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Integer Base

m base p>1
m alphabet A, ={0,1,--- ,p—1}

m value m(a, - - a1a0) = > aip’

Example (base 3) - 7(12)= (3x1)4+(1x2) =5
m(122) = (9x1)+(3x2)+(1x2) =17



Integer Base

base p > 1
alphabet A, = {0,1,--- ,p— 1}

m value m(a, -+~ a1a0) = Y1 aip'
W(AZ) =N

representation (n), = (n)p.a
m (n',a) is the Euclidean division de n par p.

<N>p = (Ap\{o}) ) A:;



Integer base - additionner

Digit-wise addition : A, x Ap — Aop_1
example (base 3) : 122412 = 134

Alphabet conversion : Ay,_1 +— A,
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Integer base - additionner

Digit-wise addition :
example (base 3) : 122412 = 134

Alphabet conversion : Ay,_1 +— A,
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Integer base - additionner

Digit-wise addition : A, x Ap — Aop_1
example (base 3) : 122412 = 134

Alphabet conversion : Ay,_1 +— A,
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Rational Base @

m base g > 1 irreducible fraction (p > g and p A g =1).

m representation (n)p = (n')p.a:
q q

m (n',a) is the Euclidean division of (@ x n) by p .
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Rational Base

m base g > 1 irreducible fraction (p > g and pA g =1).
m alphabet A, = {0,1,...,p—1}

m representation (n)p = (n')p.a:
q q

m (n',a) is the Euclidean division of (@ x n) by p .

Example: computing (3) 3

2 x 3 = 3 x Nj+ agp; = Ny =2 and ap = 0.
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Rational Base

m base g > 1 irreducible fraction (p > g and pA g =1).
m alphabet A, = {0,1,...,p—1}

m representation (n)p = (n')p.a:
q q

m (n',a) is the Euclidean division of (@ x n) by p .

Example: computing (3) 3

2 x2= 3 x Ny + ay;



Rational Base

m base g > 1 irreducible fraction (p > g and pA g =1).
m alphabet A, = {0,1,...,p—1}

m representation (n)p = (n')p.a:
q q

m (n',a) is the Euclidean division of (@ x n) by p .

Example: computing (3) 3

2 x2= 3 x Ny + ay; = Ny, =1and a; = 1.
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Rational Base

m base g > 1 irreducible fraction (p > g and pA g =1).
m alphabet A, = {0,1,...,p—1}

m representation (n)p = (n')p.a:
q q

m (n',a) is the Euclidean division of (@ x n) by p .

Example: computing (3) 3

2 x1= 3 x N3+ ap; = N3 =0 and a, = 2.



Rational Base

m base g > 1 irreducible fraction (p > g and pA g =1).

m alphabet A, = {0,1,...,p—1}

m representation (n)p = (n')p.a:
q q

m (n',a) is the Euclidean division of (@ x n) by p .

Example: computing (3) 3
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Computation tree of the representations in base %
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Computation tree of the representations in base %
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The language L%
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The evaluation function and the set of values Ve @
q

Evaluation function: T A — Q

i
m(anama) = Nio2(2)

m (m(u))=u if u does not start with a 0
and (u) is an integer.



The evaluation function and the set of values Ve @
q

Evaluation function: T AF — Q

m (m(u))=u if u does not start with a 0
and (u) is an integer.
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From integer base to rational base

The language L»
q

The evaluation set Vp
q

Constant Addition



Properties of Lg

(m)e = (n)e.a

where (n, a) is the Euclidean division of ¢ x m by p.






Properties of Lg

n—m iff pn4+a=agm

m Lo is prefix-closed.
q

m Lp is (right-)extendable.
q



Properties of Lg

n—m iff pn4+a=agm

a
n—s m
for some m,m’ € N

=/ ) a y
n=n'|[q| :>|n—>m and a € A,



Properties of Lg

n—m iff pn4+a=agm

n—5 m
n=n'[q? ) a , for some m,m’ € N
= = | "— m
and a € Ap

m=m'[q]



Properties of Lg

n—m iff  pn+a=qgm

n—2sm sk . )
for some m,m’, k., k' € N
nEn’ [q2] n/ a m @ k, ) [RAS)
and a,c € Ap

m=m'[q]
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Properties of Lg

n—m iff pn4+a=agm

n—s k

Lo s for some k, k' € N
n=nlq'] <= | "— k'

and uEA,;'

Theorem (Akiyama Frougny Sakarovitch, 2008)

Lp is not a rational language.
q



The Bounded Left Iteration Property (BLIP)

Definition
a language L is BLIP

Yu v, donly finitely indices /
such that uv' is the prefix of a word of L.

