(p,R)}$ $\Rightarrow \mathcal{A} = \mathcal{M}_{(p,R)}$
- Notation: $k, \quad d, \quad j, \quad \theta: \mathcal{M}_{(p,R)} \to \mathcal{A}(k,?)$

 $\mathcal{A}:$ a minimal DFA.

- X: the b-recognisable set accepted by $\mathcal{R}.$
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\exists p, R$, $X = R + p\mathbb{N}$
- \mathcal{A} is minimal $\Rightarrow \mathcal{A}$ is the minimisation of $\mathcal{A}_{(p,R)}$ $\Rightarrow \mathcal{A} = \mathcal{M}_{(p,R)}$
- Notation: k, d, j, $\theta : \mathcal{M}_{(p,R)} \to \mathcal{A}(k,?)$

• Prop. of
$$\mathcal{M}_{(p,R)} \Rightarrow \begin{cases} \text{It holds } k = \ell \\ \text{Let } \varphi = \theta \\ \text{states } s, t \text{ such that } \theta(s) = \theta(t) \\ \text{are ultimately-equivalent.} \end{cases}$$

- \mathcal{A} : a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- $\ell :$ the total number of states in 0-circuits.

Sketch

• Hypothesis: $\begin{cases} \exists \varphi, \text{ pseudo-morphism } \mathcal{A} \to \mathcal{A}(\ell, ?) \\ \text{states } s, t \text{ such that } \varphi(s) = \varphi(t) \text{ are ult-equiv.} \end{cases}$

- \mathcal{A} : a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- $\ell :$ the total number of states in 0-circuits.

- $\label{eq:hypothesis:} \begin{cases} \exists \varphi, \mbox{ pseudo-morphism } \mathcal{A} \to \mathcal{A}(\ell, ?) \\ \mbox{ states } s,t \mbox{ such that } \varphi(s) = \varphi(t) \mbox{ are ult-equiv.} \end{cases}$
- $\hfill \ensuremath{\,\bullet\)}$ Notation: m the maximal bound for ultimate-equivalence.

- \mathcal{A} : a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\begin{cases} \exists \varphi, \text{ pseudo-morphism } \mathcal{A} \to \mathcal{A}(\ell, ?) \\ \text{states } s, t \text{ such that } \varphi(s) = \varphi(t) \text{ are ult-equiv.} \end{cases}$
- $\hfill \ensuremath{\,\bullet\)}$ Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^m \ell$

- \mathcal{A} : a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\begin{cases} \exists \varphi, \text{ pseudo-morphism } \mathcal{A} \to \mathcal{A}(\ell, ?) \\ \text{states } s, t \text{ such that } \varphi(s) = \varphi(t) \text{ are ult-equiv.} \end{cases}$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^m \ell$
 - Let u,u' two words such that $\mathrm{VAL}(u)=\mathrm{VAL}(u')~[b^m\,\ell]$.

- A: a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{A} .
- ℓ : the total number of states in 0-circuits.

- Hypothesis: $\begin{cases} \exists \varphi, \text{ pseudo-morphism } \mathcal{A} \to \mathcal{A}(\ell, ?) \\ \text{states } s, t \text{ such that } \varphi(s) = \varphi(t) \text{ are ult-equiv.} \end{cases}$
- Notation: *m* the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^m \ell$
 - Let u,u' two words such that ${\rm VAL}(u)={\rm VAL}(u')~[b^m\,\ell]$. Notation: u=vw and u'=v'w' with |w|=|w'|=m

- \mathcal{A} : a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\begin{cases} \exists \varphi, \text{ pseudo-morphism } \mathcal{A} \to \mathcal{A}(\ell, ?) \\ \text{states } s, t \text{ such that } \varphi(s) = \varphi(t) \text{ are ult-equiv.} \end{cases}$
- $\hfill \hfill \hfill$
- Claim: X is purely periodic of period $b^m \ell$
 - Let u,u' two words such that $\mathrm{VAL}(u)=\mathrm{VAL}(u')~\left[b^m\,\ell\right]$.
 - Notation: u = vw and u' = v'w' with |w| = |w'| = m
 - $\operatorname{VAL}(u) = \operatorname{VAL}(u') \ [b^m] \quad \Rightarrow \quad w = w'$

