Rational base number systems BLIP languages and finitely generated monoids

Victor MARSAULT

LTCI, Paris, France

2014 - 02 - 27

1 From integer base to rational base

- **2** The language $L_{\frac{p}{q}}$
- **3** The evaluation set $V_{\frac{p}{q}}$
- 4 Constant Addition

Integer Base

- base p > 1
- lacksquare alphabet $A_p = \{0,1,\cdots,p-1\}$

- base p > 1
- lacksquare alphabet $A_p = \{0, 1, \cdots, p-1\}$
- \blacksquare value $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n a_i p^i$

Example (base 3) -
$$\pi(12) = (3 \times 1) + (1 \times 2) = 5$$

 $\pi(122) = (9 \times 1) + (3 \times 2) + (1 \times 2) = 17$

- base p > 1
- lacksquare alphabet $A_p = \{0, 1, \cdots, p-1\}$
- \blacksquare value $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n a_i p^i$
- $\blacksquare \ \pi(A_p^*) = \mathbb{N}$

- representation $\langle n \rangle_p = \langle n' \rangle_p.a$
 - \bullet (n', a) is the Euclidean division de n par p.

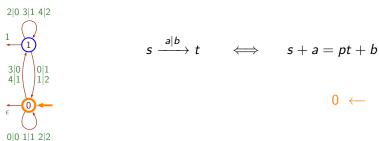
Digit-wise addition : $A_p \times A_p \mapsto A_{2p-1}$ example (base 3): 122+12 = 134

$$s \xrightarrow{a|b} t$$

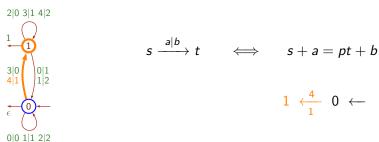
$$\iff$$

$$\iff$$
 $s+a=pt+b$

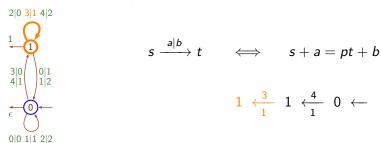
Digit-wise addition : $A_p \times A_p \mapsto A_{2p-1}$ example (base 3) : 122+12 = 134



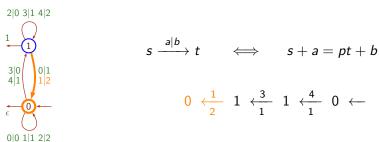
Digit-wise addition : $A_p \times A_p \mapsto A_{2p-1}$ example (base 3) : 122+12 = 134



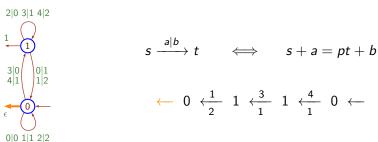
Digit-wise addition : $A_p \times A_p \mapsto A_{2p-1}$ example (base 3) : 122+12 = 134



Digit-wise addition : $A_p \times A_p \mapsto A_{2p-1}$ example (base 3) : 122+12 = 134



Digit-wise addition : $A_p \times A_p \mapsto A_{2p-1}$ example (base 3) : 122+12 = 134



■ base $\frac{p}{q} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.

- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

- base $\frac{p}{q} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_{m p}=\{0,1,\ldots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

- base $\frac{p}{q} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_{m p}=\{0,1,\ldots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

$$\langle 3 \rangle_{\frac{3}{2}} =$$

- base $\frac{p}{a} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_p = \{0, 1, \dots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

$$\langle 3 \rangle_{\frac{3}{2}} =$$

$$\begin{array}{c|c} 2 \times 3 &= 3 \times N_1 + a_0; \\ \uparrow & \uparrow & \uparrow \end{array}$$

- base $\frac{p}{a} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- alphabet $A_p = \{0, 1, ..., p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

$$\langle 3 \rangle_{\frac{3}{2}} =$$

$$2 \times 3 = 3 \times N_1 + a_0; \Rightarrow N_1 = 2 \text{ and } a_0 = 0.$$

- base $\frac{p}{q} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_p = \{0, 1, \dots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

$$\langle 3 \rangle_{\frac{3}{2}} \quad = \quad \langle 2 \rangle_{\frac{3}{2}} \, 0 \quad = \quad$$

- base $\frac{p}{a} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_{m p}=\{0,1,\ldots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n',a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 =$$

 $2 \times 2 = 3 \times N_2 + a_1;$

- base $\frac{p}{a} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_p = \{0, 1, \dots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n',a) is the Euclidean division of $(\mathbf{q}\times n)$ by \mathbf{p} .

