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NS = Numeration system

Prefix-closed Abstract Rational NS (Lecomte–Rigo 2001)

Built from an arbitrary prefix-closed rational language.

Dumont-Thomas NS (Dumont-Thomas, 1989)

Built from an arbitrary substitution.

Definition: Signature

Tree or language 7−→ infinite word
In particular: Rational language 7−→ substitutive word

Theorem

Every DTNS is a prefix-closed ARNS.

Every prefix-closed ARNS is easily† convertible to a DTNS.

† Through a finite, letter-to-letter and pure sequential transducer.
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2We call tree a...

Directed graph which is

Rooted: a node is called the root (leftmost in the figures)

Directed outward from the root: there is a unique path
from the root to every other node.

Ordered: the children of every node are ordered
(In the figures, lower children are smaller.)
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3Every tree has a canonical breadth-first traversal
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4Two more features

We consider infinite trees only.
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4Two more features

We consider infinite trees only.

For convenience, there is loop on the root.
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5Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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7Prefix-closed languages and labelled trees

Alphabets are ordered hence
prefix-closed languages = labelled trees.
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8Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Definition

The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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9The pair signature/labelling is characteristic

s = (3 2 1)ω

λ = (012 12 1)ω
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Figure : Non-canonical integer representations in base 2.



Theorem

L: a prefix-closed language.
Signature(L) is substitutive ⇔ L is accepted by a finite automaton.
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11A word on substitution

A substitution σ is a morphism A∗ → A∗.

σ is prolongable on a if σ(a) starts with the letter a.

In this case, σω(a) exists and is called a purely substitutive word .

Running examples

Fibonacci substitution: {a, b} → {a, b}∗

a 7→ ab
b 7→ a

Periodic substitution: {a, b, c} → {a, b, c}∗

a 7→ abc
b 7→ ab
c 7→ c
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12Substitutive signature

σ: a substitution prolongable on a.

f : a letter-to-letter morphism.
→ f (σω(a)) is called a subtitutive word.

Definitions

let fσ : A∗ → D∗ be the (letter-to-letter) morphism defined by

D ⊂ N

∀b, fσ(b) = |σ(b)|

We call fσ(σ
ω(a)) a subtitutive signature.

If g is a morphism such that

∀b, |g(b)| = |σ(b)|

if g(b) = c0c1 · · · ck then c0 < c1 < · · · < ck

We call g(σω(a)) a substitutive labelling.
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σ(a) = ab =⇒ fσ(a) = 2
σ(b) = a =⇒ fσ(b) = 1

fσ(σ
ω(a)) = 2122121221221212212122 · · ·
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13Example 1 – the Fibonacci signature

σ(a) = ab =⇒ fσ(a) = 2
σ(b) = a =⇒ fσ(b) = 1

fσ(σ
ω(a)) = 2122121221221212212122 · · ·

if we choose g :
g(a) = 01
g(b) = 0

g(σω(a)) = 01 0 01 01 0 01 0 01 01 0 01 01 0 · · ·

This pair signature/labelling defines the language of integer
representations in the Fibonacci numeration system.
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σ(a) = abc =⇒ fσ(a) = 3
σ(b) = ab =⇒ fσ(b) = 2
σ(c) = c =⇒ fσ(c) = 1

σ(abc) = abc abc hence fσ(σ
ω(a)) = (321)ω
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14Example 2 – a periodic signature

σ(a) = abc =⇒ fσ(a) = 3
σ(b) = ab =⇒ fσ(b) = 2
σ(c) = c =⇒ fσ(c) = 1

σ(abc) = abc abc hence fσ(σ
ω(a)) = (321)ω

If we choose g :
g(a) = 012
g(b) = 12
g(c) = 1

g(σω(a)) = (012 12 1)ω

This pair signature/labelling defines a non-canonical representation
of integers in base 2.



15Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive ⇔ L is accepted by a finite automaton.



15Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive ⇔ L is accepted by a finite automaton.
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(σ, g): a substitutive signature.
(σ, g) defines a finite automaton A(σ,g).
It is analogous to

the prefix graph/automaton in Dumont–Thomas ’89,’91,’93

or the correspondence used in Maes–Rigo ’02.

