Ultimate periodicity of b-recognisable sets: a quasilinear procedure

Victor MARSAULT, joint work with Jacques SAKAROVITCH

CNRS / Telecom-ParisTech, Paris, France

17th International Conference on Developments in Language Theory 2013-06-19

- 1 Introduction
- 2 The Pascal automaton
- **3** UP Criterion
- 4 Conclusion and Future work

Integer base

- base $b \ge 2$
- lacksquare alphabet $A_b = \{0, 1, \cdots, b-1\}$

- base $b \ge 2$
- lacksquare alphabet $A_b = \{0, 1, \cdots, b-1\}$

- base $b \ge 2$
- alphabet $A_b = \{0, 1, \dots, b-1\}$
- value : $\pi(a_0a_1\cdots a_n)=\sum_{i=0}^n a_ib^i$

Example : binary system - "100"
$$\leftarrow$$
 base 2 \rightarrow 4; "110" \leftarrow base 2 \rightarrow 6; "001" "011"

- base $b \ge 2$
- alphabet $A_b = \{0, 1, \dots, b-1\}$
- value : $\pi(a_0a_1\cdots a_n)=\sum_{i=0}^n a_ib^i$

Example : binary system -
$$"100" \leftarrow $^{base 2}$ 4; "110" \leftarrow $^{base 2}$ 6; "001" "011"$$

$X \subseteq \mathbb{N}$ is *b*-rational

- \blacksquare automaton ${\cal A}$
- $L(A) \stackrel{base \ b}{\longleftrightarrow} X$

Ultimately Periodic (UP) \Longrightarrow *b*-rational

Example: automaton accepting integers congruent to 0 modulo 3

Ultimately Periodic (UP) \Longrightarrow b-rational

Example: automaton accepting integers congruent to 0 modulo 3

Example: automaton accepting integers congruent to 0 or 1 modulo 3

Ultimately Periodic (UP) \Longrightarrow *b*-rational

Fact

b-Rat \Rightarrow (UP)

Example: accepts the powers of 2

Ultimately Periodic (UP) \Longrightarrow *b*-rational

Theorem (Cobham, 1969)

- X b₁-rational
- X b₂-rational
 b₁ and b₂ multiplicatively
 ⇒ X ∈ (UP) independent

$$\Rightarrow X \in (\mathsf{UP})$$

ULTIMATE-PERIODICITY

PARAMETER:

■ a base b

DATA:

 \blacksquare an automaton ${\cal A}$

OUTPUT:

■ Does $L(A) \in (UP)$?

ULTIMATE-PERIODICITY

PARAMETER:

■ a base *b*

DATA:

lacksquare an automaton ${\cal A}$

OUTPUT:

■ Does $L(A) \in (UP)$?

Theorem (Honkala, 1986)

ULTIMATE-PERIODICITY is decidable.

Theorem (Leroux, 2005)

Semi-Linear(\mathbb{N}^k) is decidable in $b\text{-}Rat(\mathbb{N}^k)$ in P-TIME.

- → Quadratic complexity
- $\rightarrow \ \, \text{Complicated geometrical algorithm}$

Theorem (Leroux, 2005)

Semi-Linear(\mathbb{N}^k) is decidable in b-Rat(\mathbb{N}^k) in P-TIME.

- → Quadratic complexity
- ightarrow Complicated geometrical algorithm

Note (Allouche Shallit Rampersad, 2009)

- '+' is a *b*-rational relation.
- The class (*UP*) is Presburger-definable.
- → Exponential complexity
- ightarrow Generalisation to most common numeration systems

Contribution

Theorem

 \mathcal{A} : a minimal automaton

It is decidable in linear time whether L(A) is (UP).

Corollary

ULTIMATE-PERIODICITY is solvable in $O(n \log_2(n))$ time.

- 1 Introduction
- 2 The Pascal automaton
 - Definition
 - Properties
- 3 UP Criterion
- 4 Conclusion and Future work

Parameters

- **■** (*b* : the base)
- lacksquare p: a period, coprime with b.
- \blacksquare R: a set of remainders modulo p.

Expected behaviour

$$u \in A_b^*$$
 accepted $\iff \pi(u) \equiv r \ [p], \ r \in R$

- $\pi(ua) = \pi(u) + a b^{|u|}$
- lacksquare let ψ be the smallest integer s.t. $b^{\psi}\equiv 1~[p]$
- $b^k \equiv b^{(k \bmod \psi)}[p]$

- $\pi(ua) = \pi(u) + a b^{|u|}$
- lacksquare let ψ be the smallest integer s.t. $b^{\psi}\equiv 1$ [p]
- $b^k \equiv b^{(k \bmod \psi)}[p]$

- States: $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/\psi\mathbb{Z}$ $\pi(u) \bmod p \longrightarrow \qquad \qquad \downarrow \qquad \qquad |u| \bmod \psi$
- Transitions: $(r,s) \xrightarrow{a} (r+ab^s,s+1)$
- Initial state: (0,0)
- Final states: $R \times \mathbb{Z}/\psi\mathbb{Z}$

- (b=2)
- *p* = 3
- $\psi = 2$ (since $2^2 \equiv 1$ [3])

Structural properties

Lemma

 \mathcal{P}_{p}^{R} is deterministic and co-deterministic.

- ightarrow Each letter induces a permutation of the states
- \to The syntactic monoid of \mathcal{P}_p^R is a group $(\simeq \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/\psi\mathbb{Z})$.

Structural properties

Lemma

 \mathcal{P}_{p}^{R} is deterministic and co-deterministic.

