Breadth-first serialisation of trees and rational languages

Victor Marsault, joint work with Jacques Sakarovitch
CNRS / Telecom-ParisTech, Paris, France

Numeration and Substitution 2014, Debrecen 2014-07-11

Outline

1 Signature of trees and of languages

2 Substitutive signatures and finite automata

3 Signature and numeration systems

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)
- Directed outward from the root: there is a unique path from the root to each other node.
- Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)

■ Directed outward from the root: there is a unique path from the root to each other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is
■ Rooted: a node is called the root (leftmost in the figures)

- Directed outward from the root: there is a unique path from the root to each other node.
- Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)

■ Directed outward from the root: there is a unique path from the root to each other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

$\mathbf{s}=$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

$$
\mathbf{s}=2
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

$$
\mathbf{s}=21
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

$$
\mathbf{s}=212
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

$$
\mathbf{s}=2122
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

$$
\mathbf{s}=21221
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

$$
\mathbf{s}=212212
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

$$
\mathbf{s}=2122121
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

$$
\mathbf{s}=21221212
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degree of its node taken in breadth-first order.

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Tree generated by the signature $(321)^{\omega}$

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$\mathbf{s}=$
$\lambda=$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$\mathbf{s}=2$
$\lambda=01$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
\begin{aligned}
& \mathbf{s}=21 \\
& \lambda=010
\end{aligned}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
\begin{array}{lll}
\mathbf{s}=2 & 1 & 2 \\
\lambda=01 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
\begin{array}{lllll}
\mathbf{s}=2 & 1 & 2 & 2 \\
\lambda=01 & 0 & 01 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
\begin{array}{llllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
\begin{array}{llllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
\begin{array}{lllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
\left.\begin{array}{c}
\mathbf{s}=2 \\
=2
\end{array} 12 \begin{array}{cccccc}
2 & 2 & 1 & 2 & 1 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01
\end{array}\right)
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
\begin{array}{llllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
\begin{array}{llllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$\mathbf{s}=21 \begin{array}{llllllllll}2 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2\end{array}$ $\lambda=010010100100101001$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$$
0_{0}^{(0) \rightarrow(1) \rightarrow 0 \rightarrow(2)}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels its transitions taken in breadth-first order.

$\mathbf{s}=2122121221221 \ldots$ $\lambda=010010100100101001010 \cdots$

Generation of language by signature and labelling

$$
\begin{aligned}
& \mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega} \\
& \lambda=\left(\begin{array}{lll}
012 & 12 & 1
\end{array}\right)^{\omega}
\end{aligned}
$$

Figure: Non-canonical integer representations in base 2.

Generation of language by signature and labelling

$$
\begin{aligned}
& \mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega} \\
& \lambda=\left(\begin{array}{lll}
0 & 12 & 12
\end{array}\right)^{\omega}
\end{aligned}
$$

Figure : Non-canonical integer representations in base 2.

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.

Substitutive signature

A substitution σ is prolongable on a if $\sigma(a)=a u$ for some u.

Definitions
Substitutive signature: $\quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad$ where $\forall b, f_{\sigma}(b)=|\sigma(b)|$

Substitutive signature

A substitution σ is prolongable on a if $\sigma(a)=a u$ for some u.

Definitions
Substitutive signature: $\quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad$ where $\forall b, f_{\sigma}(b)=|\sigma(b)|$
Substitutive labelling: $\quad g\left(\sigma^{\omega}(a)\right)$
such that $\quad \forall b,|g(b)|=|\sigma(b)|$

- if $g(b)=c_{0} c_{1} \cdots c_{k}$ then $c_{0}<c_{1}<\cdots<c_{k}$

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(a)=a b \quad\left(f_{\sigma}(a)=2\right) \\
& \sigma(b)=a \quad\left(f_{\sigma}(b)=1\right) \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right)=2122121221221212212122 \ldots \\
& g(a)= 01 \\
& g(b)= 0 \\
& g\left(\sigma^{\omega}(a)\right)=010010100100101001010 \cdots
\end{aligned}
$$

These signature/labelling define the language of integer representations in the Fibonacci numeration system.

Example 2 - a periodic signature

$$
\begin{aligned}
& \sigma(a)=a b c \quad\left(f_{\sigma}(a)=3\right) \\
& \sigma(b)=a b \quad\left(f_{\sigma}(b)=2\right) \\
& \sigma(c)=c \quad\left(f_{\sigma}(c)=1\right) \\
& \sigma(a b c) \quad=\quad a b c a b c \quad \text { hence } f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=(321)^{\omega} \\
& \\
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned} \quad \begin{aligned}
& \\
& \\
& \\
& g\left(\sigma^{\omega}(a)\right)=(012121)^{\omega}
\end{aligned}
$$

Example 2 - a periodic signature

$$
\begin{aligned}
& \sigma(a)=a b c \quad\left(f_{\sigma}(a)=3\right) \\
& \sigma(b)=a b \quad\left(f_{\sigma}(b)=2\right) \\
& \sigma(c)=c \quad\left(f_{\sigma}(c)=1\right) \\
& \sigma(a b c) \quad=\quad a b c a b c \quad \text { hence } f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=(321)^{\omega} \\
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1 \\
& \\
& \\
& g\left(\sigma^{\omega}(a)\right)=(012121)^{\omega}
\end{aligned}
$$

These signature/labelling defines a non-canonical representation of integers in base 2.

