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We consider infinite trees only.
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6Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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8Prefix-closed languages and labelled trees

Alphabets are ordered hence
prefix-closed languages = labelled trees.
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9Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Definition

The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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s = (3 2 1)ω

λ = (012 12 1)ω
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Figure: Non-canonical integer representations in base 2.
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11Abstract Numeration System (Lecomte-Rigo)

Observation

In basically every NS, the representations of integers follows the
radix order: ∀n, p 〈n〉 ≤rad 〈n + p〉

u <rad v if |u| < |v |
or |u| = |v | & u <lex v

Example: 2 <rad 12 12 <rad 21.

Definition (ANS L)

L: language over an ordered alphabet A.
〈n〉L is the (n + 1)-th word of L in the radix order.

In our scheme, 〈n〉L is the word labelling the path 0 −→ n.
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NS = Numeration system

Prefix-closed Abstract Rational NS (Lecomte–Rigo 2001)

Built from an arbitrary prefix-closed regular language.

Dumont-Thomas NS (Dumont-Thomas, 1989)

Built from an arbitrary morphism.

Theorem

L: a prefix-closed language.
Signature(L) is a morphic word ⇔ L is a regular language.

Theorem

Every DTNS is a prefix-closed ARNS.

Every prefix-closed ARNS is easily† convertible to a DTNS.

† Through a finite, letter-to-letter and pure sequential transducer.



Theorem

L: a prefix-closed language. Signature(L) is a morphic signature ⇔
L is a regular language.
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15Word morphisms

σ: a morphism A∗ → A∗.

σ is prolongable on a if σ(a) starts with the letter a.

In this case, σω(a) exists and is called a pure morphic word .

f : a letter-to-letter morphism A∗ → B∗.
→ f (σω(a)) is called a morphic word .

Running examples

Fibonacci morphism: {a, b} → {a, b}∗

a 7→ ab
b 7→ a

A periodic morphism: {a, b, c} → {a, b, c}∗

a 7→ abc
b 7→ ab
c 7→ c
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let fσ : A∗ → D∗ be the (letter-to-letter) morphism defined by
D ⊂ N

∀b, fσ(b) = |σ(b)|

We call fσ(σ
ω(a)) a morphic signature.

Example: a periodic morphism
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If g is a morphism such that
∀b, |g(b)| = |σ(b)|

if g(b) = c0c1 · · · ck then c0 < c1 < · · · < ck

We call g(σω(a)) a morphic labelling.

Example: Fibonacci morphism

σ(a) = ab =⇒ fσ(a) = 2
σ(b) = a =⇒ fσ(b) = 1

fσ(σ
ω(a)) = 2122121221221212212122 · · ·

If we choose g :
g(a) = 01
g(b) = 0

g(σω(a)) = 01 0 01 01 0 01 0 01 01 0 01 01 0 · · ·



17Morphic labelling

If g is a morphism such that
∀b, |g(b)| = |σ(b)|

if g(b) = c0c1 · · · ck then c0 < c1 < · · · < ck

We call g(σω(a)) a morphic labelling.

Example: a periodic morphism

σ(a) = abc =⇒ fσ(a) = 3
σ(b) = ab =⇒ fσ(b) = 2
σ(c) = c =⇒ fσ(c) = 1

σ(abc) = abc abc hence fσ(σ
ω(a)) = (321)ω

If we choose g :
g(a) = 012
g(b) = 12
g(c) = 1

g(σω(a)) = (012 12 1)ω
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18Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is morphic ⇔ L is a regular language.

(σ, g): a substitutive signature.
(σ, g) defines a finite automaton A(σ,g).
It is analogous to

the prefix graph/automaton in Dumont–Thomas ’89,’91,’93

or the correspondence used in Maes–Rigo ’02.

Proposition

The language accepted by A(σ,g) has signature (σ, g).
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20Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is morphic ⇔ L is a regular language.

(σ, g): a substitutive signature.
(σ, g) defines a finite automaton A(σ,g).
It is analogous to

the prefix graph/automaton in Dumont–Thomas ’89,’91,’93

or the correspondence used in Maes–Rigo ’02.

Proposition

The language accepted by A(σ,g) has signature (σ, g).

Idea of proof: Unfold the automaton A(σ,g).
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22Backward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive ⇔ L is accepted by a finite automaton.