$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 =$$

 $2 \times 2 = 3 \times N_2 + a_1; \Rightarrow N_2 = 1 \text{ and } a_1 = 1.$

- base $\frac{p}{q} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_{m{p}}=\{0,1,\ldots,m{p}-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n',a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

$$\langle 3 \rangle_{\frac{3}{2}} \quad = \quad \langle 2 \rangle_{\frac{3}{2}} \, 0 \quad = \quad \langle 1 \rangle_{\frac{3}{2}} \, 10 \quad = \quad$$

- base $\frac{p}{a} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_p = \{0, 1, \dots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n',a) is the Euclidean division of $(\mathbf{q}\times n)$ by \mathbf{p} .

$$\langle 3 \rangle_{\frac{3}{2}} \quad = \quad \langle 2 \rangle_{\frac{3}{2}} \, 0 \quad = \quad \langle 1 \rangle_{\frac{3}{2}} \, 10 \quad = \quad$$

$$2 \times 1 = 3 \times N_3 + a_2;$$

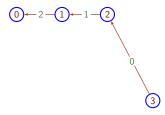
- base $\frac{p}{a} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_p = \{0, 1, \dots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n',a) is the Euclidean division of $(\mathbf{q}\times n)$ by \mathbf{p} .

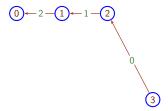
$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 = \langle 1 \rangle_{\frac{3}{2}} 10 =$$

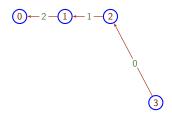
$$2 \times 1 = 3 \times N_3 + a_2; \Rightarrow N_3 = 0 \text{ and } a_2 = 2.$$

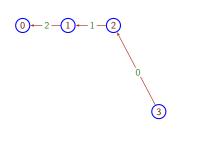
- base $\frac{p}{q} > 1$ irreducible fraction $(p > q \text{ and } p \land q = 1)$.
- lacksquare alphabet $A_{m p}=\{0,1,\ldots,p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

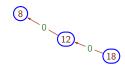
$$\langle 3 \rangle_{\frac{3}{2}} \quad = \quad \langle 2 \rangle_{\frac{3}{2}} \, 0 \quad = \quad \langle 1 \rangle_{\frac{3}{2}} \, 10 \quad = \quad 210$$

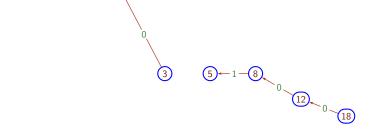


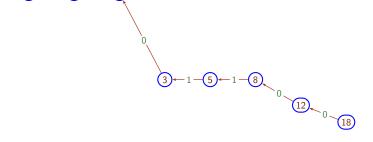


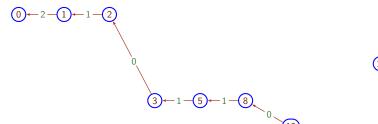




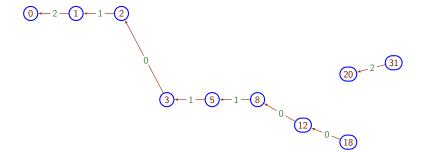


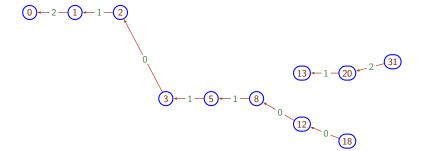


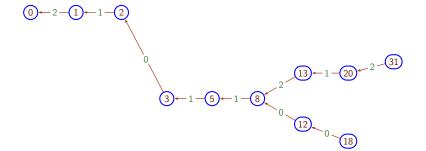


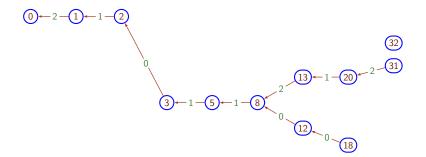


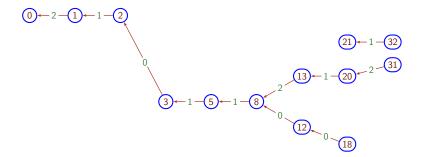
(31)

