Breadth-first signature of trees and rational languages

Victor Marsault, joint work with Jacques Sakarovitch
CNRS / Telecom-ParisTech, Paris, France
Journées Montoises 2014, Nancy, 2014-09-23

NS = Numeration system

Prefix-closed Abstract Rational NS (Lecomte-Rigo 2001)

Built from an arbitrary prefix-closed rational language.
Dumont-Thomas NS (Dumont-Thomas, 1989)
Built from an arbitrary substitution.

NS = Numeration system

Prefix-closed Abstract Rational NS (Lecomte-Rigo 2001)

Built from an arbitrary prefix-closed rational language.
Dumont-Thomas NS (Dumont-Thomas, 1989)
Built from an arbitrary substitution.

Definition: Signature
Tree or language \longmapsto infinite word

NS = Numeration system

Prefix-closed Abstract Rational NS (Lecomte-Rigo 2001)

Built from an arbitrary prefix-closed rational language.
Dumont-Thomas NS (Dumont-Thomas, 1989)
Built from an arbitrary substitution.

Definition: Signature

Tree or language \longmapsto infinite word In particular: Rational language \longmapsto substitutive word

NS = Numeration system

Prefix-closed Abstract Rational NS (Lecomte-Rigo 2001)

Built from an arbitrary prefix-closed rational language.
Dumont-Thomas NS (Dumont-Thomas, 1989)
Built from an arbitrary substitution.

Definition: Signature

Tree or language \longmapsto infinite word In particular: Rational language \longmapsto substitutive word

Theorem

Every DTNS is a prefix-closed ARNS.
Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Outline

1 Signature of trees and of languages

2 Substitutive signatures and finite automata

3 Signature and numeration systems

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)
- Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)
- Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)
- Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)
- Directed outward from the root: there is a unique path from the root to every other node.
- Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Every tree has a canonical breadth-first traversal

- We consider infinite trees only.

- We consider infinite trees only.
- For convenience, there is loop on the root.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$\mathbf{s}=2$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$$
\mathbf{s}=21
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$$
\mathbf{s}=212
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$$
\mathbf{s}=2122
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$$
\mathbf{s}=21221
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$$
\mathbf{s}=212212
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$$
\mathbf{s}=2122121
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

$$
\mathbf{s}=21221212
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes taken in breadth-first order.

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Signature is characteristic of tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$\mathbf{s}=$
$\lambda=$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$\mathbf{s}=2$
$\lambda=01$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{aligned}
& \mathbf{s}=21 \\
& \lambda=010
\end{aligned}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lll}
\mathbf{s}=2 & 1 & 2 \\
\lambda=01 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lllll}
\mathbf{s}=2 & 1 & 2 & 2 \\
\lambda=01 & 0 & 01 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\left.\begin{array}{c}
\mathbf{s}=2 \\
=2
\end{array} 12 \begin{array}{cccccc}
2 & 2 & 1 & 2 & 1 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01
\end{array}\right)
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$\mathbf{s}=2 \begin{array}{lllllllllll}2 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2\end{array}$ $\lambda=010010100100101001$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
0_{0}^{0}-1 \rightarrow(1) \rightarrow 0 \rightarrow(2)
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{aligned}
& \text { (0) } 1 \rightarrow \text { (1) } 0 \rightarrow \text { (2) } \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{s}=2122121221221 \ldots \\
& \lambda=010010100100101001010 \cdots
\end{aligned}
$$

The pair signature/labelling is characteristic

$$
\begin{aligned}
& \mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega} \\
& \lambda=\left(\begin{array}{lll}
0 & 12 & 1
\end{array}\right)^{\omega}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega} \\
& \lambda=\left(\begin{array}{lll}
0 & 12 & 12
\end{array}\right)^{\omega}
\end{aligned}
$$

Figure : Non-canonical integer representations in base 2.

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.

A substitution σ is a morphism $A^{*} \rightarrow A^{*}$.

Running examples

Fibonacci substitution: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$

A substitution σ is a morphism $A^{*} \rightarrow A^{*}$.

Running examples

Fibonacci substitution: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
Periodic substitution: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$

A substitution σ is a morphism $A^{*} \rightarrow A^{*}$.
σ is prolongable on a if $\sigma(a)$ starts with the letter a.

Running examples

Fibonacci substitution: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
Periodic substitution: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$

A substitution σ is a morphism $A^{*} \rightarrow A^{*}$.
σ is prolongable on a if $\sigma(a)$ starts with the letter a.
In this case, $\sigma^{\omega}(a)$ exists and is called a purely substitutive word.

