An efficient algorithm to decide periodicity of b-recognisable sets using MSDF convention

Victor Marsault joint work with Bernard Boigelot, Isabelle Mainz and Michel Rigo

Montefiore Institute and Department of Mathematics, Université de Liège, Belgium

> Bruxelles
> $2017-02-24$

Plan

1 Introduction

2 Key notions

3 Description of the algorithm

Integer base numeration systems

- $b>1$
- Alphabet used to represent numbers: $\llbracket b \rrbracket=\{0,1, \ldots, b-1\}$
- VAL : $\llbracket b \rrbracket^{*} \longrightarrow \mathbb{N}$

$$
a_{n} \cdots a_{1} a_{0} \quad \longmapsto \quad a^{n} b^{n}+\cdots+a_{1} b^{1}+a_{0} b^{0}=\sum_{i}^{n} a_{i} b^{i}
$$

In base $b=2, \operatorname{VAL}(010011)=0+2^{3}+0+0+2^{1}+2^{0}=19$.

- REP : $\mathbb{N} \longrightarrow \llbracket b \rrbracket^{*}$
$0 \longmapsto \varepsilon$
$n>0 \longmapsto \operatorname{REP}(m) a, \quad$ where (m, a) is the Eucl. div of n by b.

In base $b=2, \operatorname{REP}(19)=\operatorname{REP}(9) 1=\operatorname{REP}(4) 11=\cdots=10011$.

b-recognisable sets

Definition

X : a set of integers. X is b-recognisable if $\operatorname{REP}(X)$ is a regular language.

b-recognisable sets

Definition

X : a set of integers.
X is b-recognisable if $\operatorname{REP}(X)$ is a regular language.

Theorem (folklore)

- Each eventually-periodic set is b-recognisable.
- Some sets are 2-recognisable but not 3-recognisable.

Automaton accepting $0 * \operatorname{REP}(2+3 \mathbb{N})$

Automaton accepting $0^{*} \operatorname{REP}\left(\left\{2^{i} \mid i \in \mathbb{N}\right\}\right)$
\longrightarrow Final/Initial
\longrightarrow Labelled by 0
\longrightarrow Labelled by 1
Legend

b-recognisable sets (2)

Theorem (Cobham, 1969)

b, c : two integer bases, multiplicatively independent ${ }^{\dagger}$.
X : a set of integers.
$\left.\begin{array}{l}X \text { is b-recognisable } \\ X \text { is c-recognisable }\end{array}\right\} \Longrightarrow X$ is eventually periodic
${ }^{\dagger}$ such that $b^{i} \neq c^{j}$ for all $i, j>0$.

Corollary

$\{$ Eventually periodic sets $\}=\{$ Sets b-recognisable for all $b\}$

Periodicity problem

Statement and first answer

PERIODICITY problem

- Parameter: an integer base $b>1$.
- Input: a deterministic finite automaton \mathcal{A}
(hence the b-recognisable set X accepted by \mathcal{A}).
- Question: is X eventually periodic ?

Theorem (Honkala, 1986)
Periodicity is decidable.

Periodicity problem

Best decision algorithms

Least Significant Digit First (LSDF) convention: the input automaton reads its entry "from right to left".

Theorem (Leroux, 2005)
With LSDF convention, Periodicity is decidable in polynomial time.

Theorem (M.-Sakarovitch, 2013)

With LSDF convention, Periodicity is decidable in linear time if the input automaton is minimal.

Periodicity problem

Our contribution

Theorem (Boigelot-Mainz-M.-Rigo, submitted)
Periodicity is decidable in $0(b n \log (n))$ time (where n is the state-set cardinal.)

1 Introduction

2 Key notions

3 Description of the algorithm

Pseudo-morphism

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{a} s^{\prime}$ in $\mathcal{A} \Longleftrightarrow \varphi(s) \xrightarrow{a} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphism

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{a} s^{\prime}$ in $\mathcal{A} \Longleftrightarrow \varphi(s) \xrightarrow{a} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphism

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{a} s^{\prime}$ in $\mathcal{A} \Longleftrightarrow \varphi(s) \xrightarrow{a} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphism

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{a} s^{\prime}$ in $\mathcal{A} \Longleftrightarrow \varphi(s) \xrightarrow{a} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Computing a pseudo-morphism

Lemma

\mathcal{A} : a n-state complete DFA.
M: a complete DFA.
Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Ultimate Equivalence

Definition

\mathcal{A} : a complete DFA.
s, s^{\prime} : states of \mathcal{A}.
m : an integer.
s and s^{\prime} are m-ultimately-equivalent (w.r.t. \mathcal{A}), if \forall word u of length $m,\left[s \xrightarrow{u} t\right.$ and $s^{\prime} \xrightarrow{u} t^{\prime}$ implies $t=t^{\prime}$].

- B_{1} and B_{2} are 1-ult.-equiv.

- All others pairs are not ult.-equiv., as witnessed by the family 0^{*}.

Ultimate Equivalence

Definition

\mathcal{A} : a complete DFA.
s, s^{\prime} : states of \mathcal{A}.
m : an integer.
s and s^{\prime} are m-ultimately-equivalent (w.r.t. \mathcal{A}), if \forall word u of length $m,\left[s \xrightarrow{u} t\right.$ and $s^{\prime} \xrightarrow{u} t^{\prime}$ implies $\left.t=t^{\prime}\right]$.