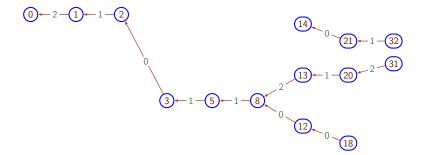


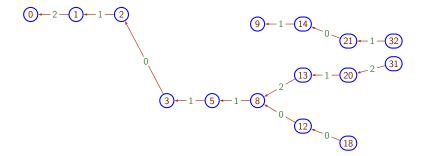


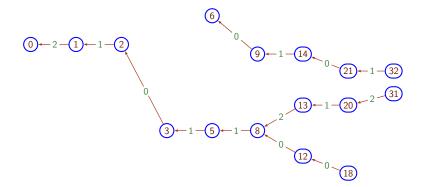


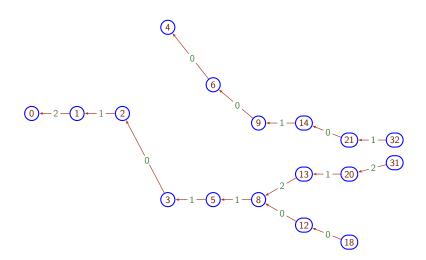


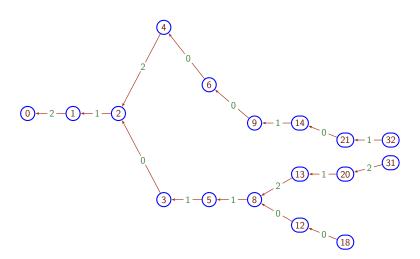


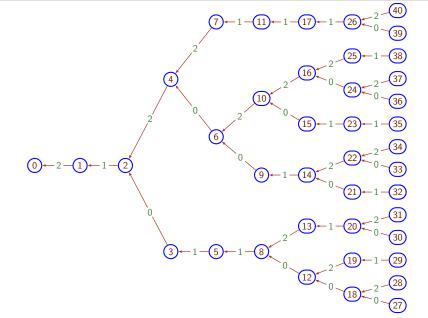


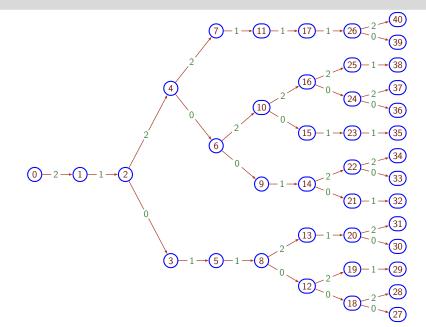












Evaluation function:
$$\pi: A_p^* \longrightarrow \mathbb{Q}$$

$$\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n \frac{a_i}{q} \left(\frac{p}{q}\right)^i$$

- $\pi(\langle n \rangle) = n$
- $\pi(0^*u) = \pi(u)$

Evaluation function:
$$\pi: A_p^* \longrightarrow \mathbb{Q}$$

$$\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n \frac{a_i}{q} \left(\frac{p}{q}\right)^i$$

- $\pi(\langle n \rangle) = n$
- $\pi(0^*u) = \pi(u)$
- $\langle \pi(u) \rangle = u$ if u does not start with a 0 and $\pi(u)$ is an integer.

$$V_{\frac{p}{q}} = Im(\pi) = \pi(A_p^*)$$

1 From integer base to rational base

- 2 The language $L_{\frac{p}{q}}$
- **3** The evaluation set $V_{rac{p}{q}}$
- 4 Constant Addition

$$\langle m \rangle_{\frac{p}{q}} = \langle n \rangle_{\frac{p}{q}}.a$$

where (n, a) is the Euclidean division of $q \times m$ by p.

$$n \xrightarrow{a} m$$
 iff $pn + a = qm$

$$n \xrightarrow{a} m$$
 iff $pn + a = qm$

- L_{P/q} is prefix-closed.
 L_{P/q} is (right-)extendable.

$$n \xrightarrow{a} m$$
 iff $pn + a = qm$

$$n \equiv n' [q] \implies \left| \begin{array}{cc} n \stackrel{a}{\longrightarrow} m \\ n' \stackrel{a}{\longrightarrow} m' \end{array} \right|$$
 for some $m, m' \in \mathbb{N}$ and $a \in A_p$

$$n \xrightarrow{a} m$$
 iff $pn + a = qm$

$$n \equiv n' \ [q^2] \implies \left| egin{array}{ccc} n \stackrel{a}{\longrightarrow} m \\ n' \stackrel{a}{\longrightarrow} m' \\ m \equiv m' \ [q] \end{array} \right| \qquad \qquad \text{for some } m, m' \in \mathbb{N}$$

$$n \xrightarrow{a} m$$
 iff $pn + a = qm$

$$n \equiv n' \ [q^2] \implies \left| egin{array}{ccc} n \stackrel{a}{\longrightarrow} m & \stackrel{c}{\longrightarrow} k \\ n' \stackrel{a}{\longrightarrow} m' & \stackrel{c}{\longrightarrow} k' \\ m \equiv m' \ [q] \end{array} \right| \quad \begin{array}{cccc} \text{for some } m, m', k, k' \in \mathbb{N} \\ \text{and } a, c \in A_p \end{array}$$

