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Integer base numeration systems

mh>1
= Alphabet used to represent numbers: {0,1,...,b—1}

»var : {0,1,...,b—1}" — N
dyp -+ - dydy — dnbn—l-‘-'—i-dlbl—}-dobo

In base b =2, VAL(010011) =0+23+0+0+2!+2°=19.

srEP : N — {0,1,...,b—1}
0 — €
n>0 > REP(m)d, where (m,d) is the

Eucl. div of n by b.
In base b =2, REP(19) =REP(9)1 =REP(4)11 =---=10011.



b-recognisable sets

Definition

X a set of integers.

X is b-recognisable if REP(X) is a regular language.
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b-recognisable sets

Definition

X a set of integers.

X is b-recognisable if REP(X) is a regular language.

Theorem (folklore)

m Each eventually-periodic set is b-recognisable.
m Some sets are 2-recognisable but not 3-recognisable.

— Final/Initial
‘\®\_) — > Labelled by 0
=P |Labelled by 1

Automaton accepting Automaton accepting Legend

0*REP(2 + 3N) 0*REP ({2°|i € N})
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b-recognisable sets (2) 3

Theorem (Cobham, 1969)

b,c: two integer bases, multiplicatively independent! .
X: a set of integers.

X is b-recognisable

0 et } = X s eventually periodic

fsuch that b # ¢7 for all 4, > 0.

Corollary

{ Eventually periodic sets } = { Sets b-recognisable for all b }
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The PERIODICITY problem 4

Statement

PERIODICITY
m Parameter: an integer base b > 1.

» Input: a deterministic finite automaton A
(hence the b-recognisable set X accepted by A).

» Question: is X eventually periodic ?
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The PERIODICITY problem (2)

First answers

Theorem (Honkala, 1986)

PERIODICITY is decidable.

Theorem (Muchnik, 1991)

A generalisation of PERIODICITY is decidable in triple-exponential
time.
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The PERIODICITY problem (3)

First efficient algorithms uses LSDF convention

Least Significant Digit First (LSDF) : the input automaton reads
its entry from right to left.

Theorem (Leroux, 2005)

With LSDF convention, a generalisation of PERIODICITY is decid-
able in polynomial time.
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The PERIODICITY problem (3)

First efficient algorithms uses LSDF convention

Least Significant Digit First (LSDF) : the input automaton reads
its entry from right to left.

Theorem (Leroux, 2005)

With LSDF convention, a generalisation of PERIODICITY is decid-
able in polynomial time.

Remark

Making an automaton reads from right to left
requires a transposition and a determinisation
= Exponential blow-up
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The PERIODICITY problem (3) 7°

Recent results

Note (Allouche Rampersad Shallit, 2009)

PERIODICITY is decidable in exponential time.

Theorem (M.-Sakarovitch, 2013)

With LSDF convention, PERIODICITY is decidable in linear time if
the input automaton is minimal.



The PERIODICITY problem (4)

Our contribution

Theorem

PERIODICITY is decidable in O(bn log(n)) time
(where n is the state-set cardinal.)

=
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Pseudo-morphism (1) — Definition & Example 9

Definition
A, M: two complete DFA
@: a function {states of A} — {states of M}

@ is a pseudo-morphism A — M if
= © maps the initial state of A to the initial state of M

ns Y inA = cp(s)i>go(s’) in M

(A pseudo-morphism is a morphism with no condition on final states.)
é)C
e

A
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Pseudo-morphism (1) — Definition & Example 9

Definition
A, M: two complete DFA
@: a function {states of A} — {states of M}

@ is a pseudo-morphism A — M if
= © maps the initial state of A to the initial state of M

ns Y inA = ©o(s) i>go(s’) in M
(A pseudo-morphism is a morphism with no condition on final states.)

Y

Y
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Pseudo-morphism (1) — Definition & Example 9

Definition
A, M: two complete DFA
@: a function {states of A} — {states of M}

@ is a pseudo-morphism A — M if
= © maps the initial state of A to the initial state of M

ns Y inA = cp(s)i>go(s’) in M

(A pseudo-morphism is a morphism with no condition on final states.)
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Pseudo-morphism (2) — Computation 102

Lemma

A, M: two complete DFA
n: the number of state of A

The pseudo-morphism ¢ : A — M, if it exists, can be computed
in O(bn) time.

éfc

A
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Pseudo-morphism (2) — Computation 102

Lemma

A, M: two complete DFA
n: the number of state of A

The pseudo-morphism ¢ : A — M, if it exists, can be computed
in O(bn) time.
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Pseudo-morphism (2) — Computation 102

Lemma

A, M: two complete DFA
n: the number of state of A

The pseudo-morphism ¢ : A — M, if it exists, can be computed
in O(bn) time.
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Pseudo-morphism (2) — Computation 102

Lemma

A, M: two complete DFA
n: the number of state of A

The pseudo-morphism ¢ : A — M, if it exists, can be computed
in O(bn) time.

