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Integer base (1)

m Base: p>2
= Alphabet: A, ={0,1,...,p—1}

Eg., in base 3, numbers are represented using the digits 0, 1 and 2.



Integer base (1)

m Base: p>2
= Alphabet: A, ={0,1,...,p—1}

Eg., in base 3, numbers are represented using the digits 0, 1 and 2.

Evaluation (Words — Numbers)
Vap---aiap € Ay

n
Tp(an---a1a0) = app" +---+a1pt +ap = Za,-p"
i=0
Eg., in base 3, m3(0121) =0x27+1x9+2x3+1x1=16



Integer base (2) 2

Representation (Numbers — Words)

m Right-to-left : Euclidean division algorithm
*Vn>0 (n),=(n")pa, where (n',a) is the Euclidean
division of n by p.

- (0)p =€
m Left-to-right: greedy algorithm...
Eg., in base 3, (14); = (432, since 14 =4 x 342

= (1312, since4d=1x3+1
=(0)3112, sincel=0x3+1
=¢ell2
=112



Integer base (2) 2

Representation (Numbers — Words)

m Right-to-left : Euclidean division algorithm
*Vn>0 (n),=(n")pa, where (n',a) is the Euclidean
division of n by p.

- (0)p =€
m Left-to-right: greedy algorithm...
Eg., in base 3, (14); = (432, since 14 =4 x 342

= (1312, since4d=1x3+1
=(0)3112, sincel=0x3+1
=¢ell2
=112

» (A7) = N
= (N)p = (Ap\{0}) Ap



Rational Base [Akiyama Frougny Sakarovitch 2008] 3

= Base: gwhere
= p and g are coprime integers
=p>qg>1

= Alphabet: A, ={0,1,...,p—1}

Eg., in base % numbers are represented using the digits 0, 1 and 2.



Rational Base [Akiyama Frougny Sakarovitch 2008]

= Base: gwhere
= p and g are coprime integers

=p>qg>1
= Alphabet: A, ={0,1,...,p—1}

Eg., in base % numbers are represented using the digits 0, 1 and 2.

Evaluation (Words — Numbers)

Vap---aiap € Ay’ . 1
a a a

Wp(an...alao) — n<p> ++1<p> +£

q q \q q

Eg., in base 3, = (0212):gx2§7+%x%+%x%+%x1:4
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Rational Base (2)

iy

Representation (Numbers — Words)

= Right-to-left: Modified Euclidean Division Algorithm (MED)

=Vn>0 (n)e
q

. (0)

Qo

Eg., in base 3, (8)3

= <n’>§ a,

where (n’,a) is the Euclidean

division of (g n) by p.

, since (8 x2)=56x3+1
, since (5x2)=3x3+1

since (3x2)=2x34+0
since (2x2)=1x3+1
since (1 x2)=0x3+2
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Rational Base (2) 4

Representation (Numbers — Words)

= Right-to-left: Modified Euclidean Division Algorithm (MED)
=Vn>0 (n)e = (n)ea, where (n,a)is the Euclidean
! ! division of (g n) by p.
. (0)p =€

q

m Left-to-right: no such algorithm !

Eg., in base 3, (8)3 = <5>%1, since (8 x2) =6x3+1
<3>%11, since (5x2)=3x3+1

= (23011, since (3x2) =2x3+0
= (1}21011, since (2x2)=1x3+1
= 21011, since (1x2)=0x3+2
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Insights on counting in rational base 5

Addition in base 3

1 1 1
+ 2 2
1 3 3
+1 -3
1 4 0
+1 3
2 1 0

Carry Rule: +1 -3
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Insights on counting in rational base 5

Addition in base 3
Addition in base 3

1 1 1
111 + 2 2
4 2 2 1 3 3
1 3 3 +2 -3
+1 -3 1 5 0

1 40 +2 -3
+1 -3 3 2 1

2 1.0 +2 -3

Carry Rule: +1 -3
Carry Rule: +2 -3



Insights on counting in rational base (2)

Knowing that

m carry rule for base %: +q9 —p;
= (1)e is the digit ‘g’
q

We may compute the representation of any integers:

Eg., computation of (4)% =(1+1+1+41)