Proposition

The language accepted by A(σ,g) has signature (σ, g).
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17Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive ⇔ L is accepted by a finite automaton.

(σ, g): a substitutive signature.
(σ, g) defines a finite automaton A(σ,g).
It is analogous to

the prefix graph/automaton in Dumont Thomas ’89,’91,’93

or the correspondence used in Maes Rigo ’02.

Proposition

The language accepted by A(σ,g) has signature (σ, g).

Proof: Unfold the automaton A(σ,g).
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18Backward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive ⇔ L is accepted by a finite automaton.

B: a finite automaton.
We define (σB , gB) such that

B = A(σB ,gB )

Proposition

The language accepted by B has signature (σB, gB).

Follows directly from the other direction.
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Observation

In basically every NS, the representations of integers follows the
radix order: ∀n, p 〈n〉 ≤rad 〈n + p〉

u <rad v if |u| < |v |
or |u| = |v | & |u| <lex |v |

Example: 2 <rad 12 12 <rad 21.

Definition (ANS L)

L: language over an ordered alphabet A.
〈n〉L is the (n + 1)-th word of L in the radix order.

In our scheme, 〈n〉L is the word labelling the path 0 −→ n.
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L: prefix-closed language accepted by a finite automaton.

Proposition

L: prefix-closed ARNS of signature (s, λ1)
K : prefix-closed ARNS of signature (s, λ2)

The conversion function 〈n〉L 7→ 〈n〉K is very simple†.

The proof relies on a modified automata product.

†realised by a finite, pure sequential and letter-to-letter transducer.
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σ : A → A∗ prolongable on a.

Example : σ(a) = abc σ(b) = ab σ(c) = c

Definition

Aσ = {[u] | u is a strict prefix of σ(b) for some b ∈ A}

Example : Aσ = { [ε], [a], [ab] }

gσ: morphism A∗ → A∗
σ

gσ(b) = [u0] [u1] · · · [uk−1]

k = |σ(b)|

ui is the prefix of length i of σ(b)

Example : gσ(a) = [ε] [a] [ab] gσ(b) = [ε] [a] gσ(c) = [ε]



22Dumont-Thomas automaton A(σ,gσ)

σ(a) = abc
σ(b) = ab
σ(c) = c

gσ(a) = [ε] [a] [ab]
gσ(b) = [ε] [a]
gσ(c) = [ε]

a b

c

[ε]

[a]
[ab]

[ε]
[a]

[ε]
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∗ → A∗

ρ([uk ] . . . [u2] [u1] [u0]) = σk(uk)σ
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2(u2)σ(u1)u0

Example: ρσ([a] [ε] [ab]) = σ2(a) σ(ε) ab
abc abc ε ab = abc abc ab
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Theorem

1. Every DTNS is a prefix-closed ARNS.

2. Every prefix-closed ARNS is easily† convertible to a DTNS.

† Through a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2.

Prefix-Closed ARNS L Automaton A Morphisms (σ, g)
of signature (s, λ1)

Prefix-closed ARNS K DT Automaton A(σ,gσ) DTNS σ

of signature (s, λ2)

where s = fσ(σω(a)) λ1 = g(σω(a)) λ2 = gσ(σω(a))

Proposition

L: prefix-closed ARNS of signature (s, λ1)
K : prefix-closed ARNS of signature (s, λ2)
The conversion function 〈n〉L 7→ 〈n〉K is very simple†.
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25Other works: Ultimately periodic signatures

s = u rω with r = r0 r1 r2 · · · rq−1

Definition: growth ratio

gr(s) =
r0+r1+···+rq−1

q

Theorem (MS, to appear)

If gr(s) ∈ N, then s generates the language of a finite automaton.
It is linked‡ to the integer base b = gr(s).

If gr(s) /∈ N, then s generates a non-context-free language.
It is linked‡ to the rational base p

q
= gr(s). (cf. Akiyama et al. ’08)

‡ It is a non-canonical representation of the integers (using extra digits).
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