° 9
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Lemma

A, M: two complete DFA
n: the number of state of A

The pseudo-morphism ¢ : A — M, if it exists, can be computed
in O(bn) time.

O O
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Lemma

A, M: two complete DFA
n: the number of state of A

The pseudo-morphism ¢ : A — M, if it exists, can be computed
in O(bn) time.
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Pseudo-morphism (2) — Computation 102

Lemma

A, M: two complete DFA
n: the number of state of A

The pseudo-morphism ¢ : A — M, if it exists, can be computed
in O(bn) time.

O
A O

O
ﬁ) M



Ultimate equivalence (1) — Definition 11%

Definition
A: a complete DFA.

s, t: states of A.
m: an integer.

s and t are m-ultimately-equivalent (w.r.t. A) if,

Y word u of length m, | s —> s’ and t —> t' implies ' =t |.

Remarks
= s and ¢ are not m-ult-equiv u
5§ —> s
<= d word u of length m, s
s At

= s and ¢ are m-ult-equiv. = s and ¢ are (m + 1)-ult-equiv.



Ultimate equivalence (2) — Example

m By and By are l-ult-equiv.

m All others pairs are not ult-equiv, as
witnessed by the family 0*.
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m By and By are l-ult-equiv.

m All others pairs are not ult-equiv, as
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Ultimate equivalence (2) — Example 122

Lemma

A: a complete DFA. s,t: states of A. m: an integer.
o sq: state such that s 4, Sq -

Y digit d,

tqy: state such that t 4, tq -

s and t are m-ult-equiv
< VYV digitd, sq andty are (m—1)-ult-equiv.

m By and By are l-ult-equiv.

m All others pairs are not ult-equiv, as
witnessed by the family 0*.
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A: a complete DFA. s,t: states of A. m: an integer.
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< VYV digitd, sq andty are (m—1)-ult-equiv.
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O

m All others pairs are not ult-equiv, as
witnessed by the family 0*.



Ultimate equivalence (2) — Example 122

Lemma

A: a complete DFA. s,t: states of A. m: an integer.
o sq: state such that s 4, Sq -

Y digit d,

tqy: state such that t 4, tq -

s and t are m-ult-equiv
< VYV digitd, sq andty are (m—1)-ult-equiv.

' @ m By and By are l-ult-equiv.
@ m By and Bj are 2-ult-equiv.
@ @ m B3 and Bj are 2-ult-equiv.

o O

= Ay and As are 3-ult-equiv.

All others pairs are not ult-equiv, as
witnessed by the family 0*.
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Ultimate equivalence (3) — Computation

A: a DFA.
n: the number of states in A.
b: the size of the alphabet.

Using the automaton product A X A, it is known that:

Lemma (folklore)

Ultimate-equivalence w.r.t. A can be computed in O(bn?) time.

There exists a better algorithm:

Theorem (Béal-Crochemore, 2007)

Ultimate-equivalence w.r.t. A can be computed in O(bn log(n))
time.
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Purely periodic set

Definition

A purely periodic set is a set of the form R + pN with
p: an integer

R: a set of remainders modulo p

Convention
In the following, p is assumed to be the smallest period of R+ pN.



The naive automaton A, r) accepting R + pN

b: the base.
p: the period.
R: remainder set mod p.

1y,

15§

M\



The naive automaton A(, r) accepting I + pN 15¢

b: the base.
p: the period. (0) O
R: remainder set mod p. ‘
Example 1: p=3 , R={2}
Definition
Ap,r):

= State set: Z/pZ
m /nitial state: 0

m Transitions:
V state s, V digit d

si>sb+d

m Final-state set: R



The naive automaton A, r) accepting R + pN

b: the base.
p: the period.
R: remainder set mod p.

Definition

Ap,R)
= State set: Z/pZ

= [nitial state: 0

= Transitions:
V state s, V digit d
s LAY sb+d

m Final-state set: R

(0) (D=
——>

Example 1: p=3 , R={2}

| ()
(OF O _0O—
O

Example 2: p=4, R=1{2,3}



The naive automaton A(, r) accepting I + pN 15¢

b: the base.
p: the period.
R: remainder set mod p.

Definition

Ap,R)
= State set: Z/pZ

= [nitial state: 0

= Transitions:
V state s, V digit d
s LAY sb+d

m Final-state set: R

(0) (D=
——>

Example 1: p=3 , R={2}

| ()
(OF O _0O—
O

Example 2: p=4, R=1{2,3}

Fgman 8

Example 3: p=5, R={1}



Property of A, g in special cases 165

b: the base.
p: the period.
R: remainder set mod p.