3
2

8 (=9+qg+q+q)

Iy,



Insights on counting in rational base (2)

Knowing that

m carry rule for base g: +q9 —p;
= (1)p is the digit ‘g’ .
q

We may compute the representation of any integers:

Eg., computation of (4)% =(1+1+1+ 1>%

8 (=9+qg+qg+q)
2 5

2

2
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Insights on counting in rational base (2)

Knowing that

m carry rule for base g: +q9 —p;
= (1)e is the digit ‘g’
q

We may compute the representation of any integers:
Eg., computation of (4)% =(1+1+1+1)

3
2

8 (=q+9+4q9+9q)
2 5

2

2

We indeed just redefined the MED algorithm !

iy,



The language Lg and the automaton 7'5

Lr : the set of the representations of integers in base g

@@ B
o ot
\ /.< 0~
e, 9o
OO ﬁ< \@}H:g;?;:
oo OO
Va2

Figure: The language L% represented as a tree
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The language Lg and the automaton 7'5

Lr : the set of the representations of integers in base ‘E’

PSR- RN
@( B
\ /.< 0~
@<0 ©-1-) -
OO ﬁ< \@}H:g;g:
%} CERdD-
\@3:‘

Figure: The language L% represented as a tree
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The language Lg and the automaton 7'5

Lr : the set of the representations of integers in base ‘E’

D@ OO
2 /2@
/(‘i 2’.\0\.:‘:

2
q

0

L Nyt 0

0+ RoSScS

0
/®_ _’.:J
<16>% = 212022 14(0\@%::—_*

Figure: The language L% represented as a tree
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The language Lg and the automaton 7'5

Lr : the set of the representations of integers in base ‘E’

O OO @
(‘_‘j( .:2/@'
/sz O\..: -
\@X O 1@
N @)z
OOz '@< @—1—»(2)\@—_»

@@
\@}1*@)—1—’(3\ -
10 -2+ 16 @io\‘

2
q

Figure: The language L% represented as a tree
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The language Lg and the automaton 7'5

Lr : the set of the representations of integers in base ‘E’

O-@ -0 @
@(2 2,0:3:%:
) 0\@<21 o\@_l_@}_»
©+0--Q RoSScS
° @@
hl*@l{é\ D -

4 922, 16 ®io\‘

Figure: The language L% represented as a tree
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The language Lg and the automaton 7'5

T§ : the infinite automaton accepting O*Lg.
-0 @ @
-
(‘}j( /,.<2/.:0\.: ~
\@X O 1@
Bod roee:

E}P@H«;: zi

Figure: The infinite automaton 7'%



Formal definition of the automaton 7'5

Vac A, Vn,meN n2sm <= np+a=qgm

-0 -@ @

2 2/@
/ @<0 2/2/.%\‘

%j*@lﬁé ~oeig

E}H@HO(V@z}-»
0\.‘ -

CS

Figure: The infinite automaton T%
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Past and future within 7e (1)

OV OW-O

m Past is characterised by congruency modulo powers of p
= Future -//- of g



Past and future within 7e (2)

u: a word of length k
n,n’: two integers

Future Lemma [AFS'08]

Any two of the following implies the third
(i) n = -

(i) n" = -

(i) n=n'[q¥]

Past Lemma [AFS'08]

Any two of the following implies the third
(i) - —n
(i) - ——n

(i) n=n' [p¥]

Iy
%,

10=



Hence, Le is a complex language 11=
q

Theorem [AFS'08]

L» is not a regular language, nor even a context-free language.
q

Theorem [AFS'08]

w: an infinite whose every prefix belongs to Ls.
q
Then, w is aperiodic.
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Hence, T% possess a strong “transversal”’ regularity 122
Base% @— —’@—1—’@— —’.: ~
@(2 O 0
27" (2
0 /0\ .: N
2 \@Xz @1~ -
2—()—1 0 2/@
) TO-@ g
0

k}lﬁ@“‘{zgi :



Hence, T% possess a strong “transversal”’ regularity

Base % /®-1'>@—1—’®—1'>.:'”

/@<0 2/.:0\‘
peSNCRCS

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by 0 and 2.