$$n \xrightarrow{a} m$$
 iff $pn + a = qm$

$$n \equiv n' [q^2] \implies \begin{vmatrix} n \xrightarrow{u} k \\ n' \xrightarrow{u} k' \end{vmatrix}$$
 for some $k, k' \in \mathbb{N}$ and $u \in A_p^2$

$$n \xrightarrow{a} m$$
 iff $pn + a = qm$

$$n \equiv n' [q^i] \implies \begin{cases} n \xrightarrow{u} k \\ n' \xrightarrow{u} k' \end{cases}$$
 for some $k, k' \in \mathbb{N}$ and $u \in A_p^i$

$$n \xrightarrow{a} m$$
 iff $pn + a = qm$

$$n \equiv n' [q^i] \iff \begin{bmatrix} n \xrightarrow{u} k \\ n' \xrightarrow{u} k' \end{bmatrix}$$
 for some $k, k' \in \mathbb{N}$ and $u \in A_p^i$

$$n \xrightarrow{a} m$$
 iff $pn + a = qm$

$$n \equiv n' \left[q^i \right] \iff \left| \begin{array}{c} n \stackrel{u}{\longrightarrow} k \\ n' \stackrel{u}{\longrightarrow} k' \end{array} \right|$$
 for some $k, k' \in \mathbb{N}$ and $u \in A_p^i$

Theorem (Akiyama Frougny Sakarovitch, 2008)

 $L_{\frac{p}{q}}$ is not a rational language.

Definition

a language L is BLIP $\forall u \ v, \ \exists \text{ only finitely indices } i$ such that uv^i is the prefix of a word of L.

Example: the prefixes of an infinite aperiodic word.

Definition

a language L is BLIP $\forall u \ v, \ \exists \text{ only finitely indices } i$ such that uv^i is the prefix of a word of L.

Intuition 1

- *L* does not contain any infinite rational language.
 - [IRS : Greibach 1975]
- *L* is "hard" to extend to a rational language.

Definition

a language L is BLIP $\forall u \ v, \ \exists \text{ only finitely indices } i$ such that uv^i is the prefix of a word of L.

Intuition 2

■ The topological closure of *L* contains **only** aperiodic word.

(Every branch of the tree-representation of L is labelled by an aperiodic word.)

Every finite language is BLIP.

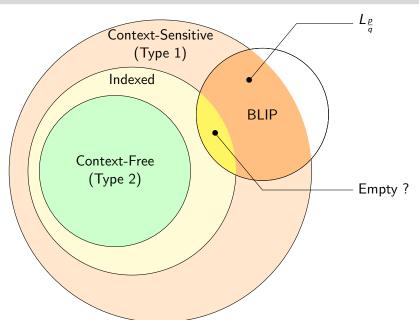
- A finite union of BLIP languages is BLIP.
- Any intersection of BLIP languages is BLIP.
- Every **sub-language** of a BLIP language is BLIP.
- The concatenation of two BLIP languages is BLIP.

- The prefix closure of a BLIP language is BLIP.
- The **inverse image by transducer** of a BLIP language is BLIP.

BLIP within formal language theory



BLIP within formal language theory



$L_{\frac{p}{q}}$ is a BLIP language

Proposition [AFS'08]

 $L_{\frac{p}{q}}$ is a BLIP language.

Proposition [AFS'08]

 $L_{\frac{p}{a}}$ is a BLIP language.

Proof ab absurdo.

- Let us assume that $uv^* \in L_{\frac{p}{a}}$, for some u, v.
- $\blacksquare \implies \forall i \in \mathbb{N}, \quad u. \ v^i \in L_{\frac{p}{a}} \ \text{and} \quad uv. \ v^i \in L_{\frac{p}{a}}.$

Proposition [AFS'08]

 $L_{\frac{p}{a}}$ is a BLIP language.

Proof ab absurdo.

