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NS = Numeration system

Prefix-closed Abstract Rational NS (Lecomte—Rigo 2001)

Built from an arbitrary prefix-closed rational language.

Dumont-Thomas NS (Dumont-Thomas, 1989)

Built from an arbitrary substitution.

Definition: Signature

Tree or language — infinite word
In particular: Rational language — substitutive word

Theorem
Every DTNS is a prefix-closed ARNS.

Every prefix-closed ARNS is easily’ convertible to a DTNS.

JrThrough a finite, letter-to-letter and pure sequential transducer.
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Signature of trees and of languages
Substitutive signatures and finite automata

Signature and numeration systems



We call tree a...

Directed graph which is
m Rooted: a node is called the root (leftmost in the figures)

m Directed outward from the root: there is a unique path
from the root to every other node.

m Ordered: the children of every node are ordered
(In the figures, lower children are smaller.)
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We call tree a...

Directed graph which is
= Rooted: a node is called the root (leftmost in the figures)

m Directed outward from the root: there is a unique path
from the root to every other node.

m Ordered: the children of every node are ordered
(In the figures, lower children are smaller.)
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Every tree has a canonical breadth-first traversal @
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Two more features

m We consider infinite trees only.
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Two more features

m We consider infinite trees only.

m For convenience, there is loop on the root.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature is characteristic of tree

s=(32 1)
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Prefix-closed languages and labelled trees @

Alphabets are ordered hence
prefix-closed languages = labelled trees.
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Prefix-closed languages and labelled trees @

Alphabets are ordered hence
prefix-closed languages = labelled trees.

Figure : Integer representations in the Fibonacci numeration system.
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Prefix-closed languages and labelled trees @

Alphabets are ordered hence
prefix-closed languages = labelled trees.

Figure : Integer representations in the Fibonacci numeration system.



Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.

s=2122121221221---
A=010010100100101001010 ---



The pair signature/labelling is characteristic @
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The pair signature/labelling is characteristic @

— (32 1)
A= (012 12 1)~

/@;

1

N
[ R |

/@ @//@E:i;
: 1‘®< O
0\@::'

10 = 1x22 + 2x2! + 2x20 \@:Z:

Figure : Non-canonical integer representations in base 2.
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Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.
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A word on substitution

A substitution ¢ is a morphism A* — A*.

o is prolongable on a if o(a) starts with the letter a.

Running examples
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A word on substitution

A substitution ¢ is a morphism A* — A*.

o is prolongable on a if o(a) starts with the letter a.
In this case, 0“(a) exists and is called a purely substitutive word .

Running examples

Fibonacci substitution: {a, b} — {a, b}*
ar— ab
b— a

Periodic substitution: {a, b, c} — {a, b, c}*
a— abc

b ab

c—c
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— f(0%(a)) is called a subtitutive word.
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Substitutive signature

o: a substitution prolongable on a.

f . a letter-to-letter morphism.
— f(0%(a)) is called a subtitutive word.

Definitions

let £, : A* — D* be the (letter-to-letter) morphism defined by
mDCN
= Vb, f5(b) = |o(b)|

We call f,(0%(a)) a subtitutive signature.

If g is a morphism such that

= Vb, |g(b)| = |o(b)]

[ ] ifg(b):C()Cl-”Ck then cg < ¢ < -+ < ¢k
We call g(0“(a)) a substitutive labelling.



Example 1 — the Fibonacci signature

o(a)=ab = f,(a)=2
o(b) = a = f,(b)=1
f(0¥(a)) = 2122121221221212212122. -
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Example 1 — the Fibonacci signature

o(a)=ab = f,(a)=2
o(b) = a = f(b)=1
f,(o¥(a)) = 2122121221221212212122---
if we choose g:
g(a) = 01
g(b)=0
g(o“(a)) = 010010100100101001010 ---

This pair signature/labelling defines the language of integer
representations in the Fibonacci numeration system.



Example 2 — a periodic signature

o(a) = abc = f,(a) =3
o(b) = ab = f,(b) =2
o(c)=c — e =1
o(abc) = abcabc hence f,(c%(a))

(321)«
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Example 2 — a periodic signature

o(a) = abc = fy(a) =
o(b) = ab = f,(b) =
ofc)=c fo(c) =
o(abc) = abc abc hence f,(0¥(a)) = (321)¢
If we choose g:
g(a) = 012
g(b) =12
g(c)=1

g(0¥“(a)) = (012121)¢

This pair signature/labelling defines a non-canonical representation
of integers in base 2.
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Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.

(0,g): a substitutive signature.
(0,g) defines a finite automaton A, 4.
It is analogous to

m the prefix graph/automaton in Dumont—Thomas '89,'91,'93
m or the correspondence used in Maes—Rigo '02.

Proposition

The language accepted by A,z has signature (o, g).



Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)

g(a) = 0l
g(b)=10
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Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*
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o(b)=ab g(b)=12
o(c)=c glc)=1



Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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o(b)=ab g(b)=12
o(c)=c glc)=1
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Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*
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Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)




Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.

(0,g): a substitutive signature.
(0,g) defines a finite automaton A
It is analogous to

0,8):

m the prefix graph/automaton in Dumont Thomas '89,'91,'93
m or the correspondence used in Maes Rigo '02.

Proposition

The language accepted by A(, g has signature (o, g).



Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.