\@2/ 0\@_ 1—G) -

o0q ool
° O-@
ey

Wiy,

122



Hence, 7 possess a strong “transversal” regularity
Base% @— —’@—1—’@— —’.:
o o=
/ @ e

%;@}{(0 0\@9338

SO -@x
\@1@1;@2 o

0\..:\>

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by 0 and 2.

\@2’ 0\@_ 1—G) -

Wiy,

122



Hence, T% possess a strong “transversal”’ regularity
Base% @— —’@—1—’@— —’.:
o o=
i@y
/ A~

0

5 N\
50 ool

SO -@x
\@1@1;@2 o

0\..:\>

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by 0 and 2.

O

Wiy,

122
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%

Building 7'% periodically with 2, 1,2, 1,... 132

3
Base 5

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

3
Base 5

%2»
0

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

3
Base 5

%2—»1 1
0

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

3
Base 5

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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%

Building 7'% periodically with 2, 1,2, 1,... 132

Base 3
/
%2—»@—1‘@<
| 0\‘3 1

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

Base 3
v
/ @<"\
0-0ef

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

Base % 2/
A
’ N
%2—»@—1‘@<
0 0

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.



17
%

Building 7'% periodically with 2, 1,2, 1,... 132

3
Base 5

00

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

Base % )=1

00

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

Base % @‘1—’

\@}w@l(

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

Base % @‘1—’

\@}w@lsj

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

Base % /®—1—’

2

A e

2

2 N
orod o

\@}w@lsj

o

Oma

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132

Base % /@—1—’®—1"

2

/ @<0 /(ZJ:

2

2 N
orod o

\@}w@lij

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.
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Building 7'% periodically with 2, 1,2, 1,... 132
Base 3 @— —~@-1—-@— 1@
2’ @)~
/\2:.
/@<o /5\ R
2 \@XQ @— —»@——»
%b@%{ oSEcEw-
0 ° @@=
E}P@H«g: O
@

Every odd node has one outgoing arc labelled by 1.

Every even node has two outgoing arcs labelled by par 0 et 2.



III//,/

Plan 14%

Rational base numeration systems

Infinitary perspective
m Real-evaluation
m The world of minimal words

The successor function on minimal words

Span of nodes
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Infinite words 14%

Topology on infinite words

= Distance between two words is 2~ if their longest common
prefix has length i.

= A finite word u is considered as u#*  (# is a special letter).

= The topological closure adh(L) of L € (A* U A¥) is then:

Iw’ €L, wandw have }

e the same prefix of length i

adh(L) = {w €A

Definition
Wer = adh(O*Lg)
q q
or, equivalently,

We = {infinite words whose run may continue forever in 7e }
q q
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15%
§

Real-evaluation (/e. after the decimal point)

Definition
pe Ap’ — R
q
—k
U Za_k(e)
=9 \4q
1 /3\Y _1/3\7? 1 2
Ex: 1) = 12 (= 1-(= = -3
X pe(17) (2) + 2<2) + 21-2
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Real-evaluation (/e. after the decimal point)

Definition
pe Ap’ — R
q
—k
may a3k (P>
=19 \9g
1 /3 1/3\7? 1 2
Ex: 1) = 12 (= 1-(= = -3
X pe(17) 2(2> + 2<2) + 21-2

Convention
For real-evaluation, any finite word is assumed to end with 0“.

1/3\7Y 1/3\7?



Fractal view of Wk
q

Reminder

ps(ala2.--ak.--):

p3(210) = pp(21)
—0.888 -

I\J\w

: [150

[Z L1925
7 ' .

<7 F0.25
/ 4 .

5 L100
+-1-0.888 - - -
7 £0.75

% Foso

iy,
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A few infinitary properties

Theorem [AFS'08]
pe is a continuous and increasing function (Ws, <,2q) — (R, <).
q q

NB: it is not true for (A,", <ad) = (R, <).

Theorem [AFS'08]

pe(We) is an interval.
q q

Corollary

Real numbers may be represented in rational base numeration sys-
tems.



Minimal words — Definition 18=

w,, : the (infinite) word starting from n taking the lowest branch.

0 M S, e
@--..
@\ 0\._“

0 \@\ 0\@_1_,® .

e Saacy QoSECE &

o0 @ 2 e
~@ig.



