Signature and Numeration Systems

Victor Marsault LIGM, Université Gustave Eiffel, CNRS - France

LIFO, Orléans, France 2025 - 05 - 26

Based on several joint work with Jacques Sakarovitch:

Outline

1 Numeration systems

2 Signature

3 Morphic Signatures \sim Regular Abstract Numeration Systems

4 Periodic Signatures \sim Rational Base Numeration Systems

5 Going further

Numeration Systems

The Three Components of a NS

Alphabet

Authorised digits

Evaluation function

- $\bullet \; \mathsf{word} \mapsto \mathsf{number}$
- the value of a word u is written $\pi(u)$

Representation function

- $\bullet \ \mathsf{number} \mapsto \mathsf{word}$
- the representation of a number *n* is written $\langle n \rangle$

Alphabet

$\{0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9\}$

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

 \mapsto 19

(a digit 1 followed by a digit 9)

(a digit 1 followed by a digit 9)

Evaluation $2 3 5 \rightarrow$

Define the evaluation (Concrete NS)

• Choose how to evaluate a word: $a_n \cdots a_1 \mapsto f(a_n, \cdots, a_1)$ where f is an arithmetic function

Among words with the same value, choose a canonical one

Two Ways to Define a NS

Define the evaluation (Concrete NS)

• Choose how to evaluate a word: $a_n \cdots a_1 \mapsto f(a_n, \cdots, a_1)$ where f is an arithmetic function

Among words with the same value, choose a canonical one

Define the representation (Abstract NS, Lecomte-Rigo '01)

- Choose a language *L* of representations
- Choose an order for the alphabet of L
- The *n*-th word of *L* is the representation of *n*:
 - a shorter word is smaller than a longer word;
 - two word of the same length are ordered lexicographically.

Almost all concrete NS are also abstract NS.

- Based on the sequence: $F_0 = 1$, $F_1 = 2$, $F_{n+2} = F_{n+1} + F_n$
- Alphabet: {0,1}
- Evaluation: $a_n \cdots a_0 \mapsto \sum_{k=0}^n a_k F_k$

- Based on the sequence: $F_0 = 1$, $F_1 = 2$, $F_{n+2} = F_{n+1} + F_n$
- Alphabet: {0,1}
- Evaluation: $a_n \cdots a_0 \mapsto \sum_{k=0}^n a_k F_k$
- Representation of \mathbb{N} : $(10+0)^*(1+\varepsilon)$

- Based on the sequence: $F_0 = 1$, $F_1 = 2$, $F_{n+2} = F_{n+1} + F_n$
- Alphabet: {0,1}
- Evaluation: $a_n \cdots a_0 \mapsto \sum_{k=0}^n a_k F_k$
- Representation of \mathbb{N} : $(10+0)^*(1+\varepsilon)$

- Based on the sequence: $F_0 = 1$, $F_1 = 2$, $F_{n+2} = F_{n+1} + F_n$
- Alphabet: {0,1}
- Evaluation: $a_n \cdots a_0 \mapsto \sum_{k=0}^n a_k F_k$
- Representation of \mathbb{N} : $(10+0)^*(1+\varepsilon)$

- Based on the sequence: $F_0 = 1$, $F_1 = 2$, $F_{n+2} = F_{n+1} + F_n$
- Alphabet: {0,1}
- Evaluation: $a_n \cdots a_0 \mapsto \sum_{k=0}^n a_k F_k$
- Representation of \mathbb{N} : $(10+0)^*(1+\varepsilon)$
- Natural padding letter: 0

- Alphabet: $\{a, b\}$ ordered a < b
- Representation of \mathbb{N} : a^*b^*

- Alphabet: $\{a, b\}$ ordered a < b
- Representation of \mathbb{N} : a^*b^*

- Alphabet: $\{a, b\}$ ordered a < b
- Representation of \mathbb{N} : a^*b^*

- Alphabet: $\{a, b\}$ ordered a < b
- Representation of \mathbb{N} : a^*b^*

- Alphabet: $\{a, b\}$ ordered a < b
- Representation of \mathbb{N} : a^*b^*
- Evaluation: $a_n \cdots a_1 \mapsto ???$

- Alphabet: $\{a, b, \#\}$ ordered # < a < b
- Representation of \mathbb{N} : a^*b^*
- Evaluation: $a_n \cdots a_1 \mapsto ???$
- Padding letter: assume one or add one.

