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X C N is b-rational

m automaton A

m L(A) 2= X
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Ultimately Periodic (UP) = b-rational

CCP:;OCOO

Example: automaton accepting integers congruent to 0 modulo 3

CO=0=00

Example: automaton accepting integers congruent to 0 or 1 modulo 3



State of the art

Theorem

Ultimately Periodic (UP) = b-rational

Fact
b-Rat =% (UP)

8o

Example : accepts the powers of 2



State of the art

Theorem
Ultimately Periodic (UP) = b-rational

Theorem (Cobham, 1969)

e X bj-rational

e X bp-rational

e b1 and by multiplicatively
independent

= X € (UP)
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PARAMETER :
m a base b

DATA :
®m an automaton A

OUTPUT :
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Theorem (Honkala, 1986)
ULTIMATE-PERIODICITY is decidable.
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Two orthogonal generalisations

Theorem (Leroux, 2005)
Semi-Linear(N¥) is decidable in b-Rat(N¥) in P-TIME.

— Quadratic complexity
— Complicated geometrical algorithm

Note (Allouche Shallit Rampersad, 2009)

m '+ is a b-rational relation.
m The class (UP) is Presburger-definable.

— Exponential complexity
— Generalisation to most common numeration systems



Contribution

Theorem

A: a minimal automaton
It is decidable in linear time whether L(.A) is (UP).

Corollary

ULTIMATE-PERIODICITY is solvable in O(n log>(n)) time.



Outline

Introduction

The Pascal automaton
m Definition
m Properties

UP Criterion

Conclusion and Future work



The Pascal automaton 77/5

Parameters

m (b : the base)
m p : a period, coprime with b.

m R : a set of remainders modulo p.

Expected behaviour

u€ Ay accepted <= w(u)=r[p]. reR



The Pascal automaton Py (2)

w m(va) = 7(u) + a bl
m let 1 be the smallest integer s.t. b¥ =1 [p]
m bk = b(k mod w)[p]



The Pascal automaton PF (2)

m(ua) = w(u) + a bl
let ¢/ be the smallest integer s.t. bY =1 [p]
bk = b(k mod 7)) [P]

m States: Z/pZ x Z]/YZ
7(u) mod p 1 L |u| mod ¥
m Transitions: (r,s) == (r + ab°,s + 1)

Initial state: (0, 0)
Final states: R x Z/YZ



Example: 733{2}

m (b=2)
mp=3
my =2 (since22=1[3])




Structural properties

Lemma

775 is deterministic and co-deterministic.

— Each letter induces a permutation of the states
— The syntactic monoid of 735 isagroup (~ Z/pZ xZJVZ).



Structural properties

Lemma

775 is deterministic and co-deterministic.

Proposition

The syntactic monoid of 735 is generated by 0 and 1
or0and g =107



Structural properties

Lemma

’P,f is deterministic and co-deterministic.

Proposition

The syntactic monoid of 735 is generated by 0 and 1
or0and g =107

N\

6
|
C
|
&



Structural properties

Lemma

775 is deterministic and co-deterministic.

Proposition

The syntactic monoid of 775 is generated by 0 and 1
or 0and g =107

Lemma (isotropism)

Changing the initial state of a Pascal automaton 735 yields 73’5j for
some S.



Theorem

Given an automaton A,
it is decidable in linear time whether A is the quotient of a Pascal.
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Changing the alphabet of A: from {0,1,...,b— 1} to {0,g}.



Recognising a quotient of a Pascal automaton (1) @

77,',? : a Pascal automaton

A : a quotient of 775
~: the equivalence relation of the quotient

Step 1 — Simplifications
Changing the alphabet of A: from {0,1,...,b— 1} to {0,g}.

Step 2 — Computation of the parameters

g induces in A only cycles of length p.
— Yields p then indirectly R, 1 and
t, the smallest second component among state ~ (0, 0).



Recognising a quotient of a Pascal automaton (2)

Step 3 — Verification

In every ~-equivalence class, there is exactly one state of the
form (s, t') with ¢’ < t.

Browse the automaton A marking the states:

m The initial state is marked as (0,0)
m If a state is marked (x,y), then
m Its successor by g is marked (x + b”, y)
m Its successor by 0 is marked (x, y + 1) fy+1l<t

or

m lts successor by 0 must be (*5:*,0) otherwise

0
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UP-Criterion

SCC: maximal Strongly Connected Component

DAG 0O-circuits  Pascal



(UP) Criterion — Example

—(—() 100

Pascal
0,1 mod 3




Theorem

It can be verified in linear time whether a given automaton satisfies
the UP-Criterion.



Theorem

It can be verified in linear time whether a given automaton satisfies
the UP-Criterion.

Theorem

A: a minimal automaton.
A satisfies the UP-criterion <= L(A) is (UP).



Every UP-automaton satifies the criterion

Proposition 1

The UP-criterion is stable by quotient.



Every UP-automaton satifies the criterion

Proposition 1

The UP-criterion is stable by quotient.

Proposition 2

Every set of (UP) is recognized by an automaton satisfying the
UP-criterion.

Hence, since the minimal quotient is unique:

Theorem (Completeness)

The minimal automaton accepting a given (UP) set satifies the
UP-criterion.
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Hint on Proposition 2

asetof (UP):{n|n>m andn=r[p]withre R}

m preperiod = O-circuits & DAG size.
m period = Pascal's period & DAG size.

m remainder set = # of Pascal’'s & Pascal’s remainders
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Correctness on an example
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Correctness on an example

—()—) 100

L={u|n(u)=9[16] and 7(u) = 0,1 [3] and 7(u) > 16. }



Correctness on an example

—()—) 100

L={u]|n(u)=09,25[48] and w(u) > 16. }
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Conclusion

m Quasilinear algorithm to decide whether a DFA is (UP)

m Structural characterisation of minimal (UP) DFA



Conclusion

m Quasilinear algorithm to decide whether a DFA is (UP)

m Structural characterisation of minimal (UP) DFA

Future work

m Getting rid of the minimality condition
— Work in progress...

m Getting rid of determinism condition
— Seems unrealistic with this method.

m Generalising this method to U-Systems
— The “isotropism lemma" is false in the general case
— Yields an EXP-TIME algorithm (no better than [ASR'09])
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