Minimal words — Definition 18<

w,, : the (infinite) word starting from n taking the lowest branch.

O-1-@- 1O -

&

G0\0 @, O\"“
ég \@)\ \@—1—»%--*
AN O @ony.
Q-1-@--

. \@)-1*@-10 @ -
wy =11000- - *®~0;.‘

w; = 00101---
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Minimal words — Definition 185

N

w,, : the (infinite) word starting from n taking the lowest branch.

O -O--@1-O
®, o @ig.
0 . e

®_1‘@\0 \@'lﬂs@.»
T SRR

© -
wy = 11000 - *®~0;
w; = 00101



Minimal words — Properties

Given an integer n, the minimal word w,, is
= over the alphabet {0,...,(qg — 1)} = Aq
= the unique word over A, readable from n
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Minimal words — Properties 192

N

Given an integer n, the minimal word w,, is
= over the alphabet {0,...,(q— 1)} = Aq
= the unique word over A, readable from n

Reformulation of the ‘Future Lemma’

w, and w,, have the same prefix of length k.

n=m e



17
%

Minimal words — Properties 19%

N

Given an integer n, the minimal word w,, is
= over the alphabet {0,...,(q— 1)} = Aq
= the unique word over A, readable from n

Reformulation of the ‘Future Lemma’

w, and w,, have the same prefix of length k.

n=m[q"]

Corollary

= Minimal words are pairwise distinct.
= Every minimal word (but w, ) is aperiodic.



Minimal words — Set properties

Qp: the set of minimal words.
q

NB: Q» is incomparable with W»
q

q

Properties

= The topological closure of Q» is Ag" whole.
q
= Qp is countable
q
m The interior of Q» is empty.
q



Plan 21%

Rational base numeration systems
Infinitary perspective

The successor function on minimal words
m Definition
m Remarkable case of %
m General case

Span of nodes






Successor function 212

£: Ay — A

Wn_ Wn+1

Why study this function?

m Could have been simple :
*w, =aw,,, forsome digit a and integer p
(or, equivalently £P(w,, ) is the shifted of w, ).

n

= It is "letter-to-letter” (cf. next slide).

= [terating it browse through L».
q
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The successor transducer 2%

II\\\\\\

Lemma

The successor function € is letter-to-letter:
w and w’ have a common prefix of length i

)

&(w) and &(w’) have a common prefix of length i

Proof. Let k,j be such that w =w, and w' = w; .

By Def. of §, &(w) =w,,; and {(w') =w;, .
w, and w; have a common prefix of length i
<= k=j1[q'] (From future Lemma)
— k+1=j+1[q]
< W, and w;; have a common prefix of length i
(From future Lemma again)
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The successor transducer 2%

II\\\\\\

Lemma

The successor function € is letter-to-letter:
w and w’ have a common prefix of length i

)

&(w) and &(w’) have a common prefix of length i

= Reading the i-th letter of w, allows to output the i-th letter
of wy ;.

= The successor function & is realised by an infinite-state, letter-

to-letter and sequential transducer: Dp.
q
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Example 1: the remarkable case of base % 23%

lll\\\\\\
/G}??»@??»@??*O”

J -
@,

0|1 0~y -~
o @

01 L0 — oo
0|1 \@I @1\1*@“’
1/0 -
%0|1_>®—(1)(1) | 0/0 0|1~ @
11 ‘1\0
10 o @
A Ol O
0[0 0]0
@'1\1"@'1\11“)\ 0‘11__,

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % 23

N

_ 00 0/0 0/0 -
w; =/110001101--- /@ll@ll@ll"

w, =/001010000--- 0|1 .:01@_
@( 0|1 1‘0\._*
/ 110 1|0

o \@:o/ BN

0 =0/i»-(7)-2/0 0|1 R D)
3 -l 1@,
1[0 1/0 @
\ @@=

0J1

0[0 0[0
@'1\1"@'1\11|0 0‘11__,

Base 3 D)

