Breadth-first signature and numeration systems

Victor Marsault, joint work with Jacques Sakarovitch
CNRS / Telecom-ParisTech, Paris, France

> Séminaire Automate, Paris, $2014-10-17$

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.

Proposition (Akiyama Frougny Sakarovitch 2008)

$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.

Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

FIGURE: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.

Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.

Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.
Proposition (Akiyama Frougny Sakarovitch 2008)
$L_{\frac{p}{q}}$ is not context-free.

Motivations

Figure: $L_{\frac{3}{2}}$, the language of integer representations in base $\frac{3}{2}$.

Proposition (Akiyama Frougny Sakarovitch 2008)

$L_{\frac{p}{q}}$ is not context-free.

Overview

Prefix-closed languages

Words signature
 Prefix-closed languages

Words

Prefix-closed

languages

Abstract
Numeration
Systems

Outline

1 Introduction

2 Signature, labelling and abstract numeration systems (ANS)

3 Substitutive signatures

4 Rational base numeration systems and periodic signature

5 Going further

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)
- Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)
- Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is
■ Rooted: a node is called the root (leftmost in the figures)

- Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)

■ Directed outward from the root: there is a unique path from the root to every other node.

- Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

- We consider infinite trees only.

- We consider infinite trees only.
- For convenience, there is loop on the root.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=2$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$$
\mathbf{s}=21
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=212$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=2122$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=21221$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=212212$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=21221212$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=212212122122$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$\mathbf{s}=$
$\lambda=$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$\mathbf{s}=2$
$\lambda=01$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{aligned}
& \mathbf{s}=21 \\
& \lambda=010
\end{aligned}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lll}
\mathbf{s}=2 & 1 & 2 \\
\lambda=01 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lllll}
\mathbf{s}=2 & 1 & 2 & 2 \\
\lambda=01 & 0 & 01 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 \\
\lambda & =01 & 0 & 01 & 01 & 0 & 0 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 0 & 0 & 01 & 01 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{aligned}
&)_{0}^{(0)} \rightarrow(1) \rightarrow 0 \rightarrow(2) \\
& \mathbf{s}=2 \begin{array}{lllllllllllll}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 2
\end{array} \\
& \lambda=01001010010010100101
\end{aligned}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{aligned}
&)_{0}^{(0)}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda=010010100100101001010 \cdots
\end{aligned}
$$

The pair signature/labelling is characteristic

$$
\begin{aligned}
& \mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega} \\
& \lambda=\left(\begin{array}{lll}
0 & 12 & 1
\end{array}\right)^{\omega}
\end{aligned}
$$

The pair signature/labelling is characteristic

$$
\begin{aligned}
& \mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega} \\
& \lambda=\left(\begin{array}{lll}
0 & 12 & 12
\end{array}\right)^{\omega}
\end{aligned}
$$

Figure: Non-canonical integer representations in base 2.

Abstract Numeration System (Lecomte-Rigo)

Observation

In basically every NS, the representations of integers follows the radix order:
$\forall n, p \quad\langle n\rangle \leq_{r a d}\langle n+p\rangle$

Abstract Numeration System (Lecomte-Rigo)

Observation

In basically every NS, the representations of integers follows the radix order: $\quad \forall n, p \quad\langle n\rangle \leq_{r a d}\langle n+p\rangle$

$$
\begin{array}{lll}
u<_{\text {rad }} v & \text { if } & |u|<|v| \\
& \text { or } & |u|=|v| \& u<_{\text {lex }} v
\end{array}
$$

Example: $2<_{\text {rad }} 1212<_{\mathrm{rad}} 21$.

Observation

In basically every NS, the representations of integers follows the radix order: $\quad \forall n, p \quad\langle n\rangle \leq_{r a d}\langle n+p\rangle$

$$
\begin{array}{lll}
u<_{\text {rad }} v & \text { if } & |u|<|v| \\
& \text { or } & |u|=|v| \& u<_{\text {lex }} v
\end{array}
$$

Example: $2<_{\text {rad }} 12 \quad 12<_{\text {rad }} 21$.

Definition (ANS L)

L : language over an ordered alphabet A.
$\langle n\rangle_{L}$ is the $(n+1)$-th word of L in the radix order.
In our scheme, $\langle n\rangle_{L}$ is the word labelling the path $0 \rightarrow n$.

Examples of ANS's

$L=\left\{u \in\{0,1, \ldots, p-1\}^{*} \mid u\right.$ does not start with a 0$\}$ \rightarrow NS in base p
$L=\left\{u \in\{0,1\}^{*} \mid u\right.$ does not contain the factor 11$\}$
\rightarrow Fibonacci NS

Examples of ANS's

$L=\left\{u \in\{0,1, \ldots, p-1\}^{*} \mid u\right.$ does not start with a 0$\}$
\rightarrow NS in base p
$L=\left\{u \in\{0,1\}^{*} \mid u\right.$ does not contain the factor 11$\}$
\rightarrow Fibonacci NS

Examples of ANS's

$L=\left\{u \in\{0,1, \ldots, p-1\}^{*} \mid u\right.$ does not start with a 0$\}$
\rightarrow NS in base p
$L=\left\{u \in\{0,1\}^{*} \mid u\right.$ does not contain the factor 11$\}$
\rightarrow Fibonacci NS

Examples of ANS's

$L=\left\{u \in\{0,1, \ldots, p-1\}^{*} \mid u\right.$ does not start with a 0$\}$
\rightarrow NS in base p
$L=\left\{u \in\{0,1\}^{*} \mid u\right.$ does not contain the factor 11$\}$
\rightarrow Fibonacci NS

Outline

1 Introduction

2 Signature, labelling and abstract numeration systems (ANS)

3 Substitutive signatures

4 Rational base numeration systems and periodic signature

5 Going further

NS $=$ Numeration system

Prefix-closed Abstract Rational NS (Lecomte-Rigo 2001)

Built from an arbitrary prefix-closed regular language.
Dumont-Thomas NS (Dumont-Thomas, 1989)
Built from an arbitrary morphism.

NS $=$ Numeration system

Prefix-closed Abstract Rational NS (Lecomte-Rigo 2001)

Built from an arbitrary prefix-closed regular language.
Dumont-Thomas NS (Dumont-Thomas, 1989)
Built from an arbitrary morphism.