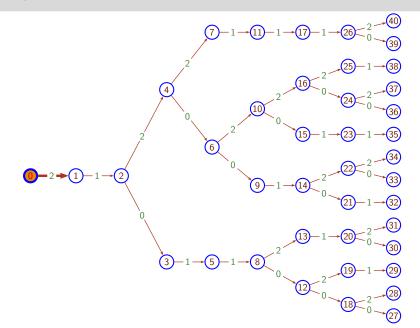
- Let us assume that $uv^* \in L_{\frac{p}{a}}$, for some u, v.
- $\blacksquare \implies \forall i \in \mathbb{N}, \quad u. v^i \in L_{\frac{p}{a}} \text{ and } uv. v^i \in L_{\frac{p}{a}}.$

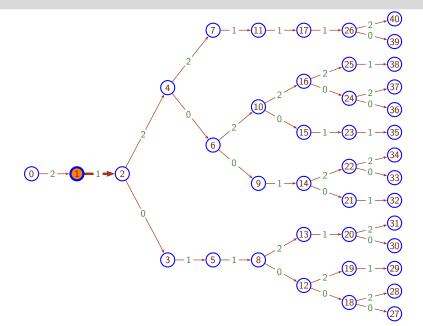
Proposition [AFS'08]

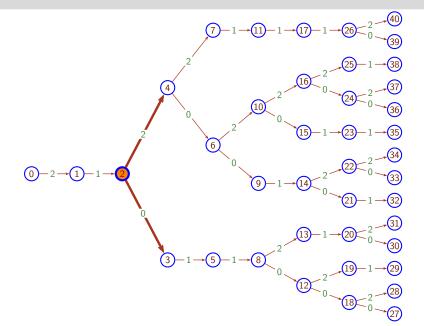
 L_{P} is a BLIP language.

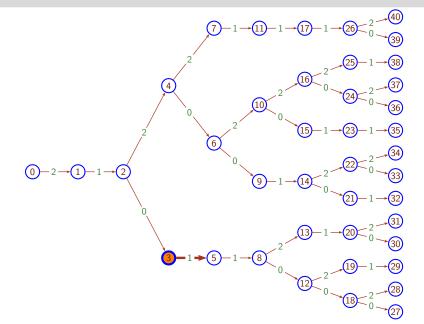
Proof ab absurdo.

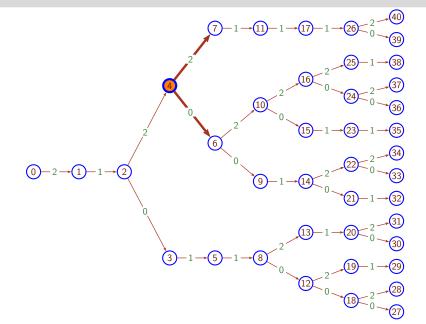
- Let us assume that $uv^* \in L_{\frac{p}{a}}$, for some u, v.
- $\Longrightarrow \forall i \in \mathbb{N}, \quad u. \ v^i \in L_{\frac{p}{q}} \text{ and } \quad uv. \ v^i \in L_{\frac{p}{q}}.$ $\Longrightarrow \forall i \in \mathbb{N}, \quad \pi(u) \equiv \pi(uv) \ [q^{|v| \times i}].$
- A contradiction.