(0,g): a substitutive signature.
(0,g) defines a finite automaton A
It is analogous to

0,8):

m the prefix graph/automaton in Dumont Thomas '89,'91,'93

m or the correspondence used in Maes Rigo '02.

Proposition
The language accepted by A(, g has signature (o, g).

Proof: Unfold the automaton A, 4).



Backward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.

B: a finite automaton.
We define (0, gg) such that
B = Aws.ee)



Backward direction of the theorem

Theorem

L: a prefix-closed language.

Signature(L) is substitutive < L is accepted by a finite automaton.

B: a finite automaton.
We define (0, gg) such that
B = A(Usygs)
Proposition
The language accepted by B has signature (o3, g3).

Follows directly from the other direction.
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Abstract Numeration System (ANS, Lecomte-Rigo)

Observation

In basically every NS, the representations of integers follows the
radix order: Vn,p  (n) <aq (n+ p)

U<pdv if Jul <]|v|
or |u|=|

Example: 2 <paq 12 12 <,aq 21.

Definition (ANS L)

L: language over an ordered alphabet A.
(n)r is the (n+ 1)-th word of L in the radix order.

In our scheme, (n) is the word labelling the path 0 — n.



Prefix-closed ARNS

L: prefix-closed language accepted by a finite automaton.



Prefix-closed ARNS

L: prefix-closed language accepted by a finite automaton.

Proposition

L: prefix-closed ARNS of signature (s, A1)
K: prefix-closed ARNS of signature (s, \2)

The conversion function (n); ~ (n)x is very simplef.

Jrrealised by a finite, pure sequential and letter-to-letter transducer.



Prefix-closed ARNS

L: prefix-closed language accepted by a finite automaton.

Proposition

L: prefix-closed ARNS of signature (s, A1)
K: prefix-closed ARNS of signature (s, \2)

The conversion function (n); ~ (n)x is very simplef.

The proof relies on a modified automata product.

Jrrealised by a finite, pure sequential and letter-to-letter transducer.
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Dumont-Thomas Numeration System (DTNS)

o : A — A* prolongable on a.

Example : o(a) = abc o(b) = ab o(lc)=c

Definition
A, = {[u] | uis a strict prefix of o(b) for some b € A}
Example : A, = { [5]7 [a]7 [ab] }

8-: morphism A* — A%

85(b) = [uo] [tn] - - - [u—1]
m k= |o(b)|
m u; is the prefix of length i of o(b)

Example : g,(a) = [¢][a][ab] g5 (b) =[] [4] go(c) = [e]

@



Dumont-Thomas automaton A((Lg{,)

o(a) = abc 8-(a) = [¢] [a] [ab]
o(b) = ab 8-(b) = [¢] [4]
o(c)=c 8-(c) =[]
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Definition
p function A,* — A*
p([ur] - [w] (] [wo]) = o*(uk)o*H(uk—1) - - 0% (u2)o(ur)uo

Example: p,([a][¢][ab]) = o2(a) o(e) ab
abcabc ¢ ab = abcabcab
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Definition

p function A,* — A*

p([ur] - [w] (] [wo]) = o*(uk)o*H(uk—1) - - 0% (u2)o(ur)uo
Example: p,([a][¢][ab]) = o2(a) o(e) ab

abc abc € ab = abcabcab
Theorem (Dumont Thomas '89)

VneN
3! word [u] ... [uz] [u1] [uo] accepted by A(, g, ) such that

WU FeE
m [p([ue] - [u] [en] [wo])| = n

[uk] ... [u2] [u1] [uo] is the representation of n in the DTNS.
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Example: p,([a][¢][ab]) = o2(a) o(e) ab

abc abc € ab = abcabcab
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Definition

p function A,* — A*

p([ur] - [w] (] [wo]) = o*(uk)o*H(uk—1) - - 0% (u2)o(ur)uo
Example: po([a][e][ab]) = o2(a) o(e) ab

abc abc € ab = abcabcab
Theorem (Dumont Thomas '89)

VneN
3! word [u] ... [uz] [u1] [uo] accepted by A(, g, ) such that

WU FeE
w [p([uk] - [u2] [m] [wo])| = n
[uk] ... [u2] [u1] [uo] is the representation of n in the DTNS.

Example: [a] [¢] [ab] is the representation of 8.
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Theorem
1. Every DTNS is a prefix-closed ARNS.

2. Every prefix-closed ARNS is easily! convertible to a DTNS.

TThrough a finite, letter-to-letter and pure sequential transducer.

Sketch of proof of 2.

Prefix-Closed ARNS L ——— Automaton A —————— Morphisms (o, g)
of signature (s, A1)

Prefix-closed ARNS K «—— DT Automaton A, ;) «——— DTNS o
of signature (s, \2)

where s = fy(o¥(a)) A1 = g(o¥(a)) A2 = go (0¥ (a))

Proposition

L: prefix-closed ARNS of signature (s, A1)
K: prefix-closed ARNS of signature (s, A2)
The conversion function (n); — (n) is very simpleT.
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Other works: Ultimately periodic signatures

s = ur” with r = ronmn- - rg

Definition: growth ratio
rotrn—+-trg—1

gr(s) = 7
Theorem (MS, to appear)

If gr(s) € N, then s generates the language of a finite automaton.
It is linked? to the integer base b = gr(s).

If gr(s) ¢ N, then s generates a non-context-free language.
It is linked? to the rational base g = gr(s). (cf. Akiyama et al. '08)

1 It is a non-canonical representation of the integers (using extra digits).
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