Theorem
L : a prefix-closed language.
Signature (L) is a morphic word $\Leftrightarrow L$ is a regular language.

NS $=$ Numeration system

Prefix-closed Abstract Rational NS (Lecomte-Rigo 2001)

Built from an arbitrary prefix-closed regular language.
Dumont-Thomas NS (Dumont-Thomas, 1989)
Built from an arbitrary morphism.

Theorem
L : a prefix-closed language.
Signature (L) is a morphic word $\Leftrightarrow L$ is a regular language.

Theorem

Every DTNS is a prefix-closed ARNS.
Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Theorem
L : a prefix-closed language. Signature (L) is a morphic signature \Leftrightarrow
L is a regular language.

Word morphisms

σ : a morphism $A^{*} \rightarrow A^{*}$.

Running examples
Fibonacci morphism: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$

Word morphisms

σ : a morphism $A^{*} \rightarrow A^{*}$.

Running examples

Fibonacci morphism: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
A periodic morphism: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$

Word morphisms

$\sigma:$ a morphism $A^{*} \rightarrow A^{*}$.
σ is prolongable on a if $\sigma(a)$ starts with the letter a.

Running examples

Fibonacci morphism: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
A periodic morphism: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$
σ : a morphism $A^{*} \rightarrow A^{*}$.
σ is prolongable on a if $\sigma(a)$ starts with the letter a.
In this case, $\sigma^{\omega}(a)$ exists and is called a pure morphic word.

Running examples

Fibonacci morphism: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
A periodic morphism: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$

Word morphisms

σ : a morphism $A^{*} \rightarrow A^{*}$.
σ is prolongable on a if $\sigma(a)$ starts with the letter a.
In this case, $\sigma^{\omega}(a)$ exists and is called a pure morphic word.
f : a letter-to-letter morphism $A^{*} \rightarrow B^{*}$.
$\rightarrow f\left(\sigma^{\omega}(a)\right)$ is called a morphic word.

Running examples

Fibonacci morphism: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
A periodic morphism: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$
let $f_{\sigma}: A^{*} \rightarrow D^{*}$ be the (letter-to-letter) morphism defined by

- $D \subset \mathbb{N}$
- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a morphic signature.

Example: Fibonacci morphism
$\sigma(a)=a b$
$\sigma(b)=a$
let $f_{\sigma}: A^{*} \rightarrow D^{*}$ be the (letter-to-letter) morphism defined by

- $D \subset \mathbb{N}$
- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a morphic signature.

Example: Fibonacci morphism
$\sigma(a)=a b \quad \Longrightarrow f_{\sigma}(a)=2$
$\sigma(b)=a \quad \Longrightarrow \quad f_{\sigma}(b)=1$
let $f_{\sigma}: A^{*} \rightarrow D^{*}$ be the (letter-to-letter) morphism defined by

- $D \subset \mathbb{N}$
- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a morphic signature.

Example: Fibonacci morphism

$$
\begin{aligned}
& \sigma(a)=a b \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=a \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right)=2122121221221212212122 \ldots
\end{aligned}
$$

let $f_{\sigma}: A^{*} \rightarrow D^{*}$ be the (letter-to-letter) morphism defined by

- $D \subset \mathbb{N}$
- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a morphic signature.

Example: a periodic morphism
$\sigma(a)=a b c$
$\sigma(b)=a b$
$\sigma(c)=c$
let $f_{\sigma}: A^{*} \rightarrow D^{*}$ be the (letter-to-letter) morphism defined by

- $D \subset \mathbb{N}$
- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a morphic signature.

Example: a periodic morphism
$\sigma(a)=a b c \quad \Longrightarrow f_{\sigma}(a)=3$
$\sigma(b)=a b \quad \Longrightarrow f_{\sigma}(b)=2$
$\sigma(c)=c \quad \Longrightarrow f_{\sigma}(c)=1$
let $f_{\sigma}: A^{*} \rightarrow D^{*}$ be the (letter-to-letter) morphism defined by

- $D \subset \mathbb{N}$
- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a morphic signature.

Example: a periodic morphism

$$
\begin{align*}
\sigma(a)=a b c & \Longrightarrow f_{\sigma}(a)=3 \\
\sigma(b)=a b & \Longrightarrow f_{\sigma}(b)=2 \\
\sigma(c)=c \quad & \Longrightarrow f_{\sigma}(c)=1 \\
\sigma(a b c) & =a b c a b c \quad \text { hence } f_{\sigma}\left(\sigma^{\omega}(a)\right)= \tag{321}
\end{align*}
$$

Morphic labelling

If g is a morphism such that

- $\forall b,|g(b)|=|\sigma(b)|$
- if $g(b)=c_{0} c_{1} \cdots c_{k}$ then $c_{0}<c_{1}<\cdots<c_{k}$

We call $g\left(\sigma^{\omega}(a)\right)$ a morphic labelling.

If g is a morphism such that

- $\forall b,|g(b)|=|\sigma(b)|$
- if $g(b)=c_{0} c_{1} \cdots c_{k}$ then $c_{0}<c_{1}<\cdots<c_{k}$

We call $g\left(\sigma^{\omega}(a)\right)$ a morphic labelling.

Example: Fibonacci morphism
$\sigma(a)=\mathrm{ab} \quad \Longrightarrow f_{\sigma}(a)=2$
$\sigma(b)=a \quad \Longrightarrow f_{\sigma}(b)=1$
$f_{\sigma}\left(\sigma^{\omega}(a)\right)=2122121221221212212122 \cdots$
If we choose g :
$g(a)=01$
$g(b)=0$

If g is a morphism such that

- $\forall b,|g(b)|=|\sigma(b)|$
- if $g(b)=c_{0} c_{1} \cdots c_{k}$ then $c_{0}<c_{1}<\cdots<c_{k}$

We call $g\left(\sigma^{\omega}(a)\right)$ a morphic labelling.

Example: Fibonacci morphism

$$
\begin{aligned}
& \sigma(a)=\mathrm{ab} \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=\mathrm{a} \quad \Longrightarrow \quad f_{\sigma}(b)=1 \\
& \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

If we choose g :
$g(a)=01$
$g(b)=0$

If g is a morphism such that

- $\forall b,|g(b)|=|\sigma(b)|$
- if $g(b)=c_{0} c_{1} \cdots c_{k}$ then $c_{0}<c_{1}<\cdots<c_{k}$

We call $g\left(\sigma^{\omega}(a)\right)$ a morphic labelling.

