An efficient algorithm to decide periodicity of *b*-recognisable sets using MSDF convention

Victor Marsault

joint work with Bernard Boigelot , Isabelle Mainz and Michel Rigo

Montefiore Institute and Department of Mathematics, Université de Liège, Belgium

Bruxelles 2017-02-24

1 Introduction

2 Key notions

3 Description of the algorithm

Integer base numeration systems

■ *b* > 1

• Alphabet used to represent numbers: $\llbracket b \rrbracket = \{0, 1, \dots, b-1\}$

• VAL :
$$\llbracket b \rrbracket^* \longrightarrow \mathbb{N}$$

 $a_n \cdots a_1 a_0 \longmapsto a^n b^n + \cdots + a_1 b^1 + a_0 b^0 = \sum_i^n a_i b^i$
In base $b = 2$, VAL(010011) = $0 + 2^3 + 0 + 0 + 2^1 + 2^0 = 19$.
• REP : $\mathbb{N} \longrightarrow \llbracket b \rrbracket^*$
 $0 \longmapsto \varepsilon$
 $n > 0 \longmapsto \operatorname{REP}(m) a$, where (m, a) is the Eucl. div of n by b .

In base b = 2, $\operatorname{REP}(19) = \operatorname{REP}(9) 1 = \operatorname{REP}(4) 11 = \cdots = 10011$.

b-recognisable sets

Definition

X: a set of integers.

X is b-recognisable if REP(X) is a regular language.

b-recognisable sets

Definition

X: a set of integers.

X is b-recognisable if REP(X) is a regular language.

Theorem (folklore)

- Each eventually-periodic set is b-recognisable.
- Some sets are 2-recognisable but not 3-recognisable.

b-recognisable sets (2)

Theorem (Cobham, 1969)

b, c: two integer bases, multiplicatively independent^{\dagger}. X: a set of integers.

 $\left. \begin{array}{l} X \text{ is } b\text{-recognisable} \\ X \text{ is } c\text{-recognisable} \end{array} \right\} \implies X \text{ is eventually periodic}$

[†]such that $b^i \neq c^j$ for all i, j > 0.

Corollary $\left\{ \text{Eventually periodic sets} \right\} = \left\{ \text{Sets } b \text{-recognisable for all } b \right\}$

Periodicity problem

4

Statement and first answer

$P{\rm ERIODICITY} \ problem$

- **Parameter**: an integer base b > 1.
- Input: a deterministic finite automaton A (hence the b-recognisable set X accepted by A).
- **Question**: is X eventually periodic ?

Theorem (Honkala, 1986)

PERIODICITY *is decidable*.

Best decision algorithms

Least Significant Digit First (LSDF) convention: the input automaton reads its entry "from right to left".

Theorem (Leroux, 2005)

With LSDF convention, PERIODICITY *is decidable in polynomial time.*

Theorem (M.-Sakarovitch, 2013)

With LSDF convention, PERIODICITY is decidable in linear time if the input automaton is minimal.

Periodicity problem

Our contribution

Theorem (Boigelot-Mainz-M.-Rigo, submitted)

PERIODICITY is decidable in $O(b \ n \log(n))$ time (where n is the state-set cardinal.)

1 Introduction

2 Key notions

3 Description of the algorithm

Definition

\mathcal{A}, \mathcal{M} : two complete DFA

 φ : a function {states of \mathcal{A} } \rightarrow {states of \mathcal{M} }

$$\varphi$$
 is a **pseudo-morphism** $\mathcal{A} \to \mathcal{M}$ if
• φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
• $s \xrightarrow{a} s'$ in $\mathcal{A} \iff \varphi(s) \xrightarrow{a} \varphi(s')$ in \mathcal{M}

Definition

\mathcal{A}, \mathcal{M} : two complete DFA

 φ : a function {states of \mathcal{A} } \rightarrow {states of \mathcal{M} }

$$s \xrightarrow{a} s' \text{ in } \mathcal{A} \iff \varphi(s) \xrightarrow{a} \varphi(s') \text{ in } \mathcal{M}$$

of \mathcal{M}

Definition

\mathcal{A}, \mathcal{M} : two complete DFA

 φ : a function {states of \mathcal{A} } \rightarrow {states of \mathcal{M} }

$$\varphi$$
 is a **pseudo-morphism** $\mathcal{A} \to \mathcal{M}$ if
• φ maps the initial state of \mathcal{A} to the initial state
• $s \xrightarrow{a} s'$ in $\mathcal{A} \iff \varphi(s) \xrightarrow{a} \varphi(s')$ in \mathcal{M}

 \mathcal{M}

Definition

\mathcal{A}, \mathcal{M} : two complete DFA

 φ : a function {states of \mathcal{A} } \rightarrow {states of \mathcal{M} }

$$\varphi$$
 is a **pseudo-morphism** $\mathcal{A} \to \mathcal{M}$ if
• φ maps the initial state of \mathcal{A} to the initial state of
• $s \xrightarrow{a} s'$ in $\mathcal{A} \iff \varphi(s) \xrightarrow{a} \varphi(s')$ in \mathcal{M}

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Lemma

 \mathcal{A} : a n-state complete DFA. \mathcal{M} : a complete DFA.

Ultimate Equivalence

Definition

- A: a complete DFA.
 s, s': states of A.
 ...
- m: an integer.
- s and s' are m-ultimately-equivalent (w.r.t. \mathcal{A}), if \forall word u of length m, [s \xrightarrow{u} t and s' \xrightarrow{u} t' implies t = t'].