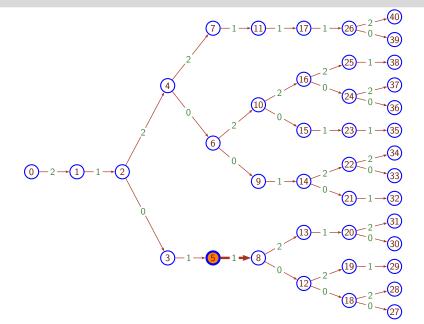


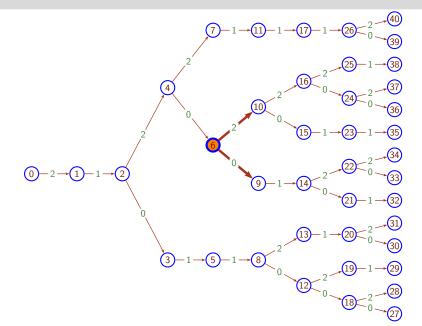


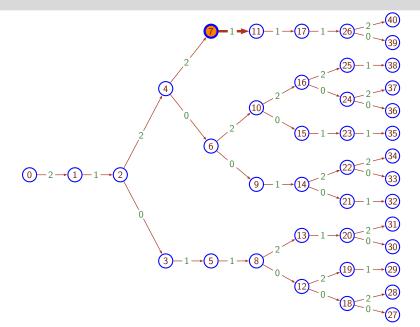


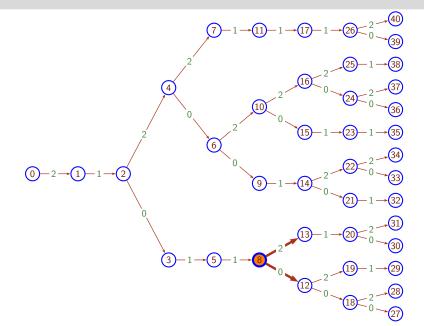


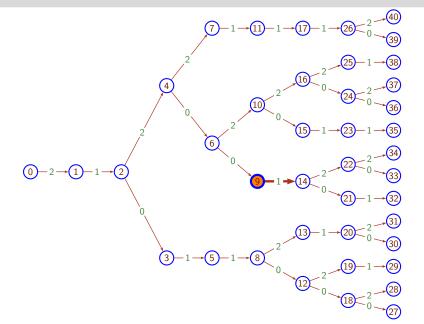


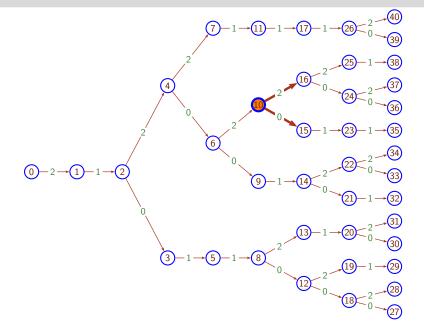


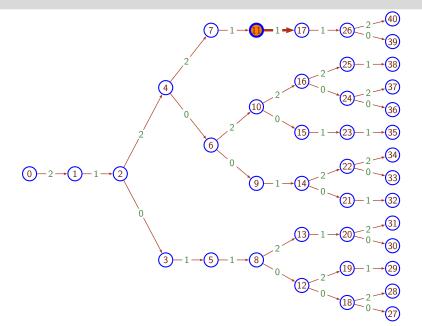












- 1 From integer base to rational base
- **2** The language $L_{\frac{p}{q}}$
- **3** The evaluation set $V_{rac{p}{q}}$

4 Constant Addition

Properties of $V_{\frac{p}{a}}$

$$\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n \frac{a_i}{q} \left(\frac{p}{q}\right)^i \qquad V_{\frac{p}{q}} = \pi(A_p^*)$$

Properties of $V_{\frac{p}{a}}$

$$\pi(a_n\cdots a_1a_0)=\sum_{i=0}^nrac{a_i}{q}\left(rac{p}{q}
ight)^i \qquad \qquad V_{rac{p}{q}}=\pi(A_p^*)$$

- $V_{\frac{p}{a}}$ contains every integer;
- $V_{\frac{p}{q}}$ contains only number of the form $\frac{n}{q^k}$;

Properties of $V_{\frac{p}{a}}$

$$\pi(a_n\cdots a_1a_0)=\sum_{i=0}^n rac{a_i}{q}\left(rac{p}{q}
ight)^i \qquad \qquad V_{rac{p}{q}}=\pi(A_p^*)$$

- $V_{\frac{p}{a}}$ contains every integer;
- $V_{\frac{p}{q}}$ contains only number of the form $\frac{n}{q^k}$;
- **•** given k, $V_{\frac{p}{q}}$ contains every number $\frac{n}{q^k}$ for n greater than a bound n_k .

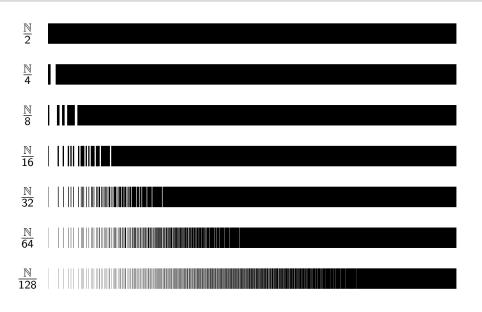
$$\pi(a_n\cdots a_1a_0)=\sum_{i=0}^n rac{a_i}{q}\left(rac{p}{q}
ight)^i \qquad \qquad V_{rac{p}{q}}=\pi(A_p^*)$$

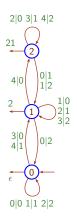
- $V_{\frac{p}{q}}$ contains every integer;
- $V_{\frac{p}{q}}$ contains only number of the form $\frac{n}{q^k}$;
- **•** given k, $V_{\frac{p}{q}}$ contains every number $\frac{n}{q^k}$ for n greater than a bound n_k .



Figure: $V_{\frac{3}{2}}$, the value set in base $\frac{3}{2}$

Successive refinement of $V_{\frac{3}{2}}$

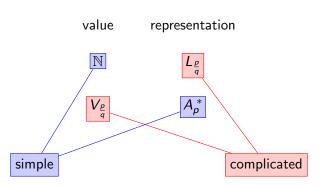


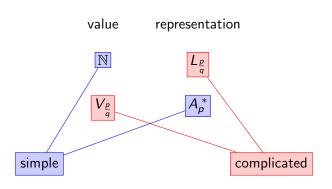


$$s \xrightarrow{a|b} t \iff qs + a = pt + b$$

Problem

value	representation
N	$L_{\frac{P}{q}}$
$V_{\frac{p}{a}}$	$A_p^{\ *}$





Is there an object simple from both perspectives:

- value (finitely generated monoid);
- representation (rational language).