Example: Fibonacci morphism

$$
\begin{aligned}
& \sigma(a)=a b \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=a \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

If we choose g :
$g(a)=01$
$g(b)=0$

If g is a morphism such that
■ $\forall b,|g(b)|=|\sigma(b)|$

- if $g(b)=c_{0} c_{1} \cdots c_{k}$ then $c_{0}<c_{1}<\cdots<c_{k}$

We call $g\left(\sigma^{\omega}(a)\right)$ a morphic labelling.

Example: Fibonacci morphism

$$
\begin{aligned}
& \sigma(a)=a b \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=a \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

If we choose g :
$g(a)=01$
$g(b)=0$

$$
g\left(\sigma^{\omega}(a)\right)=010010100100101001010 \ldots
$$

If g is a morphism such that

- $\forall b,|g(b)|=|\sigma(b)|$
- if $g(b)=c_{0} c_{1} \cdots c_{k}$ then $c_{0}<c_{1}<\cdots<c_{k}$

We call $g\left(\sigma^{\omega}(a)\right)$ a morphic labelling.

Example: a periodic morphism
$\sigma(a)=a b c \quad \Longrightarrow f_{\sigma}(a)=3$
$\sigma(b)=a b \quad \Longrightarrow f_{\sigma}(b)=2$
$\sigma(c)=c \quad \Longrightarrow f_{\sigma}(c)=1$
$\sigma(a b c)=a b c a b c \quad$ hence $f_{\sigma}\left(\sigma^{\omega}(a)\right)=(321)^{\omega}$
If we choose g :
$g(a)=012$
$g(b)=12$

$$
g\left(\sigma^{\omega}(a)\right)=(012121)^{\omega}
$$

$g(c)=1$

Theorem
L : a prefix-closed language. Signature (L) is morphic $\quad \Leftrightarrow \quad L$ is a regular language.

Theorem

L : a prefix-closed language. Signature (L) is morphic $\quad \Leftrightarrow \quad L$ is a regular language.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont-Thomas '89,'91,'93
- or the correspondence used in Maes-Rigo '02.

Theorem

L : a prefix-closed language. Signature (L) is morphic $\quad \Leftrightarrow \quad L$ is a regular language.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont-Thomas '89,'91,'93
- or the correspondence used in Maes-Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma, g)}$ has signature (σ, g).

Automaton associated with a morphic signature

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
g(a)=01
$$

$$
g(b)=0
$$

Automaton associated with a morphic signature

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\sigma(a)=a b
$$

$$
g(a)=01
$$

$$
g(b)=0
$$

©

Automaton associated with a morphic signature

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a } \quad \text { and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a morphic signature

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a morphic signature

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a morphic signature

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a morphic signature

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a morphic signature

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a morphic signature

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

(b)

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

$$
\sigma: \mathrm{A}^{*} \rightarrow \mathrm{~A}^{*} \text { prolongable on a and } \quad g: \mathrm{A}^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

Theorem

L : a prefix-closed language. Signature (L) is morphic $\quad \Leftrightarrow \quad L$ is a regular language.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to
■ the prefix graph/automaton in Dumont-Thomas '89,'91,'93

- or the correspondence used in Maes-Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma, g)}$ has signature (σ, g).

Theorem

L : a prefix-closed language. Signature (L) is morphic $\quad \Leftrightarrow \quad L$ is a regular language.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont-Thomas '89,'91,'93
- or the correspondence used in Maes-Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma, g)}$ has signature (σ, g).
Idea of proof: Unfold the automaton $\mathcal{A}_{(\sigma, g)}$.

Idea of proof: unfolding the automaton $\mathcal{A}_{(\sigma, g)}$

$$
\begin{aligned}
& \sigma(a)=a b \\
& \sigma(b)=a \\
& u=a^{-1} \sigma(a) \\
& \quad=b
\end{aligned}
$$

Idea of proof: unfolding the automaton $\mathcal{A}_{(\sigma, g)}$

$$
\begin{aligned}
& \sigma(a)=a b \\
& \sigma(b)=a \\
& u=a^{-1} \sigma(a) \\
& =b
\end{aligned}
$$

Idea of proof: unfolding the automaton $\mathcal{A}_{(\sigma, g)}$

$$
\begin{aligned}
& \sigma(a)=a b \\
& \sigma(b)=a \\
& u=a^{-1} \sigma(a) \\
& =b
\end{aligned}
$$

$$
\mathrm{O}_{0}^{(0, a)}-1 \rightarrow(1, b)-0
$$

$$
\begin{array}{lll}
a & u & \sigma(u)
\end{array}
$$

Idea of proof: unfolding the automaton $\mathcal{A}_{(\sigma, g)}$

$$
\begin{aligned}
& \sigma(a)=a b \\
& \sigma(b)=a \\
& u=a^{-1} \sigma(a) \\
& =b
\end{aligned}
$$

$$
\begin{aligned}
& (0, a)-1 \rightarrow(1, b)-0 \rightarrow \text { (2,a) } \\
& a
\end{aligned} \quad u \quad \sigma(u)
$$

Idea of proof: unfolding the automaton $\mathcal{A}_{(\sigma, g)}$

$$
\begin{aligned}
& \sigma(a)=a b \\
& \sigma(b)=a \\
& u=a^{-1} \sigma(a) \\
& =b
\end{aligned}
$$

Idea of proof: unfolding the automaton $\mathcal{A}_{(\sigma, g)}$

$$
\begin{aligned}
& \sigma(a)=a b \\
& \sigma(b)=a \\
& u=a^{-1} \sigma(a) \\
& =b
\end{aligned}
$$

Idea of proof: unfolding the automaton $\mathcal{A}_{(\sigma, g)}$

$$
\begin{aligned}
& \begin{array}{l}
\sigma(a)=a b \\
\sigma(b)=a \\
u=a^{-1} \sigma(a) \\
=b
\end{array} \\
& \quad a \quad u \quad r a(u) \\
& \sigma^{2}(u) \\
& \sigma^{3}(u) \\
& \sigma^{4}(u)
\end{aligned}
$$

Theorem
L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
\mathcal{B} : a finite automaton.
We define $\left(\sigma_{B}, g_{B}\right)$ such that

$$
\mathcal{B}=\mathcal{A}_{\left(\sigma_{B}, g_{B}\right)}
$$

Theorem
L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
\mathcal{B} : a finite automaton.
We define $\left(\sigma_{B}, g_{B}\right)$ such that

$$
\mathcal{B}=\mathcal{A}_{\left(\sigma_{B}, g_{B}\right)}
$$

Proposition

The language accepted by \mathcal{B} has signature $\left(\sigma_{\mathcal{B}}, g_{\mathcal{B}}\right)$.
Follows directly from the other direction.