Example 3 - the Thue-Morse morphism

$$
\begin{array}{ll}
\sigma(a)=a b & \left(f_{\sigma}(a)=2\right) \\
\sigma(b)=b a & \left(f_{\sigma}(b)=2\right) \\
f_{\sigma}\left(\sigma^{\omega}(a)\right)=2^{\omega}
\end{array}
$$

\forall labelling g, the language is essentially $(0+1)^{*}$.

Theorem
L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.

Proposition

(σ, g) : a substitutive signature defining a language L
L is accepted by the automaton $\mathcal{A}_{(\sigma, g)}$

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.

Proposition

(σ, g) : a substitutive signature defining a language L
L is accepted by the automaton $\mathcal{A}_{(\sigma, g)}$
This automaton is similar to

- the prefix graph/automaton in Dumont Thomas '89,'91,'93
- or the correspondence used in Maes Rigo '02
$\sigma: A^{*} \rightarrow A^{*}$ prolongable on a $g: A^{*} \rightarrow B^{*}$

Definition: $\mathcal{A}_{(\sigma, g)}$
Set of states: A;
Alphabet: B;
Initial state: a;
Final states: A whole.
$\sigma: A^{*} \rightarrow A^{*}$ prolongable on a $g: A^{*} \rightarrow B^{*}$

Definition: $\mathcal{A}_{(\sigma, g)}$
Set of states: A;
Alphabet: B;
Initial state: a;
Final states: A whole.
Transitions: $\sigma(b)=c_{0} c_{1} \cdots c_{k}$ and $g(b)=x_{0} x_{1} \cdots x_{k}$ $\forall i, 0 \leq i \leq k, \quad b \xrightarrow{x_{i}} c_{i}$

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

(b)

Example 1 - the Fibonacci signature

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Example 1 - the Fibonacci signature

$$
\begin{aligned}
\sigma(a) & =a b \\
\sigma(b) & =a
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Example 2 - a periodic signature

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Example 2 - a periodic signature

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

(b)

Example 2 - a periodic signature

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Example 2 - a periodic signature

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{abc} \\
& \sigma(\mathrm{~b})=\mathrm{ab} \\
& \sigma(\mathrm{c})=\mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Example 2 - a periodic signature

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Example 2 - a periodic signature

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Example 2 - a periodic signature

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

L: language over an ordered alphabet A.

Definition (Radix order $<_{\text {rad }}$)

$$
\begin{array}{lll}
u<_{\text {rad }} v & \text { if } \quad|u|<|v| \\
& \text { or } & |u|=|v| \&|u|<_{\text {lex }}|v|
\end{array}
$$

Example: $2<_{\text {rad }} 12 \quad 12<_{\mathrm{rad}} 21$.

L: language over an ordered alphabet A.

Definition (Radix order $<_{\text {rad }}$)

$$
\begin{array}{lll}
u<_{\text {rad }} v & \text { if } \quad|u|<|v| \\
& \text { or }|u|=|v| \&|u|<_{\text {lex }}|v|
\end{array}
$$

Example: $2<_{\text {rad }} 12 \quad 12<_{\text {rad }} 21$.

Definition (ANS L)
$\langle n\rangle_{L}$ is the $(n+1)$-th word of L.
In our scheme, $\langle n\rangle_{L}$ is the word labelling the path $0 \rightarrow n$.

Conversion function

Definition

L, K: two ANS's.
The conversion function $K \rightarrow L: \quad\langle n\rangle_{L} \mapsto\langle n\rangle_{K}$.
Its complexity measures de relationship between K and L.

Example

- base $p \rightarrow$ base p^{k} is simple (ie. realised by a finite and sequential transducer).
- base $p \rightarrow$ base q is hard if $p \wedge q=1$
(ie. cannot be realised by a finite transducer).

L: prefix-closed language accepted by a finite automaton.

L: prefix-closed language accepted by a finite automaton.

L: prefix-closed language accepted by a finite automaton.

Proposition

L : prefix-closed ARNS of signature $\left(s, \lambda_{1}\right)$
K : prefix-closed ARNS of signature $\left(s, \lambda_{2}\right)$
The conversion function $L \rightarrow K$ is very simple (realised by a finite, pure sequential and letter-to-letter transducer).

L: prefix-closed language accepted by a finite automaton.

Proposition

L : prefix-closed ARNS of signature $\left(s, \lambda_{1}\right)$
K : prefix-closed ARNS of signature $\left(s, \lambda_{2}\right)$
The conversion function $L \rightarrow K$ is very simple (realised by a finite, pure sequential and letter-to-letter transducer).

The proof relies on a modified automata product.