Example : the prefixes of an infinite aperiodic word.



The Bounded Left Iteration Property (BLIP)

Definition
a language L is BLIP

Yu v, I only finitely indices i
such that uv' is the prefix of a word of L.

Intuition 1

m L does not contain any infinite rational language.
[IRS : Greibach 1975]

m L is "hard” to extend to a rational language.



The Bounded Left Iteration Property (BLIP)

Definition
a language L is BLIP

Yu v, I only finitely indices i
such that uv' is the prefix of a word of L.

Intuition 2

m The topological closure of L contains only aperiodic word.

(Every branch of the tree-representation of L is labelled by an
aperiodic word.)



BLIP is a very robust property

m Every finite language is BLIP.

m A finite union of BLIP languages is BLIP.
m Any intersection of BLIP languages is BLIP.
Every sub-language of a BLIP language is BLIP.

The concatenation of two BLIP languages is BLIP.

The prefix closure of a BLIP language is BLIP.

m The inverse image by transducer of a BLIP language is
BLIP.



BLIP within formal language theory

Context-Sensitive
(Type 1)

Context-Free
(Type 2)

Qs



BLIP within formal language theory

~
Qs

Context-Sensitive
(Type 1)

Indexed

Context-Free
(Type 2)

Empty ?






Lg is a BLIP language

Proposition [AFS'08]
Le is a BLIP language.
q

Proof ab absurdo.

m Let us assume that wv* € Lp, for some u, v.
q

m— VieN, uwvi elpand wv.v €lLs.
q q
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Lg is a BLIP language

Proposition [AFS'08]
Le is a BLIP language.

Proof ab absurdo.

m Let us assume that wv* € Lp, for some u, v.
q
m— VieN, uv €lpsand uwv.v € Ls.
q q
m = VieN, n(u)=n(uv) [¢V].

m A contradiction.
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Le has a strong “transversal” regularity
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Properties of Vg

W(an"'ala()) =



Properties of Vg

e mz0) = 3% ()

i=0

m V»r contains every integer;
q

m Vs contains only number of the form
q

k1



Properties of Vg

i=0

m Vp contains every integer;
q
m V>p contains only number of the form q—’L;

q
L for n greater than a

m given k, Vp contains every number o
q

bound ny.



Properties of Vg

m V»r contains every integer;
q

m Vs contains only number of the form p
q

m given k, Vp contains every number q—”k for n greater than a
q

n .
=

bound n.
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Ve is a monoid ...and the addition is rational @
q

2(0 3|1 4)2
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Problem

value

representation
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Problem

value

representation

complicated



Problem

value representation

Is there an object simple from both perspectives:
m value (finitely generated monoid);

m representation (rational language).

complicated



Theorem (Marsault Sakarovitch, 2013)

M: finitely generated monoid (C V&»)
q
= (M)» is a BLIP language.
q



Structure of a finitely generated submonoid of Vg

Proposition

M: finitely generated monoid (C V&z)
q

M C |JN+x)  with/ finite and x's € V.
iel
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M: finitely generated monoid (C V&z)
q

M C |JN+x)  with/ finite and x's € Vs.
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Proof.

® g1,8 - &n . generators (of the form i where n,j € N);

m g¥ : GCD of their denominator;



Structure of a finitely generated submonoid of Vg

Proposition
M: finitely generated monoid (C V&z)
q

M C |JN+x)  with/ finite and x's € Vs.
i€l

Proof.
® g1,8 - &n . generators (of the form ﬁ where n,j € N);

m g¥ : GCD of their denominator;
ExeEM = x:(m—{—qik)forsomemeNand i< gk
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Incrementer by 3.125 (or "121") in base 3

2(0 3|1 4J2

0[0 1/1 2|2



constant addition by 3.125 (or "121") in base 3

2(0 3|1 4J2

0[0 1/1 2|2
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Reduction of main Statement (to Theorem B) @

Theorem B
L C A;‘;, x € Ve
q
L is not BLIP = (L & x) is not BLIP.

Notation
(L& x) = (S + x), where L = (5).



Reduction of main Statement (to Theorem B) @

Theorem B
L C A;, x € Ve
q
L is not BLIP = (L & x) is not BLIP.