Definition

L : a language over an ordered alphabet A.
The representation $\langle n\rangle_{L}$ of the integer n in the ANS L is the $(n+1)$-th word of L in the radix order.

In our scheme, $\langle n\rangle_{L}$ is the word labelling the path $0 \rightarrow n$.

Definition

L : a Prefix-closed regular language over an ordered alphabet A.
The representation $\langle n\rangle_{L}$ of the integer n in the Prefix-closed ARNS L is the $(n+1)$-th word of L in the radix order.
In our scheme, $\langle n\rangle_{L}$ is the word labelling the path $0 \rightarrow n$.

Labelling does not matter

Proposition

L : prefix-closed ARNS of signature $\left(s, \lambda_{1}\right)$
K : prefix-closed ARNS of signature $\left(s, \lambda_{2}\right)$
The conversion function $\langle n\rangle_{L} \mapsto\langle n\rangle_{K}$ is very simple ${ }^{\dagger}$.
\dagger realised by a finite, pure sequential and letter-to-letter transducer.

Labelling does not matter (Idea of proof)

\bigcirc

○
○
○
○

○
○
○
O

Labelling does not matter (Idea of proof)

\bigcirc
○

$$
\bigcirc
$$

\bigcirc
\bigcirc

Labelling does not matter (Idea of proof)

8
\bigcirc

$$
\bigcirc
$$

\bigcirc
\bigcirc

Labelling does not matter (Idea of proof)

\bigcirc

\bigcirc

Labelling does not matter (Idea of proof)

O
O

Labelling does not matter (Idea of proof)

Dumont-Thomas Numeration System (DTNS)
$\sigma: A \rightarrow A^{*}$ prolongable on a.
Example : $\sigma(a)=a b c$

$$
\sigma(b)=a b
$$

$$
\sigma(c)=c
$$

$\sigma: A \rightarrow A^{*}$ prolongable on a.
Example: $\sigma(a)=a b c$

$$
\sigma(b)=a b
$$

$$
\sigma(c)=c
$$

Definition

$$
A_{\sigma}=\{[u] \mid u \text { is a strict prefix of } \sigma(b) \text { for some } b \in A\}
$$

Example : $A_{\sigma}=\{[\varepsilon],[a],[a b]\}$
$\sigma: A \rightarrow A^{*}$ prolongable on a.
Example : $\sigma(a)=a b c$

$$
\sigma(b)=a b
$$

$$
\sigma(c)=c
$$

Definition

$$
A_{\sigma}=\{[u] \mid u \text { is a strict prefix of } \sigma(b) \text { for some } b \in A\}
$$

Example : $A_{\sigma}=\{[\varepsilon],[a],[a b]\}$
$g_{\sigma}:$ morphism $A^{*} \rightarrow A_{\sigma}^{*}$
$g_{\sigma}(b)=\left[u_{0}\right]\left[u_{1}\right] \cdots\left[u_{k-1}\right]$

- $k=|\sigma(b)|$
- u_{i} is the prefix of length i of $\sigma(b)$

Example : $g_{\sigma}(a)=[\varepsilon][a][a b]$

$$
g_{\sigma}(b)=[\varepsilon][a]
$$

$$
g_{\sigma}(c)=[\varepsilon]
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g_{\sigma}(a)=[\varepsilon][a][a b] \\
& g_{\sigma}(b)=[\varepsilon][a] \\
& g_{\sigma}(c)=[\varepsilon]
\end{aligned}
$$

Definition

ρ function $A_{\sigma}{ }^{*} \rightarrow A^{*}$
$\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)=\sigma^{k}\left(u_{k}\right) \sigma^{k-1}\left(u_{k-1}\right) \cdots \sigma^{2}\left(u_{2}\right) \sigma\left(u_{1}\right) u_{0}$
Example: $\rho_{\sigma}([a][\varepsilon][a b])=\sigma^{2}(a) \quad \sigma(\varepsilon) \quad a b$ $a b c a b c \quad \varepsilon \quad a b=a b c a b c a b$

Definition

ρ function $A_{\sigma}{ }^{*} \rightarrow A^{*}$
$\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)=\sigma^{k}\left(u_{k}\right) \sigma^{k-1}\left(u_{k-1}\right) \cdots \sigma^{2}\left(u_{2}\right) \sigma\left(u_{1}\right) u_{0}$
Example: $\rho_{\sigma}([a][\varepsilon][a b])=\sigma^{2}(a) \quad \sigma(\varepsilon) \quad a b$ $a b c a b c \quad \varepsilon \quad a b=a b c a b c a b$

Theorem (Dumont Thomas '89)
$\forall n \in \mathbb{N}$
$\exists!$ word $\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ accepted by $\mathcal{A}_{\left(\sigma, g_{\sigma}\right)}$ such that

- $u_{k} \neq \varepsilon$

■ $\left|\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)\right|=n$
$\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ is the representation of n in the DTNS.

Definition

ρ function $A_{\sigma}{ }^{*} \rightarrow A^{*}$
$\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)=\sigma^{k}\left(u_{k}\right) \sigma^{k-1}\left(u_{k-1}\right) \cdots \sigma^{2}\left(u_{2}\right) \sigma\left(u_{1}\right) u_{0}$
Example: $\rho_{\sigma}([a][\varepsilon][a b])=\sigma^{2}(a) \quad \sigma(\varepsilon) \quad a b$ $a b c a b c \quad \varepsilon \quad a b=a b c a b c a b$

Theorem (Dumont Thomas '89)

$\forall n \in \mathbb{N}$
$\exists!$ word $\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ accepted by $\mathcal{A}_{\left(\sigma, g_{\sigma}\right)}$ such that

- $u_{k} \neq \varepsilon$

■ $\left|\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)\right|=n$
$\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ is the representation of n in the DTNS.
Example: $[a][\varepsilon][a b]$ is the representation of 8.