Dumont-Thomas Numeration System (DTNS)
$\sigma: A \rightarrow A^{*}$ prolongable on a.
Example : $\sigma(a)=a b c$

$$
\sigma(b)=a b
$$

$$
\sigma(c)=c
$$

$\sigma: A \rightarrow A^{*}$ prolongable on a.
Example: $\sigma(a)=a b c$

$$
\sigma(b)=a b
$$

$$
\sigma(c)=c
$$

Definition

$$
A_{\sigma}=\{\text { strict prefixes of } \sigma(b) \mid b \in A\}
$$

Example : $A_{\sigma}=\{\epsilon ; a ; a b\} \bigcup\{\epsilon ; a\} \bigcup\{\epsilon\}=\{\epsilon ; a ; a b\}$
$\sigma: A \rightarrow A^{*}$ prolongable on a.
Example : $\sigma(a)=a b c$

$$
\sigma(b)=a b
$$

$$
\sigma(c)=c
$$

Definition

$$
A_{\sigma}=\{\text { strict prefixes of } \sigma(b) \mid b \in A\}
$$

Example : $A_{\sigma}=\{\epsilon ; a ; a b\} \bigcup\{\epsilon ; a\} \bigcup\{\epsilon\}=\{\epsilon ; a ; a b\}$
$g_{\sigma}:$ morphism $A^{*} \rightarrow A_{\sigma}^{*}$
$g_{\sigma}(b)=u_{0}, u_{1}, \ldots, u_{k-1}$

- $k=|\sigma(b)|$
- u_{i} is the prefix of length i of $\sigma(b)$

Example : $g_{\sigma}(a)=\epsilon, a, a b$

$$
g_{\sigma}(b)=\epsilon, a
$$

$$
g_{\sigma}(c)=\epsilon
$$

Definition

ρ function $A_{\sigma}{ }^{*} \rightarrow A^{*}$
$\rho\left(u_{k}, \ldots, u_{2}, u_{1}, u_{0}\right)=\sigma^{k}\left(u_{k}\right) \sigma^{k-1}\left(u_{k-1}\right) \cdots \sigma^{2}\left(u_{2}\right) \sigma\left(u_{1}\right) u_{0}$

Theorem (Dumont Thomas '89)

$\forall n \in \mathbb{N}$
\exists ! word $\left(u_{k}, \ldots, u_{1}, u_{0}\right)$ accepted by $\mathcal{A}_{\left(\sigma, g_{\sigma}\right)}$ such that

- $u_{k} \neq \epsilon$

■ $\left|\rho\left(u_{k}, \ldots, u_{1}, u_{0}\right)\right|=n$
$\left(u_{k}, \ldots, u_{1}, u_{0}\right)$ is the representation of n in the DTNS.

```
Sum up
```


Prefix-closed ARNS

Language accepted by a finite automaton

DTNS

Substitution

Signature links an automaton with a substitution.

Sum up

Prefix-closed ARNS
 Language accepted by a finite automaton
 DTNS
 Substitution

Signature links an automaton with a substitution.

Theorem
Every DTNS is a prefix-closed ARNS.
Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Other works: Ultimately periodic signatures

$$
\mathbf{s}=u r^{\omega} \quad \text { with } \quad r=r_{0} r_{1} r_{2} \cdots r_{q-1}
$$

Definition: growth ratio

$$
\operatorname{gr}(\mathbf{s})=\frac{r_{0}+r_{1}+\cdots+r_{q-1}}{q}
$$

$$
\mathbf{s}=u r^{\omega} \quad \text { with } \quad r=r_{0} r_{1} r_{2} \cdots r_{q-1}
$$

Definition: growth ratio

$$
\operatorname{gr}(\mathbf{s})=\frac{r_{0}+r_{1}+\cdots+r_{q-1}}{q}
$$

Theorem

If $\operatorname{gr}(\mathbf{s}) \in \mathbb{N}$, then \mathbf{s} generates the language of a finite automaton. It is linked ${ }^{\ddagger}$ to the integer base $b=\operatorname{gr}(\mathbf{s})$.

If $\operatorname{gr}(\mathbf{s}) \notin \mathbb{N}$, then \mathbf{s} generates a non-context-free language. It is linked ${ }^{\ddagger}$ to the rational base $\frac{p}{q}=\operatorname{gr}(\mathbf{s})$. (cf. Akiyama et all '08)
\ddagger It is a non-canonical representation of the integers (using extra digits).

Future works: Directed signatures

Aperiodic signature: $\mathbf{s}=s_{0} s_{1} s_{2} \ldots$

Definition: directed signature
$S_{n}=\sum_{k=0}^{n} s_{k}:$ partial sums of \mathbf{s}.
\mathbf{s} is directed by α if $S_{n}=\alpha n+o(1)$

Aperiodic signature: $\mathbf{s}=s_{0} s_{1} s_{2} \ldots$

Definition: directed signature
$S_{n}=\sum_{k=0}^{n} s_{k}:$ partial sums of \mathbf{s}.
\mathbf{s} is directed by α if $S_{n}=\alpha n+o(1)$

When α is Pisot, \mathbf{s} generates a language linked to the base α.
When α is not Pisot... erratic behaviour.