Lemma

Theorem B = for all y € Ve, (Le @ y) is BLIP.
q q



Reduction of main Statement (to Theorem B) @

Theorem B
LC A:‘,, x € Vb
q
L is not BLIP => (L & x) is not BLIP.

Lemma

Theorem B = for all y € Ve, (Le @ y) is BLIP.
q q

m Ab absurdo, let us assume that (Le @ y) is not BLIP,
q
= for all x, (Le @ y & x) is not BLIP
q
[ Theorem B with L = (Le ® y) |.
q



Reduction of main Statement (to Theorem B) @

Theorem B
LC A:‘,, x € Vb
q
L is not BLIP => (L & x) is not BLIP.

Lemma

Theorem B = for all y € Ve, (Le @ y) is BLIP.
q q

m Ab absurdo, let us assume that (Le ¢ y) is not BLIP,
= for all x, (Le ® y @ x) is not BLIP
’ [ Theorem B with L = (Le & ) |
= We know that 3x € V%’ (x+y)eN

— (N+y+x)CN
= (Le ®x®y) is BLIP.
q



Proof of: L is not BLIP —> L& x is not BLIP @

L is not BLIP
= Ju,v and {w;};, uv'w; € L for all j in an infinite set Z.



Proof of: L is not BLIP = L ® x is not BLIP

L is not BLIP
= Ju,v and {w;};, uv'w; € L for all j in an infinite set Z.

WLOG
m |w;| arbitrarily large;
m all w; reach the same state s of the incrementer by x;

m s is stable by every letter of v.



Proof of: L is not BLIP = L ® x is not BLIP

L is not BLIP
= Ju,v and {w;};, uv'w; € L for all j in an infinite set Z.

WLOG
m |w;| arbitrarily large;
m all w; reach the same state s of the incrementer by x;

m s is stable by every letter of v.

- Wi(new)= W,'(OId)

m ZOw) — ) _1 — | (i>0)A(i+1)eT}

= every W,.("ew) > |v|

v



Proof of: L is not BLIP = L ® x is not BLIP

L is not BLIP
= Ju,v and {w;};, uv'w; € L for all j in an infinite set Z.

WLOG
m |w;| arbitrarily large;
m all w; reach the same state s of the incrementer by x;

m s is stable by every letter of v.

m T he incrementer has a finite number of states.
m The set 7 is infinite.

— There is a state s reached by infinitely many w;'s.



Proof of: L is not BLIP —> L& x is not BLIP @

L is not BLIP
= Ju,v and {w;};, uv'w; € L for all j in an infinite set Z.

WLOG
m |w;| arbitrarily large;
m all w; reach the same state s of the incrementer by x;

m s is stable by every letter of v.

Back to the Incrementer...



Proof of: L is not BLIP = L ® x is not BLIP




Proof of:

20(CED
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L is not BLIP = L& x is not BLIP
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Proof of: L is not BLIP = L ® x is not BLIP

L is not BLIP
= Ju,v and {w;};, uv'w; € L for all j in an infinite set Z.

WLOG
m |w;| arbitrarily large;
m all w; reach the same state s of the incrementer by x;

m s is stable by every letter of v.
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L is not BLIP
= Ju,v and {w;};, uv'w; € L for all j in an infinite set Z.

WLOG
m |w;| arbitrarily large;
m all w; reach the same state s of the incrementer by x;

m s is stable by every letter of v.




Proof of: L is not BLIP = L ® x is not BLIP

L is not BLIP

= Ju,v and {w;};, uv'w; € L for all j in an infinite set Z.

WLOG
m |w;| arbitrarily large;
m all w; reach the same state s of the incrementer by x;

m s is stable by every letter of v.

u Vi 4
s — s
v (v w

(L®x) > u'(V')'w/ for all i belonging to the infinite set Z.

@)



Proof of: L is not BLIP = L ® x is not BLIP

L is not BLIP
= Ju,v and {w;};, uv'w; € L for all j in an infinite set Z.

WLOG
m |w;| arbitrarily large;
m all w; reach the same state s of the incrementer by x;

m s is stable by every letter of v.

u Vi 4
s — s
v (v w

(L®x) > u'(V')'w/ for all i belonging to the infinite set Z.

— (L & x) is not BLIP



Conclusion and future work

M finitely generated submonoid of V&
q
— (M, +) is NOT an automatic structure.



Conclusion and future work @

M finitely generated submonoid of V&
q
— (M, +) is NOT an automatic structure.

Conjecture

M additive submonoid N C M and (M) is rational.
(M) = X.A5 where X = Lp N Ag”
q

0,1,2
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