Definition

ρ function $A_{\sigma}{ }^{*} \rightarrow A^{*}$
$\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)=\sigma^{k}\left(u_{k}\right) \sigma^{k-1}\left(u_{k-1}\right) \cdots \sigma^{2}\left(u_{2}\right) \sigma\left(u_{1}\right) u_{0}$
Example: $\rho_{\sigma}([a][\varepsilon][a b])=\sigma^{2}(a) \quad \sigma(\varepsilon) \quad a b$ $a b c a b c \quad \varepsilon \quad a b=a b c a b c a b$

Theorem (Dumont Thomas '89)
$\forall n \in \mathbb{N}$
$\exists!$ word $\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ accepted by $\mathcal{A}_{\left(\sigma, g_{\sigma}\right)}$ such that

- $u_{k} \neq \varepsilon$

■ $\left|\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)\right|=n$
$\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ is the representation of n in the DTNS.
Example: $[a][\varepsilon][a b]$ is the representation of 8 .

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Reformulation of 1.

σ : a morphism generating a DTNS.

$$
\forall n, p \in \mathbb{N}, \quad\langle n\rangle_{\sigma}<_{\mathrm{rad}}\langle n+p\rangle_{\sigma}
$$

The proof of 1 . is technical and omitted here.

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Reformulation of 1.

σ : a morphism generating a DTNS.

$$
\forall n, p \in \mathbb{N}, \quad\langle n\rangle_{\sigma}<_{\mathrm{rad}}\langle n+p\rangle_{\sigma}
$$

The proof of 1 . is technical and omitted here.

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
${ }^{\dagger}$ Through a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2 .
Prefix-Closed ARNS L

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
${ }^{\dagger}$ Through a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2 .
Prefix-Closed ARNS $L \longrightarrow$ Automaton \mathcal{A}

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2.
Prefix-Closed ARNS $L \longrightarrow$ Automaton $\mathcal{A} \longrightarrow$ Morphisms (σ, g)

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2 .
Prefix-Closed ARNS $L \longrightarrow$ Automaton $\mathcal{A} \longrightarrow$ Morphisms (σ, g)
of signature $\left(s, \lambda_{1}\right)$
where

$$
s=f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad \lambda_{1}=g\left(\sigma^{\omega}(a)\right)
$$

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.
Sketch of proof of 2.
```
Prefix-Closed ARNS \(L \longrightarrow\) Automaton \(\mathcal{A} \longrightarrow\) Morphisms \((\sigma, g)\)
    of signature \(\left(s, \lambda_{1}\right)\)
```


where

$$
s=f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad \lambda_{1}=g\left(\sigma^{\omega}(a)\right)
$$

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2 .
$\underset{\sim}{\text { Prefix-Closed ARNS }} \begin{gathered}\text { of signature }\left(s, \lambda_{1}\right)\end{gathered}$
DT Automaton $\mathcal{A}_{\left(\sigma, g_{\sigma}\right)} \longleftrightarrow$ Automaton $\mathcal{A} \longrightarrow$ Morphisms (σ, g) where $\quad s=f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad \lambda_{1}=g\left(\sigma^{\omega}(a)\right)$

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2 .

```
Prefix-Closed ARNS \(L \longrightarrow\) Automaton \(\mathcal{A} \longrightarrow\) Morphisms \((\sigma, g)\)
    of signature \(\left(s, \lambda_{1}\right)\)
Prefix-closed ARNS \(K \longleftarrow\) DT Automaton \(\mathcal{A}_{\left(\sigma, g_{\sigma}\right)} \longleftarrow\) DTNS \(\sigma\)
    of signature \(\left(s, \lambda_{2}\right)\)
        where \(\quad s=f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad \lambda_{1}=g\left(\sigma^{\omega}(a)\right) \quad \lambda_{2}=g_{\sigma}\left(\sigma^{\omega}(a)\right)\)
```


Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.
Sketch of proof of 2.
```
Prefix-Closed ARNS \(L \longrightarrow\) Automaton \(\mathcal{A} \longrightarrow\) Morphisms \((\sigma, g)\)
    of signature \(\left(s, \lambda_{1}\right)\)
Prefix-closed ARNS \(K \longleftarrow\) DT Automaton \(\mathcal{A}_{\left(\sigma, g_{\sigma}\right)}\)
                                    DTNS \(\sigma\)
    of signature \(\left(s, \lambda_{2}\right)\)
        where \(\quad s=f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad \lambda_{1}=g\left(\sigma^{\omega}(a)\right) \quad \lambda_{2}=g_{\sigma}\left(\sigma^{\omega}(a)\right)\)
```


Proposition

L: prefix-closed ARNS of signature $\left(s, \lambda_{1}\right)$
K : prefix-closed ARNS of signature (s, λ_{2})
The conversion function $\langle n\rangle_{L} \mapsto\langle n\rangle_{K}$ is very simple ${ }^{\dagger}$.

Outline

1 Introduction

2 Signature, labelling and abstract numeration systems (ANS)

3 Substitutive signatures

4 Rational base numeration systems and periodic signature

5 Going further

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p) :
- the period length of \mathbf{s} is q;

■ $p=r_{0}+r_{1}+r_{2}+\cdots+r_{q-1}$.

- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p) :
- the period length of \mathbf{s} is q;
- $p=r_{0}+r_{1}+r_{2}+\cdots+r_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition: $\#$ \{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

Theorem

K_{s} : the language generated by the signature \mathbf{s}.