B: a finite automaton.
We define (σB , gB) such that

B = A(σB ,gB )

Proposition

The language accepted by B has signature (σB, gB).

Follows directly from the other direction.
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23Prefix-closed ARNS

Definition

L: a Prefix-closed regular language over an ordered alphabet A.
The representation 〈n〉L of the integer n in the
Prefix-closed ARNS L is the (n + 1)-th word of L in the radix
order.

In our scheme, 〈n〉L is the word labelling the path 0 −→ n.



24Labelling does not matter

Proposition

L: prefix-closed ARNS of signature (s, λ1)
K : prefix-closed ARNS of signature (s, λ2)

The conversion function 〈n〉L 7→ 〈n〉K is very simple†.

†realised by a finite, pure sequential and letter-to-letter transducer.
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σ : A → A∗ prolongable on a.

Example : σ(a) = abc σ(b) = ab σ(c) = c

Definition

Aσ = {[u] | u is a strict prefix of σ(b) for some b ∈ A}

Example : Aσ = { [ε], [a], [ab] }

gσ: morphism A∗ → A∗
σ

gσ(b) = [u0] [u1] · · · [uk−1]

k = |σ(b)|

ui is the prefix of length i of σ(b)

Example : gσ(a) = [ε] [a] [ab] gσ(b) = [ε] [a] gσ(c) = [ε]



27Dumont-Thomas automaton A(σ,gσ)

σ(a) = abc
σ(b) = ab
σ(c) = c

gσ(a) = [ε] [a] [ab]
gσ(b) = [ε] [a]
gσ(c) = [ε]

a b

c

[ε]

[a]
[ab]

[ε]
[a]

[ε]
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∗ → A∗

ρ([uk ] . . . [u2] [u1] [u0]) = σk(uk)σ
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Theorem

1. Every DTNS is a prefix-closed ARNS.

2. Every prefix-closed ARNS is easily† convertible to a DTNS.

† Through a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2.

Prefix-Closed ARNS L Automaton A Morphisms (σ, g)
of signature (s, λ1)

Prefix-closed ARNS K DT Automaton A(σ,gσ) DTNS σ

of signature (s, λ2)

where s = fσ(σω(a)) λ1 = g(σω(a)) λ2 = gσ(σω(a))

Proposition

L: prefix-closed ARNS of signature (s, λ1)
K : prefix-closed ARNS of signature (s, λ2)
The conversion function 〈n〉L 7→ 〈n〉K is very simple†.
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Directing parameter (q, p):
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Growth ratio: p
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Intuition : #{nodes at depth i} is roughly
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ω

Directing parameter (q, p):

the period length of s is q;
p = r0 + r1 + r2 + · · ·+ rq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Theorem

Ks: the language generated by the signature s.

If p
q
is an integer, Ks is a rational language.

(and linked to integer base NS)

If p
q
is not integer, Ks is a FLIP language.

(and linked to rational base NS)
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31Integer Base

base p > 1

alphabet Ap = {0, 1, · · · , p − 1}

value π(an · · · a1a0) =
∑n

i=0 aip
i

Example (base 3) - π(12) = (3× 1) + (1× 2) = 5
π(122) = (9× 1)+ (3× 2)+ (1× 2) = 17



31Integer Base

base p > 1

alphabet Ap = {0, 1, · · · , p − 1}

value π(an · · · a1a0) =
∑n

i=0 aip
i

π(A∗
p) = N

representation 〈n〉p = 〈n′〉p.a

(n′, a) is the Euclidean division de n par p.

〈N〉p = (Ap\{0}) · A
∗
p
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base p
q
> 1 irreducible fraction (p > q and p ∧ q = 1).

alphabet Ap = {0, 1, . . . , p − 1}

representation 〈n〉 p

q
= 〈n′〉 p

q
.a :

(n′, a) is the Euclidean division of ( q × n) by p .

Example: computing 〈3〉 3
2
:

〈3〉 3
2

= 〈2〉 3
2
0 =

2 × 2 = 3 × N2 + a1; ⇒ N2 = 1 and a1 = 1.
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base p
q
> 1 irreducible fraction (p > q and p ∧ q = 1).

alphabet Ap = {0, 1, . . . , p − 1}

representation 〈n〉 p

q
= 〈n′〉 p

q
.a :

(n′, a) is the Euclidean division of ( q × n) by p .

