
An efficient algorithm to decide periodicity of
b-recognisable sets using MSDF convention

Victor Marsault

joint work with Bernard Boigelot , Isabelle Mainz
and Michel Rigo

Montefiore Institute and Department of Mathematics,

Université de Liège, Belgium

Bruxelles
2017 02 24

Plan 1

1 Introduction

2 Key notions

3 Description of the algorithm

Integer base numeration systems 1

b > 1
Alphabet used to represent numbers: ~b� =

{

0, 1, . . . , b − 1
}

val : ~b�∗ −→ N

an · · · a1a0 7−→ anbn
+ · · · + a1b1

+ a0b0
=

n
∑

i

aib
i

In base b = 2, val(010011) = 0 + 23
+ 0 + 0 + 21

+ 20
= 19 .

rep : N −→ ~b�∗

0 7−→ ε

n > 0 7−→ rep(m) a , where (m, a) is the
Eucl. div of n by b.

In base b = 2, rep(19) = rep(9) 1 = rep(4) 11 = · · · = 10011 .

b-recognisable sets 2

Definition

X: a set of integers.
X is b-recognisable if rep(X) is a regular language.

b-recognisable sets 2

Definition

X: a set of integers.
X is b-recognisable if rep(X) is a regular language.

Theorem (folklore)

Each eventually-periodic set is b-recognisable.
Some sets are 2-recognisable but not 3-recognisable.

0 1 2

Automaton accepting
0∗rep(2 + 3N)

Automaton accepting
0∗rep

(

{2i |i ∈ N}
)

Final/Initial

Labelled by 0

Labelled by 1

Legend

b-recognisable sets (2) 3

Theorem (Cobham, 1969)

b, c: two integer bases, multiplicatively independent†.
X : a set of integers.

X is b-recognisable
X is c-recognisable

}

=⇒ X is eventually periodic

†such that bi , c j for all i, j > 0.

Corollary
{

Eventually periodic sets
}

=
{

Sets b-recognisable for all b
}

Periodicity problem 4

Statement and first answer

Periodicity problem

Parameter: an integer base b > 1.
Input: a deterministic finite automaton A

(hence the b-recognisable set X accepted by A).
Question: is X eventually periodic ?

Theorem (Honkala, 1986)

Periodicity is decidable.

Periodicity problem 5

Best decision algorithms

Least Significant Digit First (LSDF) convention: the input automa-
ton reads its entry “from right to left”.

Theorem (Leroux, 2005)

With LSDF convention, Periodicity is decidable in polynomial
time.

Theorem (M.-Sakarovitch, 2013)

With LSDF convention, Periodicity is decidable in linear time if
the input automaton is minimal.

Periodicity problem 6

Our contribution

Theorem (Boigelot–Mainz–M.–Rigo, submitted)

Periodicity is decidable in 0(b n log(n)) time
(where n is the state-set cardinal.)

Plan 7

1 Introduction

2 Key notions

3 Description of the algorithm

Pseudo-morphism 7

Definition

A,M: two complete DFA
ϕ: a function {states of A} → {states of M}

ϕ is a pseudo-morphism A →M if
ϕ maps the initial state of A to the initial state of M

s
a
−−−→ s ′ in A ⇐⇒ ϕ(s)

a
−−−→ ϕ(s ′) in M

(A pseudo-morphism is a morphism with no condition on final states.)

A M

Pseudo-morphism 7

Definition

A,M: two complete DFA
ϕ: a function {states of A} → {states of M}

ϕ is a pseudo-morphism A →M if
ϕ maps the initial state of A to the initial state of M

s
a
−−−→ s ′ in A ⇐⇒ ϕ(s)

a
−−−→ ϕ(s ′) in M

(A pseudo-morphism is a morphism with no condition on final states.)

A M

Pseudo-morphism 7

Definition

A,M: two complete DFA
ϕ: a function {states of A} → {states of M}

ϕ is a pseudo-morphism A →M if
ϕ maps the initial state of A to the initial state of M

s
a
−−−→ s ′ in A ⇐⇒ ϕ(s)

a
−−−→ ϕ(s ′) in M

(A pseudo-morphism is a morphism with no condition on final states.)

A M

Pseudo-morphism 7

Definition

A,M: two complete DFA
ϕ: a function {states of A} → {states of M}

ϕ is a pseudo-morphism A →M if
ϕ maps the initial state of A to the initial state of M

s
a
−−−→ s ′ in A ⇐⇒ ϕ(s)

a
−−−→ ϕ(s ′) in M

(A pseudo-morphism is a morphism with no condition on final states.)

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Computing a pseudo-morphism 8

Lemma

A: a n-state complete DFA.
M: a complete DFA.

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Ultimate Equivalence 9

Definition

A: a complete DFA.
s, s ′: states of A.
m: an integer.

s and s ′ are m-ultimately-equivalent (w.r.t. A),

if ∀word u of length m, [s
u
−−−→ t and s ′

u
−−−→ t ′ implies t = t ′].

C

B1

B2

B1 and B2 are 1-ult.-equiv.

All others pairs are not ult.-equiv.,
as witnessed by the family 0∗.

Ultimate Equivalence 9

Definition

A: a complete DFA.
s, s ′: states of A.
m: an integer.

s and s ′ are m-ultimately-equivalent (w.r.t. A),

if ∀word u of length m, [s
u
−−−→ t and s ′

u
−−−→ t ′ implies t = t ′].

C

B1

B2

B3

B1 and B2 are 1-ult.-equiv.