- If $\frac{p}{q}$ is an integer, K_{s} is a rational language.
(and linked to integer base NS)
- If $\frac{p}{q}$ is not integer, K_{s} is a FLIP language.
(and linked to rational base NS)
- base $p>1$

■ alphabet $A_{p}=\{0,1, \cdots, p-1\}$

Integer Base

- base $p>1$

■ alphabet $A_{p}=\{0,1, \cdots, p-1\}$

■ value $\pi\left(a_{n} \cdots a_{1} a_{0}\right)=\sum_{i=0}^{n} a_{i} p^{i}$

Example (base 3) - $\quad \pi(12)=(3 \times 1)+(1 \times 2)=5$

$$
\pi(122)=(9 \times 1)+(3 \times 2)+(1 \times 2)=17
$$

- base $p>1$

■ alphabet $A_{p}=\{0,1, \cdots, p-1\}$

- value $\pi\left(a_{n} \cdots a_{1} a_{0}\right)=\sum_{i=0}^{n} a_{i} p^{i}$

■ $\pi\left(A_{p}^{*}\right)=\mathbb{N}$

- representation $\langle n\rangle_{p}=\left\langle n^{\prime}\right\rangle_{p}$.a
- ($\left.n^{\prime}, a\right)$ is the Euclidean division de n par p.
- $\langle\mathbb{N}\rangle_{p}=\left(A_{p} \backslash\{0\}\right) \cdot A_{p}^{*}$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- representation $\langle n\rangle_{\frac{\rho}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}}$.a :
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{\rho}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}}$.a :
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}}$.a :
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=
$$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}}$.a :
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=
$$

$$
\begin{aligned}
& 2 \\
& \uparrow \\
& \uparrow \\
& q
\end{aligned} \underset{n}{3}=\underset{p}{3} \times N_{1}+a_{0}
$$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}}$.a :
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=
$$

$$
2 \times 3=3 \times N_{1}+a_{0} ; \quad \Rightarrow N_{1}=2 \text { and } a_{0}=0
$$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}} . a$:
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=\langle 2\rangle_{\frac{3}{2}} 0=
$$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}} \cdot a$:
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=\langle 2\rangle_{\frac{3}{2}} 0=
$$

$$
2 \times 2=3 \times N_{2}+a_{1}
$$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}} \cdot a$:
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=\langle 2\rangle_{\frac{3}{2}} 0=
$$

$$
2 \times 2=3 \times N_{2}+a_{1} ; \quad \Rightarrow N_{2}=1 \text { and } a_{1}=1
$$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}} . a$:
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=\langle 2\rangle_{\frac{3}{2}} 0=\langle 1\rangle_{\frac{3}{2}} 10=
$$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}} \cdot a$:
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=\langle 2\rangle_{\frac{3}{2}} 0=\langle 1\rangle_{\frac{3}{2}} 10=
$$

$$
2 \times 1=3 \times N_{3}+a_{2}
$$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}}$.a :
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=\langle 2\rangle_{\frac{3}{2}} 0=\langle 1\rangle_{\frac{3}{2}} 10=
$$

$$
2 \times 1=3 \times N_{3}+a_{2} ; \quad \Rightarrow N_{3}=0 \text { and } a_{2}=2
$$

Rational Base

- base $\frac{p}{q}>1$ irreducible fraction $(p>q$ and $p \wedge q=1)$.
- alphabet $A_{p}=\{0,1, \ldots, p-1\}$
- representation $\langle n\rangle_{\frac{p}{q}}=\left\langle n^{\prime}\right\rangle_{\frac{p}{q}} . a$:
- $\left(n^{\prime}, a\right)$ is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p}.

Example: computing $\langle 3\rangle_{\frac{3}{2}}$:

$$
\langle 3\rangle_{\frac{3}{2}}=\langle 2\rangle_{\frac{3}{2}} 0=\langle 1\rangle_{\frac{3}{2}} 10=210
$$

Tree of the representations in base $\frac{3}{2}$

Tree of the representations in base $\frac{3}{2}$

(18)

(12) ${ }^{0}-(18)$

Tree of the representations in base $\frac{3}{2}$

The language $L_{\frac{3}{2}}$

The language $L_{\frac{3}{2}}$

Properties of $L_{\frac{p}{q}}$

- $L_{\frac{p}{q}}$ is prefix-closed.
- $L_{\frac{p}{q}}$ is right-extendable.
- $L_{\frac{p}{q}}$ is prefix-closed.
- $L_{\frac{p}{q}}$ is right-extendable.

Let $a_{n} a_{n-1} \cdots a_{0}=\langle n\rangle$.

$$
\sum_{i=0}^{n} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{i}=n
$$

- $L_{\frac{p}{q}}$ is prefix-closed.
- $L_{\frac{p}{q}}$ is right-extendable.

Let $a_{n} a_{n-1} \cdots a_{0}=\langle n\rangle$.

$$
\pi\left(a_{n} \cdots a_{1} a_{0}\right)=\sum_{i=0}^{n} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{i}=n
$$

- $L_{\frac{p}{q}}$ is prefix-closed.
- $L_{\frac{p}{q}}$ is right-extendable.

Let $a_{n} a_{n-1} \cdots a_{0}=\langle n\rangle$.

$$
\pi\left(a_{n} \cdots a_{1} a_{0}\right)=\sum_{i=0}^{n} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{i}=n
$$

Theorem (Akiyama Frougny Sakarovitch, 2008)
$L_{\frac{p}{q}}$ is not a context-free language.

- $L_{\frac{p}{q}}$ is prefix-closed.
- $L_{\frac{p}{q}}$ is right-extendable.

Let $a_{n} a_{n-1} \cdots a_{0}=\langle n\rangle$.

$$
\pi\left(a_{n} \cdots a_{1} a_{0}\right)=\sum_{i=0}^{n} \frac{a_{i}}{q}\left(\frac{p}{q}\right)^{i}=n
$$

Theorem (Akiyama Frougny Sakarovitch, 2008)
$L_{\frac{p}{q}}$ is not a context-free language.
$L_{\frac{p}{q}}$ has the Finite Left Iteration Property.

Definition

A language L is FLIP if
$\forall u v, \exists$ only finitely indices i such that $u v^{i}$ is the prefix of a word of L;
or, equivalently
$\forall u v, \quad \operatorname{Pref}(L) \bigcap u v^{*}$ is finite

Example: the prefixes of an infinite aperiodic word.
(We are still looking for "natural" examples of FLIP languages.)

Definition

A language L is FLIP if
$\forall u v, \exists$ only finitely indices i such that $u v^{i}$ is the prefix of a word of L;
or, equivalently
$\forall u v, \quad \operatorname{Pref}(L) \bigcap u v^{*}$ is finite

Intuition 1

- L does not contain any infinite rational language.
[IRS : Greibach 1975]
- L is "hard" to extend to a rational language.

Example: $\left\{a^{n} \mid n\right.$ is a prime number $\}$ is IRS but not FLIP.