Running examples

Fibonacci substitution: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
Periodic substitution: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$

Substitutive signature

σ : a substitution prolongable on a.
f : a letter-to-letter morphism.
$\rightarrow f\left(\sigma^{\omega}(a)\right)$ is called a subtitutive word.

Substitutive signature

σ : a substitution prolongable on a.
f : a letter-to-letter morphism.
$\rightarrow f\left(\sigma^{\omega}(a)\right)$ is called a subtitutive word.

Definitions

let $f_{\sigma}: A^{*} \rightarrow D^{*}$ be the (letter-to-letter) morphism defined by

- $D \subset N$
- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a subtitutive signature.

Substitutive signature

σ : a substitution prolongable on a.
f : a letter-to-letter morphism.
$\rightarrow f\left(\sigma^{\omega}(a)\right)$ is called a subtitutive word.

Definitions

let $f_{\sigma}: A^{*} \rightarrow D^{*}$ be the (letter-to-letter) morphism defined by

- $D \subset N$
- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a subtitutive signature.
If g is a morphism such that

- $\forall b,|g(b)|=|\sigma(b)|$
- if $g(b)=c_{0} c_{1} \cdots c_{k}$ then $c_{0}<c_{1}<\cdots<c_{k}$

We call $g\left(\sigma^{\omega}(a)\right)$ a substitutive labelling.

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(a)=\mathrm{ab} \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=\mathrm{a} \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(a)=\mathrm{ab} \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=\mathrm{a} \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

if we choose g :
$g(a)=01$
$g(b)=0$
$g\left(\sigma^{\omega}(a)\right)=010010100100101001010 \cdots$

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(a)=\mathrm{ab} \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=\mathrm{a} \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

if we choose g :
$g(a)=01$
$g(b)=0$
$g\left(\sigma^{\omega}(a)\right)=010010100100101001010 \cdots$

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(a)=\mathrm{ab} \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=\mathrm{a} \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

if we choose g :
$g(a)=01$

$$
g(b)=0
$$

$$
g\left(\sigma^{\omega}(a)\right)=010010100100101001010 \cdots
$$

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(a)=a b \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=a \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

if we choose g :
$g(a)=01$
$g(b)=0$
$g\left(\sigma^{\omega}(a)\right)=010010100100101001010 \cdots$
This pair signature/labelling defines the language of integer representations in the Fibonacci numeration system.

Example 2 - a periodic signature

$$
\begin{aligned}
\sigma(a)=a b c & \Longrightarrow f_{\sigma}(a)=3 \\
\sigma(b)=a b & \Longrightarrow f_{\sigma}(b)=2 \\
\sigma(c)=c & \Longrightarrow f_{\sigma}(c)=1 \\
\sigma(a b c) & =a b c a b c \quad \text { hence } f_{\sigma}\left(\sigma^{\omega}(a)\right)=(321)^{\omega}
\end{aligned}
$$

Example 2 - a periodic signature

$$
\begin{array}{ll}
\sigma(a)=a b c & \Longrightarrow f_{\sigma}(a)=3 \\
\sigma(b)=a b & \Longrightarrow f_{\sigma}(b)=2 \\
\sigma(c)=c & \Longrightarrow f_{\sigma}(c)=1
\end{array}
$$

$$
\text { ve choose } g \text { : }
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

$$
g\left(\sigma^{\omega}(a)\right)=(012121)^{\omega}
$$

Example 2 - a periodic signature

$$
\begin{array}{ll}
\sigma(a)=a b c & \Longrightarrow f_{\sigma}(a)=3 \\
\sigma(b)=a b & \Longrightarrow f_{\sigma}(b)=2 \\
\sigma(c)=c & \Longrightarrow f_{\sigma}(c)=1
\end{array}
$$

$$
\text { e choose } g \text { : }
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

$$
g\left(\sigma^{\omega}(a)\right)=(012121)^{\omega}
$$

This pair signature/labelling defines a non-canonical representation of integers in base 2.

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont-Thomas '89,'91,'93
- or the correspondence used in Maes-Rigo '02.

Theorem

L: a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont-Thomas '89,'91,'93
- or the correspondence used in Maes-Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma, g)}$ has signature (σ, g).

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, \mathrm{~B}, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

(a) (b)

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(\mathrm{a})=01 \\
& g(\mathrm{~b})=0 \\
& \text { (b) }
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

(b)

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont Thomas '89,'91,'93
- or the correspondence used in Maes Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma, g)}$ has signature (σ, g).

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont Thomas '89,'91,'93
- or the correspondence used in Maes Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma, g)}$ has signature (σ, g).
Proof: Unfold the automaton $\mathcal{A}_{(\sigma, g)}$.