- B_{1} and B_{2} are 1-ult.-equiv.

- B_{2} and B_{3} are 2-ult.-equiv.
- B_{3} and B_{1} are 2-ult.-equiv.
- All others pairs are not ult.-equiv., as witnessed by the family 0^{*}.

Ultimate Equivalence

Definition

\mathcal{A} : a complete DFA.
s, s^{\prime} : states of \mathcal{A}.
m : an integer.
s and s^{\prime} are m-ultimately-equivalent (w.r.t. \mathcal{A}),
if \forall word u of length $m,\left[s \xrightarrow{u} t\right.$ and $s^{\prime} \xrightarrow{u} t^{\prime}$ implies $t=t^{\prime}$].

- B_{1} and B_{2} are 1-ult.-equiv.

- B_{2} and B_{3} are 2-ult.-equiv.
- B_{3} and B_{1} are 2-ult.-equiv.
- A_{1} and A_{2} are 3 -ult.-equiv.
- All others pairs are not ult.-equiv., as witnessed by the family 0^{*}.

Computing the ultimate-Equivalence relation

$\mathcal{A}:$ a DFA.
n : the number of states in \mathcal{A}.
b : the size of the alphabet.

By using the automaton product $\mathcal{A} \times \mathcal{A}$, it is known that:
Lemma (folklore)
Ultimate-equivalence relation of \mathcal{A} can be computed in $O\left(b n^{2}\right)$ time.

There exists a better algorithm:
Theorem (Béal-Crochemore, 2007)
Ultimate-equivalence relation of \mathcal{A} can be computed in $O(b n \log (n))$ time.

The naive automaton $\mathcal{A}_{(p, R)}$ accepting $R+p \mathbb{N}$
$p \in \mathbb{N}$: the period.
R : the remainder set.
$p \in \mathbb{N}$: the period.
R : the remainder set.

Definition

$\mathcal{A}_{(p, R)}$:

- Alph.: $\{0, \ldots, b-1\}$
- State set: $\mathbb{Z} / p \mathbb{Z}$
- Initial state: 0
- Transitions:
\forall state s, \forall digit a

$$
s \xrightarrow{a} s b+a
$$

- Final-state set: R
$p \in \mathbb{N}$: the period.
R : the remainder set.

Definition

$\mathcal{A}_{(p, R)}$:

- Alph.: $\{0, \ldots, b-1\}$
- State set: $\mathbb{Z} / p \mathbb{Z}$
- Initial state: 0
- Transitions:
\forall state s, \forall digit a

$$
s \xrightarrow{a} s b+a
$$

- Final-state set: R

Example 1: $p=3, ~ R=\{2\}$

Example 2: $p=4, \quad R=\{2,3\}$

The naive automaton $\mathcal{A}_{(p, R)}$ accepting $R+p \mathbb{N}$

$p \in \mathbb{N}$: the period.
R : the remainder set.

Definition

$\mathcal{A}_{(p, R)}$:

- Alph.: $\{0, \ldots, b-1\}$
- State set: $\mathbb{Z} / p \mathbb{Z}$
- Initial state: 0
- Transitions:
\forall state s, \forall digit a

$$
s \xrightarrow{a} s b+a
$$

- Final-state set: R

Example 1: $p=3, ~ R=\{2\}$

Example 2: $p=4, \quad R=\{2,3\}$

Example 3: $p=5, R=\{1\}$

1 Introduction

2 Key notions

3 Description of the algorithm

Characterisation theorem

Theorem (Boigelot-Mainz-M.-Rigo, submitted)

A: a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.
X is purely periodic if and only if

- \exists a pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$;
- states s, s^{\prime} such that $\varphi(s)=\varphi\left(s^{\prime}\right)$, are ultimately equivalent;
- the initial state of \mathcal{A} bears a 0-loop.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0-circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Execution on an example

$$
\binom{\text { Then, the period is }}{b^{m} \times \ell=2^{3} \times 5=40}
$$

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in the 0 -circuits.

2 Build $\mathcal{A}_{(\ell, ?)}$.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$.

4 Check that φ-equivalent states are ultimatelyequivalent.

Impurely periodic sets

Definition

S: an integer set
S is impurely periodic $\Longleftrightarrow \quad \begin{aligned} & \text { S is eventually periodic } \\ & \text { but not purely periodic }\end{aligned}$

Theorem (Boigelot-Mainz-M.-Rigo, submitted)

\mathcal{A} : a minimal DFA.
S : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits minus one.
S is impurely periodic if and only if

- \exists a pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, ?)}$;
- every non-initial states s, s^{\prime} such that $\varphi(s)=\varphi\left(s^{\prime}\right)$, are ultimately equivalent;
- the initial state of \mathcal{A} bears a 0 -loop and has no other incoming transitions.

Conclusion

Since an eventually periodic set is either purely or impurely periodic:

Theorem (Boigelot-Mainz-M.-Rigo, submitted)
Periodicity is decidable in $0(b n \log (n))$ time (where n is the state-set cardinal.)

Future work

- Extension to multi-dimensional sets.
- Extension to non-standard numeration systems.
$\mathcal{A}_{(12,\{5,7\})}$ as the product $\mathcal{A}_{(4, ?)} \times \mathcal{A}_{(3, ?)}$