Definition

A language L is FLIP if
$\forall u v, \exists$ only finitely indices i such that $u v^{i}$ is the prefix of a word of L;
or, equivalently
$\forall u v, \quad \operatorname{Pref}(L) \bigcap u v^{*}$ is finite

Intuition 2

- The topological closure of L contains only aperiodic word.
(Every branch of the tree-representation of L is labelled by an aperiodic word.)
- Every finite language is FLIP.
- A finite union of FLIP languages is FLIP.
- Any intersection of FLIP languages is FLIP.

■ Every sub-language of a FLIP language is FLIP.

- The concatenation of two FLIP languages is FLIP.
- The prefix closure of a FLIP language is FLIP.
- The inverse image by transducer of a FLIP language is FLIP.

Christoffel Word and Christoffel rhythm

Slope $\frac{p}{q}$:
Christ. word: yyxyx Christ. rhythm: Sign. of $L_{\frac{p}{q}}$:
$(2,1)$
$(21)^{\omega}$

Christoffel Word and Christoffel rhythm

Slope $\frac{p}{q}$:
Christ. word:
$\frac{3}{2}$
yyxyx
$\frac{5}{2}$
yyy x yy x
Christ. rhythm:
$(2,1)$
$(3,2)$
Sign. of $L_{\frac{p}{q}}$:
$(21)^{\omega}$
$(32)^{\omega}$

Christoffel Word and Christoffel rhythm

Slope $\frac{p}{q}$:
Christ. word: Christ. rhythm:
Sign. of $L_{\frac{p}{q}}$:

yyxyx
$(2,1)$
$(21)^{\omega}$
$\frac{5}{2}$
yyy x yy x
$(3,2)$
$(32)^{\omega}$

Definition (Canonical labelling)

the p-tuple: $(0, q,(2 q), \ldots,(p-1) q) \quad[\bmod p]$
Example: $\quad(0,2,1)$ for $\frac{3}{2} \quad$ and $\quad(0,3,1,4,2)$ for $\frac{5}{3}$.

Definition (Canonical labelling)

the p-tuple: $(0, q,(2 q), \ldots,(p-1) q) \quad[\bmod p]$
Example: $\quad(0,2,1)$ for $\frac{3}{2} \quad$ and $\quad(0,3,1,4,2)$ for $\frac{5}{3}$.

Proposition (MS, to appear)
$\frac{p}{q}$: a base.
u : the Christoffel rhythm of slope $\frac{p}{q}$.
v : the canonical labelling associated with $\frac{p}{q}$.
The language $L_{\frac{p}{q}}$ has for signature u^{ω} and for labelling v^{ω}.
The proof is technical and omitted here.

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p):
- the period length of \mathbf{s} is q;
- $p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

Theorem (MS, to appear)

K_{s} : the language generated by the signature \mathbf{s}.

- If $\frac{p}{q}$ is an integer, K_{s} is a rational language.
(and linked to integer base NS)
- If $\frac{p}{q}$ is not integer, K_{s} is a FLIP language.
(and linked to rational base NS)

The tree whose signature is $(3,1,1)^{\omega}$

The tree whose signature is $(2,2,1)^{\omega}$

The tree whose signature is $(2,2,1)^{\omega}$

Figure: Underlying tree of the language of integers in base $\frac{5}{3}$

Signature sso($\left.s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}$

- Directing parameter (q, p):
- the period length of \mathbf{s} is q;

■ $p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.

- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p):
- the period length of \mathbf{s} is q;
- $p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example: $\quad \mathbf{s}=(2,2,1,4)^{\omega} \quad$ whose dir. par. is $(4,9)$.
Smart labelling : (,, , , , , , ,

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p):
- the period length of \mathbf{s} is q;
- $p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example:

$$
\mathbf{s}=(2,2,1,4)^{\omega}
$$

whose dir. par. is $(4,9)$.
Smart labelling : (0, , , , , , , , ${ }^{\omega}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p):
- the period length of \mathbf{s} is q;
$\square p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example: $\quad \mathbf{s}=(2,2,1,4)^{\omega} \quad$ whose dir. par. is $(4,9)$.
Smart labelling : (0, 4, , , , , ,) ${ }^{\omega}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p):
- the period length of \mathbf{s} is q;
$\square p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example:

$$
\mathbf{s}=(2,2,1,4)^{\omega}
$$

whose dir. par. is $(4,9)$.
Smart labelling : (0, 4, -1, , , , , ,) ${ }^{\omega}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p):
- the period length of \mathbf{s} is q;
$\square p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example:

$$
\mathbf{s}=(2,2,1,4)^{\omega}
$$

whose dir. par. is $(4,9)$.
Smart labelling: ($\underbrace{4}_{,},-1, \underbrace{3,}_{,}, \quad, \quad,)^{\omega}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p):
- the period length of \mathbf{s} is q;
$\square p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example:

$$
\mathbf{s}=(2,2,1,4)^{\omega}
$$

whose dir. par. is $(4,9)$.
Smart labelling: ($\underbrace{4},-1, \underbrace{3,-2}, \quad, \quad, \quad)^{\omega}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p) :
- the period length of \mathbf{s} is q;
$\square p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example: $\quad \mathbf{s}=(2,2,1,4)^{\omega} \quad$ whose dir. par. is $(4,9)$.
Smart labelling : ($\underbrace{4},-1,3,-2,-7, \quad, \quad)^{\omega}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p):
- the period length of \mathbf{s} is q;
- $p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example: $\quad \mathbf{s}=(2,2,1,4)^{\omega} \quad$ whose dir. par. is $(4,9)$.
Smart labelling : ($\underbrace{4},-1,3,-2,-7,-3, \quad, \quad)^{\omega}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p) :
- the period length of \mathbf{s} is q;
$\square p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example: $\quad \mathbf{s}=(2,2,1,4)^{\omega} \quad$ whose dir. par. is $(4,9)$.
Smart labelling: ($\underbrace{4},-1, \underbrace{3,-2},-7,-3,1,)^{\omega}$

$$
\text { Signature } \mathbf{s}=\left(s_{0} s_{1} \cdots s_{(q-1)}\right)^{\omega}
$$

- Directing parameter (q, p) :
- the period length of \mathbf{s} is q;
- $p=s_{0}+s_{1}+s_{2}+\cdots+s_{q-1}$.
- Growth ratio: $\frac{p}{q}$
- Intuition : \#\{nodes at depth $i\}$ is roughly $\left(\frac{p}{q}\right)^{i}$