Theorem
L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
\mathcal{B} : a finite automaton.
We define $\left(\sigma_{B}, g_{B}\right)$ such that

$$
\mathcal{B}=\mathcal{A}_{\left(\sigma_{B}, g_{B}\right)}
$$

Backward direction of the theorem

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
\mathcal{B} : a finite automaton.
We define $\left(\sigma_{B}, g_{B}\right)$ such that

$$
\mathcal{B}=\mathcal{A}_{\left(\sigma_{B}, g_{B}\right)}
$$

Proposition

The language accepted by \mathcal{B} has signature $\left(\sigma_{\mathcal{B}}, g_{\mathcal{B}}\right)$.
Follows directly from the other direction.

Abstract Numeration System (ANS, Lecomte-Rigo)

Observation

In basically every NS, the representations of integers follows the radix order.
$\forall n, p \quad\langle n\rangle \leq_{r a d}\langle n+p\rangle$

Abstract Numeration System (ANS, Lecomte-Rigo)

Observation

In basically every NS, the representations of integers follows the radix order: $\quad \forall n, p \quad\langle n\rangle \leq_{r a d}\langle n+p\rangle$

$$
\begin{array}{lll}
u<_{\text {rad }} v & \text { if } \quad|u|<|v| \\
& \text { or } & |u|=|v| \&|u|<\text { lex }|v|
\end{array}
$$

Example: $2<_{\text {rad }} 12 \quad 12<_{\text {rad }} 21$.

Observation

In basically every NS, the representations of integers follows the radix order: $\quad \forall n, p \quad\langle n\rangle \leq_{r a d}\langle n+p\rangle$

$$
\begin{array}{lll}
u<_{\text {rad }} v & \text { if } \quad|u|<|v| \\
& \text { or } & |u|=|v| \&|u|<_{\text {lex }}|v|
\end{array}
$$

Example: $2<_{\text {rad }} 12 \quad 12<_{\text {rad }} 21$.

Definition (ANS L)

L : language over an ordered alphabet A.
$\langle n\rangle_{L}$ is the $(n+1)$-th word of L in the radix order.
In our scheme, $\langle n\rangle_{L}$ is the word labelling the path $0 \rightarrow n$.

L: prefix-closed language accepted by a finite automaton.

L: prefix-closed language accepted by a finite automaton.

Proposition

L : prefix-closed ARNS of signature $\left(s, \lambda_{1}\right)$
K : prefix-closed ARNS of signature $\left(s, \lambda_{2}\right)$
The conversion function $\langle n\rangle_{L} \mapsto\langle n\rangle_{K}$ is very simple ${ }^{\dagger}$.
\dagger realised by a finite, pure sequential and letter-to-letter transducer.

L: prefix-closed language accepted by a finite automaton.

Proposition

L : prefix-closed ARNS of signature $\left(s, \lambda_{1}\right)$
K : prefix-closed ARNS of signature $\left(s, \lambda_{2}\right)$
The conversion function $\langle n\rangle_{L} \mapsto\langle n\rangle_{K}$ is very simple ${ }^{\dagger}$.
The proof relies on a modified automata product.
\dagger realised by a finite, pure sequential and letter-to-letter transducer.

Dumont-Thomas Numeration System (DTNS)
$\sigma: A \rightarrow A^{*}$ prolongable on a.
Example : $\sigma(a)=a b c$

$$
\sigma(b)=a b
$$

$$
\sigma(c)=c
$$

$\sigma: A \rightarrow A^{*}$ prolongable on a.
Example: $\sigma(a)=a b c$
$\sigma(b)=a b$
$\sigma(c)=c$

Definition

$$
A_{\sigma}=\{[u] \mid u \text { is a strict prefix of } \sigma(b) \text { for some } b \in A\}
$$

Example : $A_{\sigma}=\{[\varepsilon],[a],[a b]\}$
$\sigma: A \rightarrow A^{*}$ prolongable on a.
Example: $\sigma(a)=a b c$

$$
\sigma(b)=a b
$$

$$
\sigma(c)=c
$$

Definition

$$
A_{\sigma}=\{[u] \mid u \text { is a strict prefix of } \sigma(b) \text { for some } b \in A\}
$$

Example : $A_{\sigma}=\{[\varepsilon],[a],[a b]\}$
$g_{\sigma}:$ morphism $A^{*} \rightarrow A_{\sigma}^{*}$
$g_{\sigma}(b)=\left[u_{0}\right]\left[u_{1}\right] \cdots\left[u_{k-1}\right]$