Example: computing 〈3〉 3
2
:

〈3〉 3
2

= 〈2〉 3
2
0 = 〈1〉 3

2
10 =

2 × 1 = 3 × N3 + a2; ⇒ N3 = 0 and a2 = 2.



32Rational Base

base p
q
> 1 irreducible fraction (p > q and p ∧ q = 1).

alphabet Ap = {0, 1, . . . , p − 1}

representation 〈n〉 p

q
= 〈n′〉 p

q
.a :

(n′, a) is the Euclidean division of ( q × n) by p .

Example: computing 〈3〉 3
2
:

〈3〉 3
2

= 〈2〉 3
2
0 = 〈1〉 3

2
10 = 210
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0
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35Properties of L p
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L p

q
is prefix-closed.

L p

q
is right-extendable.

Let anan−1 · · · a0 = 〈n〉.

π(an · · · a1a0) =
∑n

i=0
ai
q

(

p
q

)i

= n

Theorem (Akiyama Frougny Sakarovitch, 2008)

L p

q
is not a context-free language.

L p

q
has the Finite Left Iteration Property.



36The Finite Left Iteration Property (FLIP)

Definition

A language L is FLIP if
∀u v , ∃ only finitely indices i

such that u v i is the prefix of a word of L;

or, equivalently
∀u v , Pref(L)

⋂

u v∗ is finite

Example : the prefixes of an infinite aperiodic word.

(We are still looking for “natural” examples of FLIP languages.)



36The Finite Left Iteration Property (FLIP)

Definition

A language L is FLIP if
∀u v , ∃ only finitely indices i

such that u v i is the prefix of a word of L;

or, equivalently
∀u v , Pref(L)

⋂

u v∗ is finite

Intuition 1

L does not contain any infinite rational language.
[IRS : Greibach 1975]

L is “hard” to extend to a rational language.

Example: {an | n is a prime number} is IRS but not FLIP.



36The Finite Left Iteration Property (FLIP)

Definition

A language L is FLIP if
∀u v , ∃ only finitely indices i

such that u v i is the prefix of a word of L;

or, equivalently
∀u v , Pref(L)

⋂

u v∗ is finite

Intuition 2

The topological closure of L contains only aperiodic word.

(Every branch of the tree-representation of L is labelled by an
aperiodic word.)



37FLIP is a very robust property

Every finite language is FLIP.

A finite union of FLIP languages is FLIP.

Any intersection of FLIP languages is FLIP.

Every sub-language of a FLIP language is FLIP.

The concatenation of two FLIP languages is FLIP.

The prefix closure of a FLIP language is FLIP.

The inverse image by transducer of a FLIP language is
FLIP.
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:
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(2, 2, 1)
(221)ω



Definition (Canonical labelling)

the p-tuple: (0, q, (2q), . . . , (p − 1)q) [mod p]

Example: (0, 2, 1) for 3
2 and (0, 3, 1, 4, 2) for 5

3 .



Definition (Canonical labelling)

the p-tuple: (0, q, (2q), . . . , (p − 1)q) [mod p]

Example: (0, 2, 1) for 3
2 and (0, 3, 1, 4, 2) for 5

3 .

Proposition (MS, to appear)

p
q
: a base.

u: the Christoffel rhythm of slope p
q
.

v : the canonical labelling associated with p
q
.

The language L p

q
has for signature uω and for labelling vω.

The proof is technical and omitted here.



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Theorem (MS, to appear)

Ks: the language generated by the signature s.

If p
q
is an integer, Ks is a rational language.

(and linked to integer base NS)

If p
q
is not integer, Ks is a FLIP language.

