Breadth-first serialisation of trees
and rational languages

Victor Marsault,
joint work with Jacques Sakarovitch

CNRS / Telecom-ParisTech, Paris, France

Numeration and Substitution 2014, Debrecen
2014-07-11



Outline

Signature of trees and of languages
Substitutive signatures and finite automata

Signature and numeration systems



We call tree a...

Directed graph which is
m Rooted: a node is called the root (leftmost in the figures)

m Directed outward from the root: there is a unique path
from the root to each other node.

m Ordered: the children of every node are ordered
(In the figures, lower children are smaller.)
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We call tree a...

Directed graph which is
= Rooted: a node is called the root (leftmost in the figures)

m Directed outward from the root: there is a unique path
from the root to each other node.

m Ordered: the children of every node are ordered
(In the figures, lower children are smaller.)
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Trees have a canonical breadth-first traversal @
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Trees have a canonical breadth-first traversal @
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition

The signature of a tree is the sequence of the degree of its node

taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.

(]

@@

S O -
4>::

© 9 ©®F:

® @

oo

s=2122121221

¥

(]

v FY oy

(]



Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of its node
taken in breadth-first order.
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Tree generated by the signature (32 1)
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Tree generated by the signature (32 1)
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Prefix-closed languages and labelled trees @

Alphabets are ordered hence
prefix-closed languages = labelled trees.

Figure : Integer representations in the Fibonacci numeration system.
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Prefix-closed languages and labelled trees

Alphabets are ordered hence

prefix-closed languages = labelled trees.
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Figure : Integer representations in the Fibonacci numeration system.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Definition
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labelling of a language is the sequence of arc labels its
transitions taken in breadth-first order.

s=2122121221221---
A=010010100100101001010 ---



Generation of language by signature and labelling @

= (321)
A= (01212 1)~

—
/\\'\@)
SN /A !
/I‘\\ I’ ‘\ !
[ R A | 2

C?‘?
/
9?
\I\)

S

A
A
/N
2 T R |

Figure : Non-canonical integer representations in base 2.



Generation of language by signature and labelling @

= (321)
A= (01212 1)~
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Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.



Substitutive signature @

A substitution o is  prolongable on a if o(a) = au for some wv.

Definitions
Substitutive signature: f,(c“(a))  where Vb, f;(b) = |o(b)]



Substitutive signature @

A substitution o is  prolongable on a if o(a) = au for some u.

Definitions
Substitutive signature: f;(c“(a))  where Vb, f;(b) = |o(b)]

Substitutive labelling:  g(0“(a))
such that g Vb, |g(b)| = |o(b)]
n ifg(b):Cocl---ck thengg <1 < -+ < ¢k



Example 1 — the Fibonacci signature

o(a)=ab (f,(a) =2)
o(b)=a (fz(b)=1)
fo(a“’(a)) = 2122121221221212212122 - - -
g(a)=101
g(b)=0
g(c¥(a)) = 010010100100101001010 ---

These signature/labelling define the language of integer
representations in the Fibonacci numeration system.



Example 2 — a periodic signature

o(a) =abc (fy(a) =3)
o(b)=ab (f»(b)=2)
olc)=c (fo(c)=1
o(abc) = abcabc hence f,(0¥(a)) = (321)¢
g(a) = 012
g(b) =12
g(c) =

g(0“(a)) = (012121)¢



Example 2 — a periodic signature

o(a) =abc (fy(a) =3)
o(b)=ab (f»(b)=2)
olc)=c (f,(c)=1)

o(abc) = abcabc hence f,(0¥(a)) = (321)¢
g(a) = 012
g(b) =12
g(c) =

g(o¥(a)) = (012121)~

These signature/labelling defines a non-canonical representation of
integers in base 2.



Example 3 — the Thue-Morse morphism

o(a)=ab (f,(a) =2)
o(b) =ba (fr(b) =2)
f(c¥(a)) = 2¢

V labelling g, the language is essentially (0 + 1)*.



Forward direction of the theorem @

Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.
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Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.

Proposition
(0,g): a substitutive signature defining a language L

L is accepted by the automaton A, g

This automaton is similar to
m the prefix graph/automaton in Dumont Thomas '89,'91,'93

m or the correspondence used in Maes Rigo '02



Automaton associated with a subst. signature

o : A* — A* prolongable on a
g: A" — B*

Definition: A, g

Set of states: A;
Alphabet: B;

Initial state: a;

Final states: A whole.



Automaton associated with a subst. signature

o : A* — A* prolongable on a
g: A" — B*

Definition: A, g

Set of states: A;
Alphabet: B;

Initial state: a;

Final states: A whole.