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % 23

N

_ 00 0/0 0/0 -
w; = 110001101 --- /@ll@ll@ll"

w, =001010000--- 0|1 .:01)@_
@( 0|1 1‘0\._*
/ 110 1|0

o \@:o/ BN

0 =0/i»-(7)-2/0 0|1 R D)
3 -l 1@,
1[0 1/0 @
\ @@=

0J1

0[0 0[0
@'1\1"@'1\11|0 0‘11__,

Base 3 D)

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % 23

N

_ 00 0/0 0/0 -
w; = 110001101 --- /@ll@ll@ll"

w, =001010000--- 0|1 .:01)@_
@( 0|1 1‘0\._*
/ 110 1|0

o \@:o/ BN

0 =0/i»-(7)-2/0 0|1 R D)
3 -l 1@,
1[0 1/0 @
\ @@=

0J1

0[0 0[0
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Base 3 D)

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % 23

N

_ 00 0/0 0/0 -
w; =110[001101--- /@ll@ll@ll"

w, =001010000--- 0|1 .:01)@_
@( 0|1 1‘0\._*
/ 110 1|0

o \@:o/ BN

0|l» 1 9e 01 @")
% 11 @@
1]0 :

\ @@

0J1

0[0 0[0
@'1\1"@'1\11|0 0‘11__,

Base 3 D)

Figure: D%, the infinite transducer realising £ in base %



Example 1: the remarkable case of base % 23

_ 00 0/0 0/0 -
w; =110001101--- /@ll@ll@ll"

w, =001010000--- 0|1 .:01)@_
@( 0|1 1‘0\._*
/ 110 1|0

-
0/1 \@:Ol \@?}?*@"’
/ ’e
0/-(1)=2/% > 010 01
@5 -1 \ 1@,

. . -
\ 0 0[0 0|1’®??:::

0

@'1\1"@'1\11|0 0‘11__,

Base 3 D)

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % 23

N

wy =110001101--- /@gg»@gg*@??‘,»

- 001010000 --- 0|1

. ) P
4\ ol1 1\0\'-

/ 1|0 /

1/0

0/1 \@01 \@m*@"

0|1 - 0[1 @")
o O "o,
" . @

\ ®-@

0J1

0[0 0[0
@'1\1"@'1\11|0 0‘11__,

Base 3 D)

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % 23

N

_ 00 0/0 0/0 -
w; =110001101--- /@ll@ll@ll"

, =001010000---
Wy 0[1 0‘1)@_

Q( @ .Elo" =

1/0 A
/ \ 01 110, 0/0
7

0[1 6 @1\1*@“’

L @
01 - 01
% o i @'(1)}(1)’.:1}0.
o o @---

\ @@

0J1

0[0 0[0
@'1\1"@'1\11|0 0‘11__,

Base 3 D)

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % 23

N

_ 00 0/0 0/0 -
w; =110001101--- /@ll@ll@ll"

w, =001010000--- 0|1 .:01)@_
@( 0|1 1‘0\._*
/ 110 1|0

ol Ny @R

1|0 -
0”’@'1\1 N 590, (%) 0\1"@"‘
11 1|0,
1[0 1o @"*
\ \ \ 0|1’®_??:::
0[0 0[0
@'1\1"@'1\11|0 0‘11__,

Base 3 D)

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % 23

N
- 0l0 00 0|0 -
w; =11000110]1--- /@ll@ll@ll"

w, =001010000--- 0|1 .:01)@_
@( 0|1 1‘0\._*
/ 110 1|0

et
01 \(@:01 \@m*@"
o QoL

1/0 Mo

OO0, | @-

Base 3 D)

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % 23

N

_ 00 0/0 0/0 -
w; =110001101)--- /@ll@ll@ll"

w, =001010000--- 0|1 .:01)@_
@( 0|1 1‘0\._*
/ 110 1|0

o \@:o/ BN
%ml»@-ll @_?}?».:;J‘\é @——_’

1[0 1o T
\ OH,@??:::

0[0 0[0
@'1\1"@'1\11|0 0‘11__,

Base 3 D)

Figure: D%, the infinite transducer realising £ in base %
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Example 1: the remarkable case of base % (2) 24%

S

2—(D)—1 @ , A2
® | O @
\ 2/®_1:::
@_1_’@_10\ (19)---

Base % ®<0\:::

Figure: The infinite automaton 7'%
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Example 1: the remarkable case of base 3 (2) D42

S

0/0 0/0 0[0 ()~
o /@11"@11*@11*‘
Substitution of the labels:

0 — 10 0[1 (@)~
iRE e Wosig
2 — 01 | IZ..