■ Smart labelling: $\left(\lambda_{0} \lambda_{1} \cdots \lambda_{p-1}\right)^{\omega}$
$\lambda_{0}=0$
Inside a block: $\lambda_{i+1}=\lambda_{i}+q$
From a block to the next : $\lambda_{i+1}=\lambda_{i}+q-p$. (see example)

Example: $\quad \mathbf{s}=(2,2,1,4)^{\omega} \quad$ whose dir. par. is $(4,9)$.
Smart labelling : (0, 4, -1, 3, -2, -7, $-3,1,5)^{\omega}$

Proposition (MS, to appear)

u^{ω} : a periodic signature.
(q, p) : its directing parameter.
v^{ω} : its associated smart labelling
L : the language whose signature/labelling are $\left(u^{\omega}, v^{\omega}\right)$
if w is the $(n+1)$-th word of L (labelling the path $0 \xrightarrow{w} n$)

$$
\pi_{\frac{p}{q}}(w)=n
$$

L is a "non-canonical representation of integers" in base $\frac{p}{q}$

Reformulation of Theorem 2.

L : a non canonical representation of integers in base $\frac{p}{q}$. L is FLIP.

Theorem (Akiyama Frougny Sakarovitch 2008)
For all finite alphabet A there is a finite sequential transducer \mathcal{T} :
$\forall w \in A^{*}, \quad \pi(w)=\pi(\mathcal{T}(w)) \quad$ and $\quad \mathcal{T}(w) \in L_{\frac{p}{q}}$.

- It follows that $\mathcal{T}(L)=L_{\frac{p}{q}}$

■ FLIP is stable by inverse image of transducer hence $\mathcal{T}^{-1}\left(L_{\frac{p}{q}}\right)$ is FLIP.
■ FLIP is stable by sublanguage hence L is FLIP.

Outline

1 Introduction

2 Signature, labelling and abstract numeration systems (ANS)

3 Substitutive signatures

4 Rational base numeration systems and periodic signature

5 Going further

Ultimately periodic signature

Periodic Signature
Example: $\quad \mathbf{s}=\left(\begin{array}{llll}2 & 2 & 1 & 4\end{array}\right)^{\omega} \quad$ whose dir. par. is $(4,9)$. Smart labelling : $(\underbrace{0}_{+4} 4-1 \underbrace{3}_{-5}-2-7-3115)^{\omega}$

Ultimately periodic signature

Periodic Signature
Example: $\quad \mathbf{s}=\left(\begin{array}{llll}2 & 2 & 1 & 4\end{array}\right)^{\omega} \quad$ whose dir. par. is $(4,9)$. Smart labelling : $(\underbrace{0}_{+4} 4-1 \underbrace{3}_{-5}-2-7-3115)^{\omega}$

Ultimately Periodic Signature

Example:
$\mathbf{s}=3\left(\begin{array}{ll}2 & 214\end{array}\right)^{\omega}$
Smart labelling :

Ultimately periodic signature

Periodic Signature
Example: $\quad \mathbf{s}=\left(\begin{array}{llll}2 & 2 & 1 & 4\end{array}\right)^{\omega} \quad$ whose dir. par. is $(4,9)$. Smart labelling : $(\underbrace{0}_{+4} 4-1 \underbrace{3}_{-5}-2-7-3115)^{\omega}$

Ultimately Periodic Signature

Example:
$\mathbf{s}=3\left(\begin{array}{ll}2 & 214\end{array}\right)^{\omega}$ Smart labelling : $(\underbrace{0}_{+4} 4 \underbrace{8}_{-5})$
whose dir. par. is $(4,9)$. $)^{\omega}$

Ultimately periodic signature

Periodic Signature
Example: $\quad \mathbf{s}=\left(\begin{array}{llll}2 & 2 & 1 & 4\end{array}\right)^{\omega} \quad$ whose dir. par. is $(4,9)$. Smart labelling : $(\underbrace{0}_{+4} 4-1 \underbrace{3}_{-5}-2-7-3115)^{\omega}$

Ultimately Periodic Signature

Example:
$\mathbf{s}=3\left(\begin{array}{ll}2 & 214\end{array}\right)^{\omega}$ Smart labelling : $(\underbrace{0}_{+4} 4 \underbrace{8}_{-5})(3$
whose dir. par. is $(4,9)$. $)^{\omega}$

Periodic Signature

Example: $\quad \mathbf{s}=\left(\begin{array}{llll}2 & 2 & 1 & 4\end{array}\right)^{\omega} \quad$ whose dir. par. is $(4,9)$.

Ultimately Periodic Signature

Example: $\quad \mathbf{s}=3\left(\begin{array}{lll}2 & 2 & 1\end{array}\right)^{\omega} \quad$ whose dir. par. is $(4,9)$. Smart labelling: $\left(\begin{array}{llllllll}0 & 4 & 8\end{array}\right)\left(\begin{array}{llllllll}3 & 7 & 2 & 6 & 1 & -4 & 0 & 4 \\ 4\end{array}\right)^{\omega}$
\rightarrow Will also generate a "non-canonical representation of integers" in base $\frac{9}{4}$, hence a FLIP language.

Going to the limit: signature directed by $\frac{p}{q}$

$$
\mathbf{s}=213012 \cdots
$$

Going to the limit: signature directed by $\frac{p}{q}$

s directed by β

- β belongs to $\mathbb{Q} \backslash \mathbb{N}$
- linked to rational base number system;
- non-canonical representation;
- always a FLIP Language.
- β belongs to \mathbb{N}
- linked to integer base b;
- non-canonical representation of integers;
- not necessarily a regular language.

s directed by β

- β belongs to $\mathbb{Q} \backslash \mathbb{N}$

■ linked to rational base number system;

- non-canonical representation;
- always a FLIP Language.
- β belongs to \mathbb{N}
- linked to integer base b;
- non-canonical representation of integers;
- not necessarily a regular language.
- β is a Pisot number
- linked to the NS built from the minimal polynomial of β;
- non-canonical representation of integers;
- not necessarily a regular language.
- β is neither rational nor a Pisot number
- not necessarily linked to the NS built from the minimal polynomial of β.
L : a regular language whose generating function is b^{n}
Is L directed by b ?
L and K : two regular languages with the same generating function. Are the paths associated with their signature bounded?

Which (regular) languages have sturmian words as their signature? Is it linked to the NS whose base is the slope of this sturmian word?