Transitions: o(b) = cpcy - - ¢k and g(b) = xox1 - - - Xk



Example 1 — the Fibonacci signature
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Example 2 — a periodic signature

Q

(a)=ab gla)=012
o(b)=ab g(b)=12
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Example 2 — a periodic signature

o(a)=abc g(la)=1012
o(b)=ab g(b)=12
o(c)=c glc)=1



Example 2 — a periodic signature
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Example 2 — a periodic signature
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Abstract Numeration System (ANS, Lecomte-Rigo) @

L: language over an ordered alphabet A.

Definition (Radix order <,.q)
U<pdv if |ul <|v|
o ful = v & |u] <iex V]

Example: 2 < 39 12 12 <,5q 21.



Abstract Numeration System (ANS, Lecomte-Rigo)

L: language over an ordered alphabet A.

Definition (Radix order <,.q)
U<pdv if |ul <|v|
or |ul=|v|] & |u| <jex |v|

Example: 2 < 39 12 12 <,5q 21.

Definition (ANS L)
(n)y is the (n+ 1)-th word of L.

In our scheme, (n); is the word labelling the path 0 — n.

D)



Conversion function

Definition
L, K: two ANS's.
The conversion function K — L. (n); — (n)k.

Its complexity measures de relationship between K and L.

Example

m base p — base pX is simple

(ie. realised by a finite and sequential transducer).

m base p — base g ishardif pAg=1

(ie. cannot be realised by a finite transducer).



Prefix-closed ARNS

L: prefix-closed language accepted by a finite automaton.
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Prefix-closed ARNS

L: prefix-closed language accepted by a finite automaton.

Proposition

L: prefix-closed ARNS of signature (s, A1)
K: prefix-closed ARNS of signature (s, \2)

The conversion function L — K is very simple
(realised by a finite, pure sequential and letter-to-letter transducer).



Prefix-closed ARNS

L: prefix-closed language accepted by a finite automaton.

Proposition

L: prefix-closed ARNS of signature (s, A1)
K: prefix-closed ARNS of signature (s, \2)

The conversion function L — K is very simple

(realised by a finite, pure sequential and letter-to-letter transducer).

The proof relies on a modified automata product.



Dumont-Thomas Numeration System (DTNS)

o : A — A* prolongable on a.

Example : o(a) = abc o(b) = ab
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Dumont-Thomas Numeration System (DTNS)

o : A — A* prolongable on a.

Example : o(a) = abc o(b) = ab o(lc)=c

Definition
A, = { strict prefixes of o(b) | b € A}
Example : A, = {e a;ab} U{e a} U{e} = {¢ a; ab}

8-: morphism A* — A%
8o(b) = uo, 1, ..., U1
m k= |o(b)|
m u; is the prefix of length i of o(b)

Example : g,(a) =¢€,a,ab g-(b) =¢€,a g-(c)=¢



Dumont-Thomas Numeration System (DTNS) @

Definition
p function A,* — A*
p(uk, ..., u, ur,up) = o*(uk)okHuk—1) -+ 0 (u2)o(u1)uo

Theorem (Dumont Thomas '89)

VneN

3! word (ug, ..., u1, up) accepted by A, g ) such that
u U 75 €
m |p(uk,...,u1,u)| = n

(uk,...,u1,up) is the representation of n in the DTNS.



Sum up

Prefix-closed ARNS DTNS
Language accepted by a finite automaton | Substitution

Signature links an automaton with a substitution.



Sum up

Prefix-closed ARNS DTNS
Language accepted by a finite automaton | Substitution

Signature links an automaton with a substitution.

Theorem
Every DTNS is a prefix-closed ARNS.

Every prefix-closed ARNS is easily convertible to a DTNS.

TThrough a finite, letter-to-letter and pure sequential transducer.



Other works: Ultimately periodic signatures

s = urv with  r = ronmn- - rg

Definition: growth ratio

gr(s) _ f0+r1+;’~-+rq—1



Other works: Ultimately periodic signatures

s = urv with  r = ronmn- - rg

Definition: growth ratio

gI‘(S) _ r0+r1+;'+rq—1

Theorem

If gr(s) € N, then s generates the language of a finite automaton.
It is linked? to the integer base b = gr(s).

If gr(s) ¢ N, then s generates a non-context-free language.
It is linked? to the rational base g = gr(s). (cf. Akiyama et all '08)

1 It is a non-canonical representation of the integers (using extra digits).



Future works : Directed signatures

Aperiodic signature: s = spsy S - -

Definition: directed signature

Sp = X}_oSk: partial sums of s.
s is directed by o if S, =an+ o(1)



Future works : Directed signatures

Aperiodic signature: s = spsy S - -

Definition: directed signature

Sp = X}_oSk: partial sums of s.
s is directed by o if S, =an+ o(1)

When « is Pisot, s generates a language linked to the base a.

When « is not Pisot... erratic behaviour.



	Signature of trees and of languages
	Substitutive signatures and finite automata
	Signature and numeration systems