1/0 1/0

A
it Nyt ®ie-

1|0 .
0|1—»@—1‘1 | 0[0 0[1~ @
1\1".:1\0
10 @

\ O1-@

0/1

0[0 0[0
@)’1\1"@)’1\11IO 0‘11_.,

Base 3 MO~

Figure: D%, the infinite transducer realising £ in base %
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Uo7 similarity 25

>
TN

Proposition

Ifilp=2g—1|
m the underlying graph of Dr and Te are identical;
q q
m the labels of the transitions of Dp are obtained by an

q
(injective) substitution from those of Tbs.
q
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P siilarity 2%

Proposition

Ifilp=2g—1|
m the underlying graph of Dr and Te are identical;
q q
m the labels of the transitions of Dp are obtained by an

q
(injective) substitution from those of Tbs.
q

Theorem

The structure of De is “very close” to the one of Te.
q q
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2N

From 7'5 to Dg — Step 1: changing the alphabet

New alphabet:B, g = {p— (29 —1),...,p— 1} :
= B, 4 always has (2g — 1) consecutive elements
= The maximal element of A, and B, 4 are the same.
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From 7» to De — Step 1: changing the alphabet 265
q q 7N
New alphabet:B, g = {p— (29 —1),...,p— 1} :
= B, 4 always has (2g — 1) consecutive elements
= The maximal element of A, and B, 4 are the same.

wif p=(29—-1), Ap=Bpgq

= if p< (29 —1), (we say that the base § is “small”)
* Ap € Bpg
= Negative digits are added to A,

= if p> (29 —1), (we say that the base £ is “big")
*Ap 2 Bpg
= Smallest digits of A, are removed.



From T§ to Dg — Step 1: changing the alphabet

New alphabet:B, g = {p— (29 —1),...,p— 1} :
= B, 4 always has (2g — 1) consecutive elements
= The maximal element of A, and B, 4 are the same.

mif p=(29—1), A,=B,g

= if p< (29 —1), (we say that the base § is “small”)
* Ap € Bpg
= Negative digits are added to A,

= if p> (29 —1), (we say that the base £ is “big")
*Ap 2 Bpg
= Smallest digits of A, are removed.

Obtained automaton: 7A73
q

VaeBy,q, VnmeN n—=m <= np+a =

Illl/,é
26

7N
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Example of the ‘small’ base 3 — Step 1: T: — 72 272

>
YN

Base % /@—1»@221--.,

Qw@z»@lé3 oo
\

@,
@®-
Step 1: add the digit —1. @_2)@<



Example of the ‘small’ base

4
Base 3
0 -1
380

Step 1: add the digit —1.

iy,

27\

N

— Step 1: 7'4—>7'4

Ly e
/ o\@g}@_m




iy,
%
Zz

From 7'5 to Dg — Step 2: substituting the label

208
N

o: Bpg — P(AgxAg)

‘center’ of By 4
~ =

b {(ald)eAxA|(@~a)=b-(p-q) }
-

signed distance to the center of B, 4
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From 7» to De — Step 2: substituting the label 282
q q

208
N

o: Bpg — P(AgxAg)

‘center’ of By 4
~ =

b — {(a\a’)eAqXAq (a’—a):b—(p—q)}

signed distance to the center of B, 4

Eg., in base %, the substitution is:
o -1— {20}
0~ {10, 2|1}
1~ {0]0,1[1, 22}
2—{0[1,1]|2}
3—{0]2}
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Z

From 775 to Dg — Step 2: substituting the label

S
TS

o: Bpg — P(AgxAg)

‘center’ of By 4
~ =

b — {(a|a’)6Aq><Aq (a’—a):b—(p—q)}

signed distance to the center of B, 4

Eg., in base %, the substitution is:
o -1— {20}
0~ {10, 2|1}
1~ {0]0,1[1,2[2} = ‘0’ is equal to the center —1
2~ {0[1,1]2} = 0(0) = { pairs of the
3 {02} form (a|a—1) }