- We assume alphabets to be ordered
- We assume languages to be prefix-closed
- We assume languages to be **padded** :
 - there is a padding letter # such that $\#^*L = L$;
 - the padding letter is the least in the alphabet.
- We consider regular ANS's and nonregular ANS's

1 Numeration systems

2 Signature

3 Morphic Signatures \sim Regular Abstract Numeration Systems

4 Periodic Signatures \sim Rational Base Numeration Systems

5 Going further

Signature of a tree

- Let's forget about letters for a moment.
- We obtain a (rooted, ordered, infinite) tree with a loop.
- Such a tree has a canonical breadth-first traversal.

Definition

Definition

Definition

Definition

The **signature** of a tree is the sequence of the degree of the nodes taken in breadth-first order.

s = 2 1 2 2

Definition

The **signature** of a tree is the sequence of the degree of the nodes taken in breadth-first order.

s = 2 1 2 2 1

Definition

The **signature** of a tree is the sequence of the degree of the nodes taken in breadth-first order.

s = 2 1 2 2 1 2

Definition

The **signature** of a tree is the sequence of the degree of the nodes taken in breadth-first order.

s = 2 1 2 2 1 2 1

Definition

Definition

Definition

Definition

Definition

Signature of a tree

Definition

Definition

$$s = (3 \ 2 \ 1)^{\omega}$$

$$s = (3 \ 2 \ 1)^{\omega}$$

Definition

Definition

Definition

Definition

The **labeling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

$s = 2 \ 1 \ 2$ $\lambda = 01 \ 0 \ 01$

Definition

Definition

Definition

Definition

The **labeling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

$\lambda = 01 \ 0 \ 01 \ 01 \ 0 \ 01 \ 0$

Definition

The pair (signature, labeling) is characteristic

Outline

1 Numeration systems

2 Signature

 $\fbox{ I Signatures} \sim {\sf Regular \ Abstract \ Numeration \ Systems}$

4 Periodic Signatures \sim Rational Base Numeration Systems

5 Going further

Theorem (MS17a)

L: a prefix-closed language. Signature(*L*) is a morphic

 \Leftrightarrow

L is a regular language.

Word Morphisms

 σ : a morphism $A^* \to A^*$.

Running examples

Fibonacci morphism: $\{a, b\} \rightarrow \{a, b\}^*$ $a \mapsto ab$ $b \mapsto a$

 σ : a morphism $A^* \to A^*$.

Running examples

Fibonacci morphism: $\{a, b\} \rightarrow \{a, b\}^*$ $a \mapsto ab$ $b \mapsto a$

A periodic morphism: $\{a, b, c\} \rightarrow \{a, b, c\}^*$ $a \mapsto abc$ $b \mapsto ab$ $c \mapsto c$

 σ : a morphism $A^* \to A^*$.

 σ is prolongable on a if $\sigma(a)$ starts with the letter a.

Running examples

Fibonacci morphism: $\{a, b\} \rightarrow \{a, b\}^*$ $a \mapsto ab$ $b \mapsto a$

A periodic morphism: $\{a, b, c\} \rightarrow \{a, b, c\}^*$ $a \mapsto abc$ $b \mapsto ab$

 $c\mapsto c$

 σ : a morphism $A^* \to A^*$.

 σ is prolongable on *a* if $\sigma(a)$ starts with the letter *a*. In this case, $\sigma^{\omega}(a)$ exists and is called a pure morphic word.