(and linked to rational base NS)
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42The tree whose signature is (2, 2, 1)ω
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42The tree whose signature is (2, 2, 1)ω
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Figure: Underlying tree of the language of integers in base 5
3



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( , , , , , , , , )ω

+4 −5



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 , , , , , , , , )ω

+4 −5



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 , 4 , , , , , , , )ω

+4 −5



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 , 4 , -1 , , , , , , )ω

+4 −5



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 , 4 , -1 , 3 , , , , , )ω

+4 −5



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 , 4 , -1 , 3 , -2 , , , , )ω

+4 −5



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 , 4 , -1 , 3 , -2 , -7 , , , )ω

+4 −5



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 , 4 , -1 , 3 , -2 , -7 , -3 , , )ω

+4 −5



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 , 4 , -1 , 3 , -2 , -7 , -3 , 1 , )ω

+4 −5



Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter (q, p):

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio: p
q

Intuition : #{nodes at depth i} is roughly
(

p
q

)i

Smart labelling: (λ0λ1 · · ·λp−1)
ω

λ0 = 0
Inside a block : λi+1 = λi + q
From a block to the next : λi+1 = λi + q − p.
(see example)

Example: s = ( 2 , 2 , 1 , 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 , 4 , -1 , 3 , -2 , -7 , -3 , 1 , 5 )ω

+4 −5



Proposition (MS, to appear)

uω: a periodic signature.
(q, p): its directing parameter.
vω: its associated smart labelling
L: the language whose signature/labelling are (uω, vω)

if w is the (n + 1)-th word of L (labelling the path 0 w−−→ n)
π p

q
(w) = n

L is a “non-canonical representation of integers” in base p
q



Reformulation of Theorem 2.

L: a non canonical representation of integers in base p
q
.

L is FLIP.

Theorem (Akiyama Frougny Sakarovitch 2008)

For all finite alphabet A there is a finite sequential transducer T :
∀w ∈ A∗, π(w) = π(T (w)) and T (w) ∈ L p

q
.

It follows that T (L) = L p

q

FLIP is stable by inverse image of transducer
hence T −1(L p

q
) is FLIP.

FLIP is stable by sublanguage
hence L is FLIP.
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46Ultimately periodic signature

Periodic Signature

Example: s = ( 2 2 1 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 4 -1 3 -2 -7 -3 1 5 )ω

+4 −5



46Ultimately periodic signature

Periodic Signature

Example: s = ( 2 2 1 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 4 -1 3 -2 -7 -3 1 5 )ω

Ultimately Periodic Signature

Example: s = 3 ( 2 2 1 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( )( )ω

+4 −5

+4 −5



46Ultimately periodic signature

Periodic Signature

Example: s = ( 2 2 1 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 4 -1 3 -2 -7 -3 1 5 )ω

Ultimately Periodic Signature

Example: s = 3 ( 2 2 1 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 4 8 )( )ω

+4 −5

+4 −5



46Ultimately periodic signature

Periodic Signature

Example: s = ( 2 2 1 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 4 -1 3 -2 -7 -3 1 5 )ω

Ultimately Periodic Signature

Example: s = 3 ( 2 2 1 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 4 8 )( 3 )ω

+4 −5

+4 −5



46Ultimately periodic signature

Periodic Signature

Example: s = ( 2 2 1 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 4 -1 3 -2 -7 -3 1 5 )ω

Ultimately Periodic Signature

Example: s = 3 ( 2 2 1 4 )ω whose dir. par. is (4, 9).
Smart labelling : ( 0 4 8 )( 3 7 2 6 1 -4 0 4 8 )ω

→ Will also generate a “non-canonical representation of integers”
in base 9

4 , hence a FLIP language.

+4 −5

+4 −5



47Going to the limit: signature directed by p
q

s = 21 3 0 1 2 · · ·
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47Going to the limit: signature directed by p
q

s = 21 3 0 1 2 · · ·

s is directed by 3
2

slope:32
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s directed by β

β belongs to Q \ N

linked to rational base number system;
non-canonical representation;
always a FLIP Language.

β belongs to N

linked to integer base b;
non-canonical representation of integers;
not necessarily a regular language.



s directed by β

β belongs to Q \ N

linked to rational base number system;
non-canonical representation;
always a FLIP Language.

β belongs to N

linked to integer base b;
non-canonical representation of integers;
not necessarily a regular language.

β is a Pisot number

linked to the NS built from the minimal polynomial of β;
non-canonical representation of integers;
not necessarily a regular language.

β is neither rational nor a Pisot number

not necessarily linked to the NS built from the minimal
polynomial of β.



49Open problems

L: a regular language whose generating function is bn

Is L directed by b?

L and K : two regular languages with the same generating function.

Are the paths associated with their signature bounded?

Which (regular) languages have sturmian words as their signature?

Is it linked to the NS whose base is the slope of this sturmian word?
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