Proposition

The syntactic monoid of $\mathcal{P}^R_{
ho}$ is generated by 0 and 1 or 0 and $g=10^{-1}$

Lemma

 \mathcal{P}_{p}^{R} is deterministic and co-deterministic.

Proposition

The syntactic monoid of $\mathcal{P}^R_{
ho}$ is generated by 0 and 1 or 0 and $g=10^{-1}$

Structural properties

Lemma

 \mathcal{P}_{p}^{R} is deterministic and co-deterministic.

Proposition

The syntactic monoid of \mathcal{P}^R_{p} is generated by 0 and 1 or 0 and $g=10^{-1}$

Lemma (isotropism)

Changing the initial state of a Pascal automaton \mathcal{P}_p^R yields \mathcal{P}_S^p for some S.

Given an automaton \mathcal{A} , it is decidable in linear time whether \mathcal{A} is the quotient of a Pascal.

Recognising a quotient of a Pascal automaton (1)

 \mathcal{P}_p^R : a Pascal automaton

 \mathcal{A} : a quotient of \mathcal{P}_p^R

 $\sim\!:$ the equivalence relation of the quotient

Step 1 – Simplifications

Changing the alphabet of \mathcal{A} : from $\{0,1,\ldots,b-1\}$ to $\{0,g\}$.

Recognising a quotient of a Pascal automaton (1)

 \mathcal{P}_p^R : a Pascal automaton

 \mathcal{A} : a quotient of \mathcal{P}_p^R

 $\sim \! :$ the equivalence relation of the quotient

Step 1 – Simplifications

Changing the alphabet of \mathcal{A} : from $\{0,1,\ldots,b-1\}$ to $\{0,g\}$.

Step 2 – Computation of the parameters

g induces in $\mathcal A$ only cycles of length p.

 \rightarrow Yields p then indirectly R, ψ and t, the smallest second component among state \sim (0,0).

Step 3 - Verification

In every \sim -equivalence class, there is exactly one state of the form (s',t') with t' < t.

Browse the automaton ${\cal A}$ marking the states:

- The initial state is marked as (0,0)
- If a state is marked (x,y), then
 - Its successor by g is marked $(x + b^y, y)$
 - Its successor by 0 is marked (x, y+1) if y+1 < t or
 - Its successor by 0 must be $\left(\frac{x-s}{b^t},0\right)$ otherwise

Outline

- 1 Introduction
- 2 The Pascal automaton
- 3 UP Criterion
 - Statement
 - Completeness
 - Correctness
- 4 Conclusion and Future work

SCC: maximal Strongly Connected Component

(UP) Criterion – Example

It can be verified in linear time whether a given automaton satisfies the UP-Criterion.

It can be verified in linear time whether a given automaton satisfies the UP-Criterion.

Theorem

 \mathcal{A} : a *minimal* automaton.

 ${\mathcal A}$ satisfies the UP-criterion \iff $L({\mathcal A})$ is (UP).

Every UP-automaton satisfies the criterion

Proposition 1

The UP-criterion is stable by quotient.

Every UP-automaton satisfies the criterion

Proposition 1

The UP-criterion is stable by quotient.

Proposition 2

Every set of (UP) is recognized by an automaton satisfying the UP-criterion.

Hence, since the minimal quotient is unique:

Theorem (Completeness)

The minimal automaton accepting a given (UP) set satisfies the UP-criterion.

a set of (UP) : $\{n \mid n > m \text{ and } n \equiv r [p] \text{ with } r \in \mathbb{R} \}$

- preperiod
- period ⇒ Pascal's period & DAG size.
- remainder set

a set of (UP) : $\{n \mid n > m \text{ and } n \equiv r [p] \text{ with } r \in \mathbb{R} \}$

- **preperiod** \Rightarrow 0-circuits & DAG size.
- period ⇒ Pascal's period & DAG size.
- remainder set


```
a set of (UP) : \{n \mid n > m \text{ and } n \equiv r [p] \text{ with } r \in \mathbb{R} \}
```

- preperiod ⇒ 0-circuits & DAG size.
- period ⇒ Pascal's period & DAG size.
- remainder set \Rightarrow # of Pascal's & Pascal's remainders

$$L = \{ u \mid u \text{ starts with } 10010^{n}1 \text{ and } \pi(u) \equiv 0,1 \text{ [3] } \}$$

$$L = \{ u \mid \underbrace{u \text{ starts with } 10010^n 1}_{\iff \pi(u) \equiv 9 \text{ (16) and } u > 16}$$

$$L = \{ u \mid \pi(u) \equiv 9 \text{ [16] and } \pi(u) \equiv 0.1 \text{ [3] and } \pi(u) > 16. \}$$

$$L = \{ u \mid \pi(u) \equiv 9,25 \text{ [48] and } \pi(u) > 16. \}$$

- 1 Introduction
- 2 The Pascal automaton
- **3** UP Criterion
- 4 Conclusion and Future work

Conclusion

- Quasilinear algorithm to decide whether a DFA is (UP)
- Structural characterisation of minimal (UP) DFA

Conclusion

- Quasilinear algorithm to decide whether a DFA is (UP)
- Structural characterisation of minimal (UP) DFA

Future work

- Getting rid of the minimality condition
 - \rightarrow Work in progress...
- Getting rid of determinism condition
 - \rightarrow Seems unrealistic with this method.
- Generalising this method to U-Systems
 - ightarrow The "isotropism lemma" is false in the general case
 - \rightarrow Yields an EXP-TIME algorithm (no better than [ASR'09])