- \mathcal{A} : a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\begin{cases} \exists \varphi, \text{ pseudo-morphism } \mathcal{A} \to \mathcal{A}(\ell, ?) \\ \text{states } s, t \text{ such that } \varphi(s) = \varphi(t) \text{ are ult-equiv.} \end{cases}$
- $\hfill \hfill \hfill$
- Claim: X is purely periodic of period $b^m \ell$
 - Let u,u' two words such that $\mathrm{VAL}(u)=\mathrm{VAL}(u')~\left[b^m\,\ell\right]$.
 - Notation: u=vw and $u^\prime=v^\prime w^\prime$ with $|w|=|w^\prime|=m$
 - $\operatorname{VAL}(u) = \operatorname{VAL}(u') \ [b^m] \quad \Rightarrow \quad w = w'$
 - Arithmetic... \Rightarrow VAL(v) = VAL(v') $[\ell]$

- \mathcal{A} : a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\begin{cases} \exists \varphi, \text{ pseudo-morphism } \mathcal{A} \to \mathcal{A}(\ell, ?) \\ \text{states } s, t \text{ such that } \varphi(s) = \varphi(t) \text{ are ult-equiv.} \end{cases}$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^m \ell$
 - Let u,u' two words such that $\mathrm{VAL}(u)=\mathrm{VAL}(u')~\left[b^m\,\ell\right]$.
 - Notation: u=vw and $u^\prime=v^\prime w^\prime$ with $|w|=|w^\prime|=m$
 - $\operatorname{VAL}(u) = \operatorname{VAL}(u') \ [b^m] \quad \Rightarrow \quad w = w'$
 - Arithmetic... \Rightarrow VAL(v) = VAL(v') $[\ell]$
 - In $\mathcal A\text{, }v$ and v' reach states whose images by φ are equal

- \mathcal{A} : a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- $\ell :$ the total number of states in 0-circuits.

- Hypothesis: $\begin{cases} \exists \varphi, \text{ pseudo-morphism } \mathcal{A} \to \mathcal{A}(\ell, ?) \\ \text{states } s, t \text{ such that } \varphi(s) = \varphi(t) \text{ are ult-equiv.} \end{cases}$
- Notation: m the maximal bound for ultimate-equivalence.
- Claim: X is purely periodic of period $b^m \ell$
 - Let u,u' two words such that $\mathrm{VAL}(u)=\mathrm{VAL}(u')~\left[b^m\,\ell\right]$.
 - Notation: u=vw and $u^\prime=v^\prime w^\prime$ with $|w|=|w^\prime|=m$
 - $\operatorname{VAL}(u) = \operatorname{VAL}(u') \ [b^m] \quad \Rightarrow \quad w = w'$
 - Arithmetic... \Rightarrow VAL(v) = VAL(v') $[\ell]$
 - In $\mathcal A\text{, }v$ and v' reach states whose images by φ are equal
 - In \mathcal{A} , u = vw and u' = v'w reach the same state.

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p,R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

 $\fbox{0} Start from a minimal complete DFA <math>\mathcal{A}$.

1 Count the number ℓ of states in 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA *A*.

1 Count the number ℓ of states in 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

 $\fbox{0} Start from a minimal complete DFA <math>\mathcal{A}$.

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

Start from a minimal complete DFA A.

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

 $\fbox{0} Start from a minimal complete DFA <math>\mathcal{R}.$

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

 $\fbox{0} Start from a minimal complete DFA <math>\mathcal{R}.$

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

Start from a minimal complete DFA *A*.

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

$$\left(\begin{array}{c} {\rm Then, \ the \ period \ is} \\ b^m \times \ell = 2^3 \times 5 = 40 \end{array}\right)$$

 $\fbox{0} Start from a minimal complete DFA <math>\mathcal{R}.$

1 Count the number ℓ of states in 0-circuits. $\ell = 5$

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

1 Introduction

2 Key notions

3 Purely periodic case: the automaton $\mathcal{A}_{(p,R)}$ and its minimisation

4 Purely periodic case: characterisation

5 Purely periodic case: execution on an example

6 A word on the impurely periodic case

Impurely periodic sets

Definition

A set S is impurely periodic \iff

S is eventually periodic but not purely periodic

Impurely periodic sets

Definition

A set S is impurely periodic \iff

S is eventually periodic but not purely periodic

Theorem

- A: a minimal DFA.
- S: the b-recognisable set accepted by \mathcal{R} .
- *l*: the total number of states in 0-circuits **minus one**.

S is **im**purely periodic if and only if

- \exists a pseudo-morphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$;
- every non-initial states s, s' such that $\varphi(s) = \varphi(s')$, are ultimately equivalent;
- the initial state of *A* bears a 0-loop **and has no other incoming transitions**.

Eventually periodic sets are either purely or impurely periodic, hence:

Theorem

PERIODICITY is decidable in $O(b n \log(n))$ time (where n is the state-set cardinal.)

Future work

- Extension to multi-dimensional sets.
- Extension to non-standard numeration systems.