- $k=|\sigma(b)|$
- u_{i} is the prefix of length i of $\sigma(b)$

Example : $g_{\sigma}(a)=[\varepsilon][a][a b]$

$$
g_{\sigma}(b)=[\varepsilon][a]
$$

$$
g_{\sigma}(c)=[\varepsilon]
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g_{\sigma}(a)=[\varepsilon][a][a b] \\
& g_{\sigma}(b)=[\varepsilon][a] \\
& g_{\sigma}(c)=[\varepsilon]
\end{aligned}
$$

Definition

ρ function $A_{\sigma}{ }^{*} \rightarrow A^{*}$
$\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)=\sigma^{k}\left(u_{k}\right) \sigma^{k-1}\left(u_{k-1}\right) \cdots \sigma^{2}\left(u_{2}\right) \sigma\left(u_{1}\right) u_{0}$
Example: $\rho_{\sigma}([a][\varepsilon][a b])=\sigma^{2}(a) \quad \sigma(\varepsilon) \quad a b$ $a b c a b c \quad \varepsilon \quad a b=a b c a b c a b$

Definition
ρ function $A_{\sigma}{ }^{*} \rightarrow A^{*}$
$\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)=\sigma^{k}\left(u_{k}\right) \sigma^{k-1}\left(u_{k-1}\right) \cdots \sigma^{2}\left(u_{2}\right) \sigma\left(u_{1}\right) u_{0}$
Example: $\rho_{\sigma}([a][\varepsilon][a b])=\sigma^{2}(a) \quad \sigma(\varepsilon) \quad a b$ $a b c a b c \quad \varepsilon \quad a b=a b c a b c a b$

Theorem (Dumont Thomas '89)
$\forall n \in \mathbb{N}$
$\exists!$ word $\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ accepted by $\mathcal{A}_{\left(\sigma, g_{\sigma}\right)}$ such that

- $u_{k} \neq \varepsilon$
- $\left|\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)\right|=n$
$\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ is the representation of n in the DTNS.

Definition
ρ function $A_{\sigma}{ }^{*} \rightarrow A^{*}$
$\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)=\sigma^{k}\left(u_{k}\right) \sigma^{k-1}\left(u_{k-1}\right) \cdots \sigma^{2}\left(u_{2}\right) \sigma\left(u_{1}\right) u_{0}$
Example: $\rho_{\sigma}([a][\varepsilon][a b])=\sigma^{2}(a) \quad \sigma(\varepsilon) \quad a b$ $a b c a b c \quad \varepsilon \quad a b=a b c a b c a b$

Theorem (Dumont Thomas '89)

$\forall n \in \mathbb{N}$
$\exists!$ word $\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ accepted by $\mathcal{A}_{\left(\sigma, g_{\sigma}\right)}$ such that

- $u_{k} \neq \varepsilon$
- $\left|\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)\right|=n$
$\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ is the representation of n in the DTNS.
Example: $[a][\varepsilon][a b]$ is the representation of 8.

Definition

ρ function $A_{\sigma}{ }^{*} \rightarrow A^{*}$
$\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)=\sigma^{k}\left(u_{k}\right) \sigma^{k-1}\left(u_{k-1}\right) \cdots \sigma^{2}\left(u_{2}\right) \sigma\left(u_{1}\right) u_{0}$
Example: $\rho_{\sigma}([a][\varepsilon][a b])=\sigma^{2}(a) \quad \sigma(\varepsilon) \quad a b$ $a b c a b c \quad \varepsilon \quad a b=a b c a b c a b$

Theorem (Dumont Thomas '89)
$\forall n \in \mathbb{N}$
$\exists!$ word $\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ accepted by $\mathcal{A}_{\left(\sigma, g_{\sigma}\right)}$ such that

- $u_{k} \neq \varepsilon$

■ $\left|\rho\left(\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]\right)\right|=n$
$\left[u_{k}\right] \ldots\left[u_{2}\right]\left[u_{1}\right]\left[u_{0}\right]$ is the representation of n in the DTNS.
Example: $[a][\varepsilon][a b]$ is the representation of 8 .