B2 and B3 are 2-ult.-equiv.

B3 and B1 are 2-ult.-equiv.

All others pairs are not ult.-equiv.,
as witnessed by the family 0∗.

Ultimate Equivalence 9

Definition

A: a complete DFA.
s, s ′: states of A.
m: an integer.

s and s ′ are m-ultimately-equivalent (w.r.t. A),

if ∀word u of length m, [s
u
−−−→ t and s ′

u
−−−→ t ′ implies t = t ′].

C

B1

B2

B3

A1

A2

B1 and B2 are 1-ult.-equiv.

B2 and B3 are 2-ult.-equiv.

B3 and B1 are 2-ult.-equiv.

A1 and A2 are 3-ult.-equiv.

All others pairs are not ult.-equiv.,
as witnessed by the family 0∗.

Computing the ultimate-Equivalence relation 10

A: a DFA.
n: the number of states in A.
b: the size of the alphabet.

By using the automaton product A ×A, it is known that:

Lemma (folklore)

Ultimate-equivalence relation ofA can be computed in O(bn2) time.

There exists a better algorithm:

Theorem (Béal-Crochemore, 2007)

Ultimate-equivalence relation ofA can be computed in O(b n log(n))

time.

The naive automaton A(p,R) accepting R + pN 11

p ∈ N: the period.
R: the remainder set.

The naive automaton A(p,R) accepting R + pN 11

p ∈ N: the period.
R: the remainder set.

Definition

A(p,R):

Alph.: {0, . . . , b−1}

State set: Z/pZ

Initial state: 0

Transitions:
∀ state s, ∀ digit a

s
a
−−−→ sb + a

Final-state set: R

0 1 2

Example 1: p = 3 , R = {2}

The naive automaton A(p,R) accepting R + pN 11

p ∈ N: the period.
R: the remainder set.

Definition

A(p,R):

Alph.: {0, . . . , b−1}

State set: Z/pZ

Initial state: 0

Transitions:
∀ state s, ∀ digit a

s
a
−−−→ sb + a

Final-state set: R

0 1 2

Example 1: p = 3 , R = {2}

0 2 1 3

Example 2: p = 4 , R = {2, 3}

The naive automaton A(p,R) accepting R + pN 11

p ∈ N: the period.
R: the remainder set.

Definition

A(p,R):

Alph.: {0, . . . , b−1}

State set: Z/pZ

Initial state: 0

Transitions:
∀ state s, ∀ digit a

s
a
−−−→ sb + a

Final-state set: R

0 1 2

Example 1: p = 3 , R = {2}

0 2 1 3

Example 2: p = 4 , R = {2, 3}

0 1 3 2 4

Example 3: p = 5 , R = {1}

Plan 12

1 Introduction

2 Key notions

3 Description of the algorithm

Characterisation theorem 12

Theorem (Boigelot–Mainz–M.–Rigo, submitted)

A: a minimal DFA.
X: the b-recognisable set accepted by A.
ℓ: the total number of states in 0-circuits.

X is purely periodic if and only if

∃ a pseudo-morphism ϕ : A → A(ℓ,?);

states s, s ′ such that ϕ(s) = ϕ(s ′), are ultimately equivalent;

the initial state of A bears a 0-loop.

Execution on an example 13

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 14

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 15

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 16

0

1

3

2

4

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 17

0

1

3

2

4

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 17

0

1

3

2

4

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 18

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 18

0-ult.-equiv.

0-ult.-equiv.

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 18

0-ult.-equiv.

0-ult.-equiv.

1-ult.-equiv.

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 18

0-ult.-equiv.

0-ult.-equiv.

1-ult.-equiv.

2-ult.-equiv.

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 18

0-ult.-equiv.

0-ult.-equiv.

1-ult.-equiv.

2-ult.-equiv.

3-ult.-equiv.

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Execution on an example 18

0-ult.-equiv.

0-ult.-equiv.

1-ult.-equiv.

2-ult.-equiv.

3-ult.-equiv.

(

Then, the period is
bm × ℓ = 23 × 5 = 40

)

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in the 0-circuits.

2 Build A(ℓ,?).

3 Compute the pseudo-
morphism ϕ : A → A(ℓ,?).

4 Check that ϕ-equivalent
states are ultimately-
equivalent.

Impurely periodic sets 19

Definition

S: an integer set

S is impurely periodic ⇐⇒
S is eventually periodic
but not purely periodic

Theorem (Boigelot–Mainz–M.–Rigo, submitted)

A: a minimal DFA.
S: the b-recognisable set accepted by A.
ℓ: the total number of states in 0-circuits minus one.

S is impurely periodic if and only if
∃ a pseudo-morphism ϕ : A → A(ℓ,?);
every non-initial states s, s ′ such that ϕ(s) = ϕ(s ′), are

ultimately equivalent;
the initial state of A bears a 0-loop and has no other

incoming transitions.

Conclusion 20

Since an eventually periodic set is either purely or impurely
periodic:

Theorem (Boigelot–Mainz–M.–Rigo, submitted)

Periodicity is decidable in 0(b n log(n)) time
(where n is the state-set cardinal.)

Future work

Extension to multi-dimensional sets.
Extension to non-standard numeration systems.

A(12,{5,7}) as the product A(4,?) × A(3,?) 21

0 1 2

0

2

1

3

0 4 8

6 10 2

9 1 5

3 7 11

	Introduction
	Key notions
	Description of the algorithm