Theorem (Marsault Sakarovitch, 2013)

M: finitely generated monoid $(\subseteq V_{\frac{p}{q}})$

 $\Longrightarrow \langle M \rangle_{rac{
ho}{q}}$ is a BLIP language.

Proposition

M: finitely generated monoid $(\subseteq V_{\frac{p}{q}})$

$$M \subseteq \bigcup_{i \in I} (\mathbb{N} + x_i)$$
 with I finite and x_i 's $\in V_{\frac{p}{q}}$.

Proposition

M: finitely generated monoid $(\subseteq V_{\frac{p}{a}})$

$$M \subseteq \bigcup_{i \in I} (\mathbb{N} + x_i)$$
 with I finite and x_i 's $\in V_{\frac{p}{q}}$.

Proof.

- $g_1, g_2 \cdots g_n$: generators (of the form $\frac{n}{d^j}$, where $n, j \in N$);
- $q^k : \mathsf{GCD}$ of their denominator;

Proposition

M: finitely generated monoid $(\subseteq V_{\frac{p}{q}})$

$$M \subseteq \bigcup_{i \in I} (\mathbb{N} + x_i)$$
 with I finite and x_i 's $\in V_{\frac{p}{q}}$.

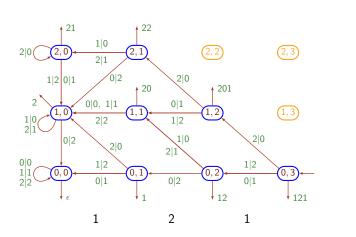
Proof.

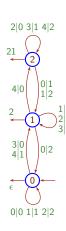
- $g_1, g_2 \cdots g_n$: generators (of the form $\frac{n}{d^j}$, where $n, j \in N$);
- $q^k : \mathsf{GCD}$ of their denominator;
- $x \in M \implies x = (m + \frac{i}{a^k})$ for some $m \in \mathbb{N}$ and $i < q^k$.

Outline

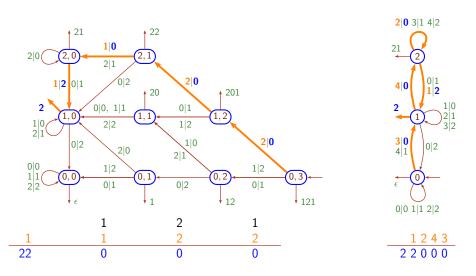
- 1 From integer base to rational base
- **2** The language $L_{\frac{p}{q}}$
- **3** The evaluation set $V_{\frac{p}{q}}$

4 Constant Addition





constant addition by 3.125 (or "121") in base $\frac{3}{2}$



Theorem B

$$L\subseteq A_p^*,\ x\in V_{\frac{p}{q}}$$

 L is not BLIP $\Longrightarrow (L\oplus x)$ is not BLIP.

Notation

$$(L \oplus x) = \langle S + x \rangle$$
, where $L = \langle S \rangle$.

Theorem B

$$L\subseteq A_p^*,\ x\in V_{\frac{p}{q}}$$

 L is not BLIP $\Longrightarrow (L\oplus x)$ is not BLIP.

Lemma

Theorem B \Longrightarrow for all $y \in V_{\frac{p}{q}}$, $(L_{\frac{p}{q}} \oplus y)$ is BLIP.

Theorem B

$$L\subseteq A_p^*,\ x\in V_{\frac{p}{q}}$$

 L is not BLIP $\Longrightarrow (L\oplus x)$ is not BLIP.

Lemma

Theorem B \Longrightarrow for all $y \in V_{\frac{p}{a}}$, $(L_{\frac{p}{a}} \oplus y)$ is BLIP.

■ Ab absurdo, let us assume that $(L_{\frac{p}{q}} \oplus y)$ is not BLIP, ⇒ for all x, $(L_{\frac{p}{q}} \oplus y \oplus x)$ is not BLIP

[Theorem B with L = $(L_{\frac{p}{q}} \oplus y)$].

Theorem B

$$L\subseteq A_p^*,\ x\in V_{\frac{p}{q}}$$

 L is not BLIP $\Longrightarrow (L\oplus x)$ is not BLIP.

Lemma

Theorem B \Longrightarrow for all $y \in V_{\frac{p}{a}}$, $(L_{\frac{p}{a}} \oplus y)$ is BLIP.