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.
Sketch of proof of 2.
Prefix-Closed ARNS L

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.
Sketch of proof of 2.
Prefix-Closed ARNS $L \longrightarrow$ Automaton \mathcal{A}

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.
Sketch of proof of 2.
Prefix-Closed ARNS $L \longrightarrow$ Automaton $\mathcal{A} \longrightarrow$ Morphisms (σ, g)

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.
Sketch of proof of 2.
Prefix-Closed ARNS $L \longrightarrow$ Automaton $\mathcal{A} \longrightarrow$ Morphisms (σ, g) of signature $\left(s, \lambda_{1}\right)$

$$
s=f_{\sigma}\left(\sigma^{\omega}(a)\right)
$$

$$
\lambda_{1}=g\left(\sigma^{\omega}(a)\right)
$$

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.
Sketch of proof of 2.
```
Prefix-Closed ARNS \(L \longrightarrow\) Automaton \(\mathcal{A} \longrightarrow\) Morphisms \((\sigma, g)\)
    of signature \(\left(s, \lambda_{1}\right)\)
```


where

$$
s=f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad \lambda_{1}=g\left(\sigma^{\omega}(a)\right)
$$

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.
Sketch of proof of 2.
$\left.\begin{array}{c}\text { Prefix-Closed ARNS } L \longrightarrow \text { Automaton } \mathcal{A} \longrightarrow \text { Morphisms }(\sigma, g) \\ \text { of signature }\left(s, \lambda_{1}\right)\end{array}\right]$ DT Automaton $\mathcal{A}_{\left(\sigma, g_{\sigma}\right)} \longleftrightarrow$ DTNS σ
where

$$
s=f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad \lambda_{1}=g\left(\sigma^{\omega}(a)\right)
$$

Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.

Through a finite, letter-to-letter and pure sequential transducer.
Sketch of proof of 2.

```
Prefix-Closed ARNS \(L \longrightarrow\) Automaton \(\mathcal{A} \longrightarrow\) Morphisms \((\sigma, g)\)
    of signature \(\left(s, \lambda_{1}\right)\)
Prefix-closed ARNS \(K \longleftarrow\) DT Automaton \(\mathcal{A}_{\left(\sigma, g_{\sigma}\right)} \longleftarrow\) DTNS \(\sigma\)
    of signature \(\left(s, \lambda_{2}\right)\)
where
\(s=f_{\sigma}\left(\sigma^{\omega}(a)\right)\)
\(\lambda_{1}=g\left(\sigma^{\omega}(a)\right)\)
\(\lambda_{2}=g_{\sigma}\left(\sigma^{\omega}(a)\right)\)
```


Theorem

1. Every DTNS is a prefix-closed ARNS.
2. Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2.

```
Prefix-Closed ARNS \(L \longrightarrow\) Automaton \(\mathcal{A} \longrightarrow\) Morphisms \((\sigma, g)\)
    of signature \(\left(s, \lambda_{1}\right)\)
Prefix-closed ARNS \(K \longleftarrow\) DT Automaton \(\mathcal{A}_{\left(\sigma, g_{\sigma}\right)}\)
                                    DTNS \(\sigma\)
    of signature \(\left(s, \lambda_{2}\right)\)
where
                        \(s=f_{\sigma}\left(\sigma^{\omega}(a)\right)\)
                                    \(\lambda_{1}=g\left(\sigma^{\omega}(a)\right)\)
                                    \(\lambda_{2}=g_{\sigma}\left(\sigma^{\omega}(a)\right)\)
```


Proposition

L: prefix-closed ARNS of signature $\left(s, \lambda_{1}\right)$
K : prefix-closed ARNS of signature (s, λ_{2})
The conversion function $\langle n\rangle_{L} \mapsto\langle n\rangle_{K}$ is very simple ${ }^{\dagger}$.

Other works: Ultimately periodic signatures

$$
\mathbf{s}=u r^{\omega} \quad \text { with } \quad r=r_{0} r_{1} r_{2} \cdots r_{q-1}
$$

Definition: growth ratio

$$
\operatorname{gr}(\mathbf{s})=\frac{r_{0}+r_{1}+\cdots+r_{q-1}}{q}
$$

$$
\mathbf{s}=u r^{\omega} \quad \text { with } \quad r=r_{0} r_{1} r_{2} \cdots r_{q-1}
$$

Definition: growth ratio

$$
\operatorname{gr}(\mathbf{s})=\frac{r_{0}+r_{1}+\cdots+r_{q-1}}{q}
$$

Theorem (MS, to appear)
If $\operatorname{gr}(\mathbf{s}) \in \mathbb{N}$, then \mathbf{s} generates the language of a finite automaton. It is linked ${ }^{\ddagger}$ to the integer base $b=\operatorname{gr}(\mathbf{s})$.

If $\operatorname{gr}(\mathbf{s}) \notin \mathbb{N}$, then \mathbf{s} generates a non-context-free language. It is linked ${ }^{\ddagger}$ to the rational base $\frac{p}{q}=g r(s)$. (cf. Akiyama et al. '08)
\ddagger It is a non-canonical representation of the integers (using extra digits).