Bsz ={-1,0,1,2,3}
The center is 1




liy,,

Example of the ‘small’ base 5 — Step 2 298

K7\

*#

Base% /Q-ﬁ{t*‘*‘

3-80d |

Step 1: add the digit —1.

i

(?/
£
o‘°

Step 2: apply the substitution o 0
"1 200 AN i
0 — 10, 2J1 ®)-1~-@)-1-@):

1 — 0/0, 1]1, 2J2
2 — 0[1, 12
3 — 0]2



Example of the ‘small’ base 5 — Step 2

0[0 0[0
11 o[1 oj1 1|1

212 1|2 1/2 212
Base% 5""-:;
1]/0 210
2}1 20 / | 0/l

0/0 20 :.1\2 O
@ —::
02

2(0

Pige

2[1

1
2}? 2|1
1— 2
0 — 1/0, 21 Omemes
1 — 0]0, 1|1, 2|2 1)1 1[1
2 — 01, 1)2 212 2|2
3 — 02

¥

¥

4

¥
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Example of the ‘big’ base £

29SS
KN

0
\@KS}K O
o
, @Eg*‘”
Base 3 \®::



17

Example of the ‘big’ base £
o

4 /@§3T@??z

@( W
/ m‘@f“/@:

5
3 5/@<2

RS

2
ho=
—3
Base % 0.,
105

205S
TS

Step 1: delete 0's and 1s.

\
L AR oy 2R

@
/@:.¢

LN
-
e
——



Example of the ‘big’ base £
6/::::
@

~

o O
/ @

4
@/ @:Zi

3 5/@—‘-’
W o
, /@:’.1

N -
Base £ @13 —
3 @:ZI

III/,,é

z
20~
TS

Step 1: delete 0's and 1s.

Step 2: apply the substitution o:

oA W
Ll

2)0

1j0, 2|1

0/0, 1|1, 2J2
01, 12

02
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Example of the ‘big’ base £

Z, S
TS

Step 1: delete 0's and 1s.

Step 2: apply the substitution o:
2|0

110, 2|1

00, 1/1, 2|2

01, 1J2

0|2

oA W
Ll
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Z

Brief intuition of how it works 31%

z2Jl§
TS

Overview

The label of the current state of D» is the current difference between
q

input and output.

Lemma

n,m, i, k: four node/integers
a, b: letters of Aq

w, =aw,, _ _
7 3|b> k in Dp ; Wn+i+1:me+k+1
q

remaining input remaining output
At state i: W, Wit

At state k: Wy, Wik
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Plan

’/////IIII\\\\§
Rational base numeration systems

Infinitary perspective

The successor function on minimal words

Span of nodes
m Renormalisation
m Topological property of renormalised spans
m Span-words



Fractal view of Wk
q

Reminder

ps(ala2.--ak.--):

p3(210) = pp(21)
—0.888 -

I\J\w

: [150

[Z L1925
7 ' .
7 £0.75

<7 F0.25
/ 4 .

iy,
2

\
’///m\\\\‘

5 L100
+-1-0.888 - - -

% Foso
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Span £33%

Z
N

Definition — span of the node X

The length of the interval reachable from X in the tree.
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Example of Spans

=
24S
K2\

span("2") (= span("21"))

span("02") = span("2") X%

span("002") = span("2") x (%)2
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Span £35%

299§
2

Definition — span of the node X

The length of the interval reachable from X in the tree.

Problems

m Spans decrease exponentially with depth.
= Only finitely many spans are above any positive bound.
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Z

Renormalised Span 236

\
KT

Definition — renormalised span of the node X

k
the span of X multiplied by (g) , where k is the depth of X.



liy,
Z

Renormalised Span 236

\
KT

Definition — renormalised span of the node X

k
the span of X multiplied by (5) , where k is the depth of X.

= Two nodes with the same label have the same renormalised span.
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Sar%

Renormalised Span

230§
ZN

Definition — renormalised span of the node X

k
the span of X multiplied by (g) , where k is the depth of X.

= Two nodes with the same label have the same renormalised span.

Notation

rspan(n): the renormalised span of any node labelled by n.