- Ab absurdo, let us assume that $(L_{\frac{p}{q}} \oplus y)$ is not BLIP, \Longrightarrow for all x, $(L_{\frac{p}{q}} \oplus y \oplus x)$ is not BLIP [Theorem B with $L = (L_{\frac{p}{q}} \oplus y)$].
- We know that $\exists x \in V_{\frac{p}{q}}, (x + y) \in \mathbb{N}$ $\Longrightarrow (\mathbb{N} + y + x) \subseteq \mathbb{N}$ $\Longrightarrow (L_{\frac{p}{q}} \oplus x \oplus y)$ is BLIP.

Proof of: L is not BLIP $\implies L \oplus x$ is not BLIP

L is not BLIP

 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

- |w_i| arbitrarily large;
- **all** w_i reach the same state s of the incrementer by x;
- s is stable by every letter of v.

 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

- $|w_i|$ arbitrarily large;
- **all** w_i reach the same state s of the incrementer by x;
- s is stable by every letter of v.

- $\mathbf{v}_{i}^{(\text{new})} = v \, w_{i}^{(\text{old})}$
- \implies every $w_i^{(new)} > |v|$

 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

- |w_i| arbitrarily large;
- **all** w_i reach the same state s of the incrementer by x;
- lacksquare s is stable by every letter of v.

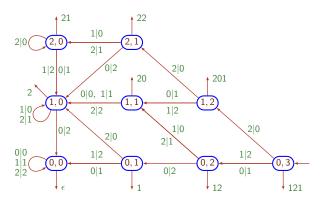
- The incrementer has a finite number of states.
- The set I is infinite.
- \implies There is a state s reached by infinitely many w_i 's.

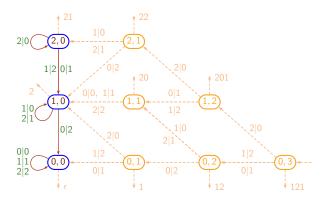
 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

WLOG

- |w_i| arbitrarily large;
- **all** w_i reach the same state s of the incrementer by x;
- lacksquare s is stable by every letter of v.

Back to the Incrementer...





 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

- |w_i| arbitrarily large;
- all w_i reach the same state s of the incrementer by x;
- lacksquare s is stable by every letter of v.

$$s \leftarrow \frac{w_i}{w'_i}$$

 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

- |w_i| arbitrarily large;
- all w_i reach the same state s of the incrementer by x;
- lacksquare s is stable by every letter of v.

$$s \leftarrow \frac{v^i}{(v')^i} \quad s \leftarrow \frac{w_i}{w'_i}$$

 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

- $|w_i|$ arbitrarily large;
- **all** w_i reach the same state s of the incrementer by x;
- lacksquare s is stable by every letter of v.

$$\leftarrow \frac{u}{u'}$$
 $s \leftarrow \frac{v^i}{(v')^i}$ $s \leftarrow \frac{w_i}{w'_i}$

 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

WLOG

- |w_i| arbitrarily large;
- all w_i reach the same state s of the incrementer by x;
- lacksquare s is stable by every letter of v.

$$\leftarrow \frac{u}{u'}$$
 $s \leftarrow \frac{v^i}{(v')^i}$ $s \leftarrow \frac{w_i}{w'_i}$

 $(L \oplus x) \ni u'(v')^i w'_i$ for all *i* belonging to the infinite set \mathcal{I} .

 $\implies \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for all } i \text{ in an infinite set } \mathcal{I}.$

WLOG

- |w_i| arbitrarily large;
- **all** w_i reach the same state s of the incrementer by x;
- lacksquare s is stable by every letter of v.

$$\leftarrow \frac{u}{u'}$$
 $s \leftarrow \frac{v^i}{(v')^i}$ $s \leftarrow \frac{w_i}{w'_i}$

 $(L \oplus x) \ni u'(v')^i w'_i$ for all *i* belonging to the infinite set \mathcal{I} .

$$\implies (L \oplus x)$$
 is not BLIP

Conclusion and future work

M finitely generated submonoid of $V_{\frac{p}{q}}$ \Longrightarrow (M,+) is NOT an automatic structure.

M finitely generated submonoid of $V_{rac{p}{q}}$ \Longrightarrow (M,+) is NOT an automatic structure.

Conjecture

M additive submonoid $\mathbb{N} \subseteq M$ and $\langle M \rangle$ is rational. $\langle M \rangle = X.A_p^*$ where $X = L_{\frac{p}{2}} \cap A_{\overline{p}}^{\leq n}$

$$0 \xrightarrow{2} 1 \xrightarrow{0,1,2}$$