■ *B*₁ and *B*₂ are 1-ult.-equiv.

 All others pairs are not ult.-equiv., as witnessed by the family 0^{*}.

Ultimate Equivalence

Definition

A: a complete DFA.
s, s': states of A.
m: an integer.

s and s' are m-ultimately-equivalent (w.r.t. \mathcal{A}), if \forall word u of length m, [s \xrightarrow{u} t and s' \xrightarrow{u} t' implies t = t'].

- *B*₁ and *B*₂ are 1-ult.-equiv.
- B₂ and B₃ are 2-ult.-equiv.
- *B*₃ and *B*₁ are 2-ult.-equiv.
- All others pairs are not ult.-equiv., as witnessed by the family 0^{*}.

Ultimate Equivalence

Definition

A: a complete DFA.
s, s': states of A.
m: an integer.

s and s' are m-ultimately-equivalent (w.r.t. \mathcal{A}), if \forall word u of length m, [s \xrightarrow{u} t and s' \xrightarrow{u} t' implies t = t'].

- *B*₁ and *B*₂ are 1-ult.-equiv.
- *B*₂ and *B*₃ are 2-ult.-equiv.
- *B*₃ and *B*₁ are 2-ult.-equiv.
- A₁ and A₂ are 3-ult.-equiv.
- All others pairs are not ult.-equiv., as witnessed by the family 0^{*}.

Computing the ultimate-Equivalence relation

A: a DFA. *n*: the number of states in *A*. *b*: the size of the alphabet.

By using the automaton product $\mathcal{A} \times \mathcal{A}$, it is known that:

Lemma (folklore)

Ultimate-equivalence relation of \mathcal{A} can be computed in $O(bn^2)$ time.

There exists a better algorithm:

Theorem (Béal-Crochemore, 2007)

Ultimate-equivalence relation of \mathcal{A} can be computed in $O(b \ n \ log(n))$ time.

 $p \in \mathbb{N}$: the period.

R: the remainder set.

 $p \in \mathbb{N}$: the period. *R*: the remainder set.

Definition

 $\mathcal{A}_{(p,R)}$:

- *Alph.:* {0, . . . , *b*−1}
- State set: ℤ/pℤ
- Initial state: 0
- Transitions:
 ∀ state s, ∀ digit a
 s → sb + a
- Final-state set: R

0 = 1 = 2Example 1: p = 3, $R = \{2\}$

 $p \in \mathbb{N}$: the period. *R*: the remainder set.

Definition

 $\mathcal{A}_{(p,R)}$:

- *Alph.*: {0, . . . , *b*−1}
- State set: ℤ/pℤ
- Initial state: 0
- Transitions:
 ∀ state s, ∀ digit a
 s → sb + a
- Final-state set: R

Example 1: p = 3, $R = \{2\}$

 $p \in \mathbb{N}$: the period. *R*: the remainder set.

Definition

 $\mathcal{A}_{(p,R)}$:

- *Alph.:* {0, . . . , *b*−1}
- State set: ℤ/pℤ
- Initial state: 0
- Transitions:
 ∀ state s, ∀ digit a
 s → sb + a
- Final-state set: R

Example 1: p = 3, $R = \{2\}$

1 Introduction

2 Key notions

3 Description of the algorithm

Theorem (Boigelot-Mainz-M.-Rigo, submitted)

- Я: a minimal DFA.
- X: the b-recognisable set accepted by \mathcal{R} .
- ℓ : the total number of states in 0-circuits.
 - X is purely periodic if and only if
 - \exists a pseudo-morphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)};$
 - states s, s' such that $\varphi(s) = \varphi(s')$, are ultimately equivalent;
 - the initial state of $\mathcal R$ bears a 0-loop.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

4 Check that φ -equivalent states are ultimatelyequivalent.

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

18

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

 $\left(\begin{array}{c} \text{Then, the period is} \\ b^m \times \ell = 2^3 \times 5 = 40 \end{array}\right)$

O Start from a minimal complete DFA \mathcal{A} .

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell,?)}$.

3 Compute the pseudomorphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)}$.

Impurely periodic sets

19

Definition

- S: an integer set
 - S is impurely periodic \iff

S is eventually periodic but not purely periodic

Theorem (Boigelot-Mainz-M.-Rigo, submitted)

- Я: a minimal DFA.
- S: the b-recognisable set accepted by \mathcal{R} .
- *l*: the total number of states in 0-circuits **minus one**.
- S is **im**purely periodic if and only if
 - \exists a pseudo-morphism $\varphi : \mathcal{A} \to \mathcal{A}_{(\ell,?)};$
 - every **non-initial** states s, s' such that $\varphi(s) = \varphi(s')$, are

ultimately equivalent;

• the initial state of *A* bears a 0-loop **and has no other incoming transitions**.

Since an eventually periodic set is either purely or impurely periodic:

Theorem (Boigelot-Mainz-M.-Rigo, submitted)

PERIODICITY is decidable in $O(b \ n \log(n))$ time (where n is the state-set cardinal.)

Future work

- Extension to multi-dimensional sets.
- Extension to non-standard numeration systems.

 $\mathcal{A}_{(12,\{5,7\})}$ as the product $\mathcal{A}_{(4,?)}\times\mathcal{A}_{(3,?)}$