Lemma

p and b are coprime = A, ) is a group automaton.

(Vdigit d, “reading d" is permutation of the states of A, r))

Lemma

p divides a power of b = all states of A, ) are ult-equiv.



Ap.r) as the product A7) X Aa,r)

Notation

b: the base
p: the period

k,d,j: integers s. t.
m p=kd
m k coprime with b
= d divides bV
m k coprime with d

Ex.: with p =12,
m12=4x3
= 4 divides 22
= 3 is coprime with 2



Ap.r) as the product A7) X Aa,r) 17%

Notation ﬂ(&?) 8
g.o

b: the base
p: the period ﬂ(4,?)

k,d,j: integers s. t.
m p=kd (3)
m k coprime with b
= d divides bV
= k coprime with d 8 (5)

Ex.: with p =12, (2)
m12=4x3
= 4 divides 22
= 3 is coprime with 2

An2,45,7})
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The “vertical” pseudo-morphism A, ry — A7) 182

S

b: the base ﬂ(?’,?) 8
p = kd: the period O=== Q) -
k is coprime with b
d divides b/ A7)
Lemma (3)
3 a pseudo-morphism

Vi Apr) = Awy) (D
Lemma .
s,t: states e

If(s)=1(t), then

s and t are ult-equiv.

A12,{5,7})



Transition labelled by 0 in Ap,R)

b: the base
p = kd: the period
k is coprime with b
d divides b/

Lemma

= In Ag, 7y, all states

belong to a O-circuit;

S

(12,{5,7})



Transition labelled by 0 in Ap,R)

b: the base
p = kd: the period
k is coprime with b
d divides b’

Lemma

= In Ag, 7y, all states
belong to a O-circuit;

= In Ag,, only the
initial state is part of
a O-circuit.

S

(12,{5,7})



Transition labelled by 0 in Ap,R)

b: the base
p = kd: the period
k is coprime with b
d divides b’

Lemma
= In Ag, 7y, all states
belong to a O-circuit;

= In Ag,, only the
initial state is part of
a O-circuit.

= In Ay, Ry, k states

are part of a O-circuit:

one by column.

A3,2)

O—0
ﬂ(4 ? ‘8

Cé“\eee

/@~

.

A12,{5,7})
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My, r), the minimisation of A(, r) 202

Wy

b: the base ﬂ(?”?) 8
p = kd: the period O=== Q) -

k is coprime with b

ol e 1 A7)

Lemma (3)

States in different

columns are never

merged by minimisation. 5 Q)
Ex., Ab absurdo: 0 ~ 4

= 0~4~8 ©

= 9~1~5

= 6~10~2 (0)

=—> 4 is a period < 12 '

= Contradiction ﬂ(12,{5,7})
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Wy

b: the base ﬂ(?”?) 8
p = kd: the period O=== Q) -

k is coprime with b

ol e 1 A7)

Lemma (3) (3D 8
States in different

columns are never o

merged by minimisation. .

Ex., Ab absurdo: 0 ~ 4

= 0~4~8 ©

= 9~1~5

= 6~10~2 (0)

=—> 4 is a period < 12 '

= Contradiction ﬂ(12,{5,7})
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Wy

b: the base ﬂ(?”?) 8
p = kd: the period O=== Q) -

k is coprime with b Aa o ‘

o) il 5 (4,7)

Lemma (3)

States in different

columns are never o

merged by minimisation. .

Ex., Ab absurdo: 0 ~ 4

— 0~4~38
— 9~1~5
= 6~10~2 0
=—> 4 is a period < 12 '
— Contradiction

M2 (5,71
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Extracting information from M, r). 21%

§
LS

b: the base ﬂ(?)’?) 8
p = kd: the period (9) (O

k is coprime with b Ais o ‘

d divides b’ (4,7)

Proposition () @

Mp,r): minim. of A, gy
= k states of M, r) (D) O e
are part of a O-circuit .

—®
M2 (5,71
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§
LS

b: the base ﬂ(?’,?) 8

p=kd: the period \J

k is coprime with b

d divides b A(a2)

Proposition (3) (1) (1)

Mp,r): minim. of A, gy

= k states of M, r) (D) (9) (5)
are part of a O-circuit .

= 3 a pseudo-morphism (2)

0: M(p’R) — ﬂ(k,?)

OO0
M2 (5,71
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Extracting information from M, r). 21%

§
LS

b: the base ﬂ(?’,?) 8
k is coprime with b
i Aa)

d divides b7

Proposition (3) (1) g

Mp,r): minim. of A, gy

= k states of M, r) (D) (9) (5)
are part of a O-circuit .

= 3 a pseudo-morphism (2)

0: M(p’R) — ﬂ(k,?)

= If O(s)=0(t), then s
and t are ult-equiv.