Se denotes the set of the renormalised span of every node.
q



177

ical Property of %S
Topological Property of Se i

w If p<2g—1, pe(Se) is dense.
9 q

w If p>2q—1, pe(Se) is nowhere dense.
q° q
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Span words

Z2 90§
2

Definition
We call span-word of n the word (w, & w,, ) where
= where w," is the maximal word starting from n

= and “6&" denotes the digit-wise subtraction.
(Example : 3216012 = 31(-1))
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Span words

238§
2

Definition

We call span-word of n the word (w, & w,, ) where
= where w," is the maximal word starting from n
= and “6&" denotes the digit-wise subtraction.
(Example : 3216012 = 31(-1))

Properties

m The renorm. span of n is the evaluation of its span-word:
Vn e N rspan(n) = pe(w, S w,)
q

= Span-words belong to B, 4*.



Proposition
Te accepts the topological closure of the language of the span-words.
q

Proof consists in simple arithmetic calculation.

Reminder: 7'p is a intermediary step of the construction 77, — Dp.
m Ifp< (2q — 1) digits are added to 'Tp, possibly none.
m If p > (29 — 1) at least one digit is removed from Te.
q
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Sketch of proof of Theorem: case p < (2g — 1) £40%

N

Adding the digit —1 to ’T%

Base 3 C}ﬁ{t'»‘
480 | e @<""

@2%{ °‘O :
O-@-@:

= Using new digits does not produce new values.




Ny,

Sketch of proof of Theorem: case p < (2g — 1) £40%

N

Adding the digit —1 to ’T%

Base 3 C}ﬁ{t'»‘
d-fog |y @<""

@}Zﬁ{ °‘O :
O-@-@:

= Using new digits does not produce new values.




Ny,

Sketch of proof of Theorem: case p < (2g — 1) £40%

N

Adding the digit —1 to ’T%

Base 3 C}ﬁ{t'»‘
diod | e @<""

@}Zﬁ{ °‘O :
O-@-@:

= Using new digits does not produce new values.
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Sketch of proof of Theorem: case p < (2g — 1) £40%

N

Adding the digit —1 to ’T%
4
Base § pos ﬁ< @@ @

dbod | gi @<""

N 0
‘Q
ps(3210(-1)) = p4+(03213) @_2@{0
@@

= Using new digits does not produce new values.
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Sketch of proof of Theorem: case p < (2g — 1) £40%

N

Adding the digit —1 to ’T%

Base 3 C}ﬁ{t'»‘
882»@{4 % @<""

0\.
@—2 ‘
p+(32131(-1)) = p4(321023)
0

1—»@—1»@:::

= Using new digits does not produce new values.
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Sketch of proof of Theorem: case p > (2g — 1) 412

>
PN

Deleting every letter a from 7» hence from the fractal tree Wop
q q

R



Sketch of proof of Theorem: case p > (2g — 1) e

2, S
K7

Deleting every letter a from T» hence from the fractal tree W»
q q

R

Deleted
Interval



Sketch of proof of Theorem: case p > (2g — 1) %

2, S
K7

Deleting every letter a from T» hence from the fractal tree W»
q q

R

Deleted
Interval




Sketch of proof of Theorem: case p > (2g — 1) %

2, S
K7

Deleting every letter a from T» hence from the fractal tree W»
q q

R

Deleted
Interval




Sketch of proof of Theorem: case p > (2g — 1) 1%

>
K7

Deleting every letter a from T» hence from the fractal tree W»
q q

R

Deleted
Interval
g ad .
|
(o
Wp d Deleted
a Interval
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Sketch of proof of Theorem: case p > (2g — 1) 412

>
K7

Deleting every letter a from T» hence from the fractal tree W»
q q

R

Deleted
Interval
: ad .
|
(o
Wp d Deleted
a Interval

= The resulting set is much alike the Cantor ternary set.
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Conclusion and future work

242§
PN

m Dp somehow requires the same structure as the original

tree Te.

m The tgpological properties of the set of renorm. spans divides
the rational base number systems in two classes.

m The cases p = 2g — 1 is remarkable in both constructions.

Next question

For a given integer n,
is there a finite transducer realising w, — w, ;7
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