Running examples

Fibonacci morphism:
$$\{a, b\} \rightarrow \{a, b\}^*$$

 $a \mapsto ab$
 $b \mapsto a$

A periodic morphism: $\{a, b, c\} \rightarrow \{a, b, c\}^*$ $a \mapsto abc$ $b \mapsto ab$ $c \mapsto c$

 σ : a morphism $A^* \to A^*$.

 σ is prolongable on *a* if $\sigma(a)$ starts with the letter *a*. In this case, $\sigma^{\omega}(a)$ exists and is called a pure morphic word.

f: a letter-to-letter morphism $A^* \to B^*$. $\to f(\sigma^{\omega}(a))$ is called a morphic word.

Running examples

```
Fibonacci morphism: \{a, b\} \rightarrow \{a, b\}^*
a \mapsto ab
b \mapsto a
```

A periodic morphism: $\{a, b, c\} \rightarrow \{a, b, c\}^*$ $a \mapsto abc$ $b \mapsto ab$ $c \mapsto c$

18

let $f_{\sigma} : A^* \to D^*$ be the (letter-to-letter) morphism defined by • $D \subset \mathbb{N}$ • $\forall b, f_{\sigma}(b) = |\sigma(b)|$ We call $f_{\sigma}(\sigma^{\omega}(a))$ a morphic signature.

Example: Fibonacci morphism $\sigma(a) = ab$ $\sigma(b) = a$

18

let $f_{\sigma} : A^* \to D^*$ be the (letter-to-letter) morphism defined by • $D \subset \mathbb{N}$ • $\forall b, f_{\sigma}(b) = |\sigma(b)|$ We call $f_{\sigma}(\sigma^{\omega}(a))$ a morphic signature.

Example: Fibonacci morphism $\sigma(a) = ab$ \implies $\sigma(b) = a$ \implies $f_{\sigma}(b) = 1$

18

let $f_{\sigma} : A^* \to D^*$ be the (letter-to-letter) morphism defined by • $D \subset \mathbb{N}$ • $\forall b, f_{\sigma}(b) = |\sigma(b)|$ We call $f_{\sigma}(\sigma^{\omega}(a))$ a morphic signature.

Example: Fibonacci morphism $\sigma(a) = ab \implies f_{\sigma}(a) = 2$ $\sigma(b) = a \implies f_{\sigma}(b) = 1$ $f_{\sigma}(\sigma^{\omega}(a)) = 21221212212212212222\cdots$

18

let $f_{\sigma} : A^* \to D^*$ be the (letter-to-letter) morphism defined by $D \subset \mathbb{N}$ $\forall b, f_{\sigma}(b) = |\sigma(b)|$ We call $f_{\sigma}(\sigma^{\omega}(a))$ a morphic signature.

Example: a periodic morphism $\sigma(a) = abc$ $\sigma(b) = ab$ $\sigma(c) = c$

18

let $f_{\sigma} : A^* \to D^*$ be the (letter-to-letter) morphism defined by • $D \subset \mathbb{N}$ • $\forall b, f_{\sigma}(b) = |\sigma(b)|$ We call $f_{\sigma}(\sigma^{\omega}(a))$ a morphic signature.

Example: a periodic morphism $\sigma(a) = abc$ $\Longrightarrow f_{\sigma}(a) = 3$ $\sigma(b) = ab$ $\Longrightarrow f_{\sigma}(b) = 2$ $\sigma(c) = c$ $\Longrightarrow f_{\sigma}(c) = 1$

18

let $f_{\sigma} : A^* \to D^*$ be the (letter-to-letter) morphism defined by • $D \subset \mathbb{N}$ • $\forall b, f_{\sigma}(b) = |\sigma(b)|$ We call $f_{\sigma}(\sigma^{\omega}(a))$ a morphic signature.