OO0
M2 (5,71
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Characterisation theorem

Theorem

A: a minimal DFA.
X : the b-recognisable set accepted by A.
£: the total number of states in O-circuits.

X is purely periodic if and only if
= 3 a pseudo-morphism ¢ : A — Ay 2);
m states s,t such that p(s) = p(t), are ultimately equivalent;
m the initial state of A bears a 0-loop.
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249§
ZnS

A: a minimal DFA.
X: the b-recognisable set accepted by A.
{: the total number of states in O-circuits.

Sketch
= Hypothesis: 3p, R, X = R+ pN
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A: a minimal DFA.
X: the b-recognisable set accepted by A.
{: the total number of states in O-circuits.

Sketch
= Hypothesis: 3p, R, X = R+ pN

= Ais minimal = A is the minimisation of A, r)
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A: a minimal DFA.
X: the b-recognisable set accepted by A.
{: the total number of states in O-circuits.

Sketch
= Hypothesis: 3p, R, X = R+ pN

= Ais minimal = A is the minimisation of A, r)
= A= M(pyR)

» Notation: k, d, j, 0:Myp — Ak,?)
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A: a minimal DFA.
X: the b-recognisable set accepted by A.
{: the total number of states in O-circuits.

Sketch
m Hypothesis: Ip, R, X = R+ pN

= Ais minimal = A is the minimisation of A, r)
= A= M(pﬁ)

» Notation: k, d, j, 0:Myp — Ak,?)

It holds k =/

Let o =6

states s, ¢ such that 6(s) = 0(t)
are ultimately-equivalent.

= Prop. of M,y =



Backward direction 2245
S

A: a minimal DFA.
X: the b-recognisable set accepted by A.
£: the total number of states in O-circuits.

Sketch

Jip, pseudo-morphism A — A(L,7)

m Hypothesis:
P {states s,t such that ¢(s) = ¢(t) are ult-equiv.
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A: a minimal DFA.
X: the b-recognisable set accepted by A.
£: the total number of states in O-circuits.

Sketch

Jip, pseudo-morphism A — A(L,7)

m Hypothesis:
P {states s,t such that ¢(s) = ¢(t) are ult-equiv.

= Notation: m the maximal bound for ultimate-equivalence.
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Backward direction 2245
S
A: a minimal DFA.
X: the b-recognisable set accepted by A.
£: the total number of states in O-circuits.

Sketch
Jip, pseudo-morphism A — A(L,7)

m Hypothesis:
P {states s,t such that ¢(s) = ¢(t) are ult-equiv.

= Notation: m the maximal bound for ultimate-equivalence.

m Claim: X is purely periodic of period b™ ¢
= Let u,u two words such that VAL(u) = vAL(u) [b™ /] .
= Notation: u =vw and v’ = v'w’ with |w| = |[u'| =m
* VAL(u) = vaL(d') [b™] = w=1u'

Arithmetic... = VAL(v) = vAL(v') [{]

* In A, v and v’ reach states whose images by ¢ are equal
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Jip, pseudo-morphism A — A(L,7)

m Hypothesis:
P {states s,t such that ¢(s) = ¢(t) are ult-equiv.

= Notation: m the maximal bound for ultimate-equivalence.

m Claim: X is purely periodic of period b™ ¢
= Let u,u two words such that VAL(u) = vAL(u) [b™ /] .
= Notation: u =vw and v’ = v'w’ with |w| = |[u'| =m
* VAL(u) = vaL(d') [b™] = w=1u'

Arithmetic... = VAL(v) = vAL(v') [{]

* In A, v and v’ reach states whose images by ¢ are equal

* In A, u=vw and u =v'w reach the same state.
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0-ult.-equiv.

—equiv.
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Then, the period is
b x 0 =23 x5 =40
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BUIld ﬂ(zj?).

Compute the pseudo-
morphism ¢ : A — Ay 7).

B Check that states s,t
such that ¢(s) = @(t) are
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Definition

S is eventually periodic

A .. / ..
set S is impurely periodic <~— b (6% sty eRadie
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Definition

S is eventually periodic

A is i / jodi ..
set S is impurely periodic <~— T

Theorem

A: a minimal DFA.
S': the b-recognisable set accepted by A.
{: the total number of states in O-circuits minus one.

S is impurely periodic if and only if
= 3 a pseudo-morphism ¢ : A — Ay 2);
= every non-initial states s, s’ such that p(s) = p(s'), are
ultimately equivalent;

m the initial state of A bears a 0-loop and has no other
incoming transitions.
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Eventually periodic sets are either purely or impurely periodic,
hence:

Theorem

PERIODICITY is decidable in O(bn log(n)) time
(where n is the state-set cardinal.)

Future work

m Extension to multi-dimensional sets.
m Extension to non-standard numeration systems.
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