Example: a periodic morphism $\sigma(a) = abc \implies f_{\sigma}(a) = 3$ $\sigma(b) = ab \implies f_{\sigma}(b) = 2$ $\sigma(c) = c \implies f_{\sigma}(c) = 1$ $\sigma(abc) = abc abc \qquad \text{hence} \quad f_{\sigma}(\sigma^{\omega}(a)) = (321)^{\omega}$

If g is a morphism such that • $\forall b, |g(b)| = |\sigma(b)|$ • if $g(b) = c_0 c_1 \cdots c_k$ then $c_0 < c_1 < \cdots < c_k$ We call $g(\sigma^{\omega}(a))$ a morphic labeling.

If g is a morphism such that • $\forall b, |g(b)| = |\sigma(b)|$ • if $g(b) = c_0 c_1 \cdots c_k$ then $c_0 < c_1 < \cdots < c_k$ We call $g(\sigma^{\omega}(a))$ a morphic labeling.

Example: Fibonacci morphism $\sigma(a) = ab \implies f_{\sigma}(a) = 2$ $\sigma(b) = a \implies f_{\sigma}(b) = 1$ $f_{\sigma}(\sigma^{\omega}(a)) = 21221212212212212212222\cdots$

If we choose g: g(a) = 01g(b) = 0

If g is a morphism such that • $\forall b, |g(b)| = |\sigma(b)|$ • if $g(b) = c_0 c_1 \cdots c_k$ then $c_0 < c_1 < \cdots < c_k$ We call $g(\sigma^{\omega}(a))$ a morphic labeling.

Example: Fibonacci morphism $\sigma(a) = ab \implies f_{\sigma}(a) = 2$ $\sigma(b) = a \implies f_{\sigma}(b) = 1$ $f_{\sigma}(\sigma^{\omega}(a)) = 2122121221221221221222\cdots$

If we choose g: g(a) = 01g(b) = 0

If g is a morphism such that • $\forall b, |g(b)| = |\sigma(b)|$ • if $g(b) = c_0 c_1 \cdots c_k$ then $c_0 < c_1 < \cdots < c_k$ We call $g(\sigma^{\omega}(a))$ a morphic labeling.

Example: Fibonacci morphism $\sigma(a) = ab \implies f_{\sigma}(a) = 2$ $\sigma(b) = a \implies f_{\sigma}(b) = 1$ $f_{\sigma}(\sigma^{\omega}(a)) = 2122121221221221221222\cdots$

If we choose g: g(a) = 01g(b) = 0

If g is a morphism such that • $\forall b, |g(b)| = |\sigma(b)|$ • if $g(b) = c_0 c_1 \cdots c_k$ then $c_0 < c_1 < \cdots < c_k$ We call $g(\sigma^{\omega}(a))$ a morphic labeling.

Example: Fibonacci morphism $\sigma(a) = ab \implies f_{\sigma}(a) = 2$ $\sigma(b) = a \implies f_{\sigma}(b) = 1$ $f_{\sigma}(\sigma^{\omega}(a)) = 21221212212212212212222\cdots$

If we choose g: g(a) = 01 g(b) = 0 $g(\sigma^{\omega}(a)) = 01001010010100101010 \cdots$

If g is a morphism such that • $\forall b, |g(b)| = |\sigma(b)|$ • if $g(b) = c_0 c_1 \cdots c_k$ then $c_0 < c_1 < \cdots < c_k$ We call $g(\sigma^{\omega}(a))$ a morphic labeling.

Example: a periodic morphism $\sigma(a) = abc \implies f_{\sigma}(a) = 3$ $\sigma(b) = ab \implies f_{\sigma}(b) = 2$ $\sigma(c) = c \qquad \Longrightarrow f_{\sigma}(c) = 1$ $\sigma(abc) = abc abc$ hence $f_{\sigma}(\sigma^{\omega}(a)) = (321)^{\omega}$ If we choose g: g(a) = 012g(b) = 12 $g(\sigma^{\omega}(a)) = (012121)^{\omega}$ g(c) = 1

Theorem (MS17a)

Theorem (MS17a)

L: a prefix-closed language. Signature(L) is morphic \Leftrightarrow L is a regular language.

 (σ, g) : a morphic signature. (σ, g) defines a finite automaton $\mathcal{A}_{(\sigma,g)}$. It is analogous to

- the prefix graph/automaton in Dumont–Thomas '89,'91,'93
- or the correspondence used in Maes-Rigo '02.

Theorem (MS17a)

L: a prefix-closed language. Signature(L) is morphic \Leftrightarrow L is a regular language.

 (σ, g) : a morphic signature. (σ, g) defines a finite automaton $\mathcal{A}_{(\sigma,g)}$. It is analogous to

- the prefix graph/automaton in Dumont–Thomas '89,'91,'93
- or the correspondence used in Maes-Rigo '02.

Proposition (MS17a)

The language accepted by $\mathcal{A}_{(\sigma,g)}$ has signature (σ,g) .

 $\sigma: A^* o A^*$ prolongable on a \qquad and $\qquad g: A^* o B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \, \delta \,, \, \{\mathsf{a}\} \,, \, \mathsf{A} \, \rangle$$

$\sigma(a)$	=	a b
$\sigma(b)$	=	а

$$g(a) = 01$$

 $g(b) = 0$

$$\sigma: \mathbb{A}^* \to \mathbb{A}^*$$
 prolongable on a and $g: \mathbb{A}^* \to B^*$
 $\mathcal{A}_{(\sigma,g)} = \langle \mathbb{A}, B, \delta, \{a\}, A \rangle$
 $g(a) = ab$ $g(a) = 01$

 $\sigma: A^* \to A^*$ prolongable on a and $g: A^* \to B^*$ $\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, B, \delta, \{\mathsf{a}\}, \mathsf{A} \rangle$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \{\mathsf{a}\}, \mathsf{A} \rangle$$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

 $\sigma: A^* \to A^*$ prolongable on a \qquad and $\qquad g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

$$\sigma: A^* \to A^*$$
 prolongable on a \qquad and $\qquad g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \delta, \{\mathsf{a}\}, \mathsf{A} \rangle$$

$\sigma(a) = a b c$
$\sigma(b) = ab$
$\sigma(c) = c$

$$g(a) = 012$$

 $g(b) = 12$
 $g(c) = 1$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

 $\sigma: A^* \to A^*$ prolongable on a \qquad and $\qquad g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

$$g(a) = 012$$

 $g(b) = 12$
 $g(c) = 1$

$$\sigma: A^* \to A^*$$
 prolongable on a \qquad and $\qquad g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

 $\sigma: A^* o A^*$ prolongable on a \qquad and $\qquad g: A^* o B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \{\mathsf{a}\}, \mathsf{A} \rangle$$

$$g(a) = 012$$

 $g(b) = 12$
 $g(c) = 1$

Back to ANS's

Observation

In basically every NS, the representations of integers follows the radix order: $\forall n, p \quad \langle n \rangle \leq_{rad} \langle n + p \rangle$

Back to ANS's

Observation

In basically every NS, the representations of integers follows the radix order: $\forall n, p \quad \langle n \rangle \leq_{rad} \langle n + p \rangle$

$$\begin{array}{cccc} u <_{\mathsf{rad}} v & \text{if} & |u| < |v| \\ & \text{or} & |u| = |v| & \& & u <_{\mathsf{lex}} v \end{array}$$

 $\label{eq:Example: 2 < rad} \text{Example: } 2 <_{\text{rad}} 12 \quad 12 <_{\text{rad}} 21.$

Observation

In basically every NS, the representations of integers follows the radix order: $\forall n, p \quad \langle n \rangle \leq_{rad} \langle n + p \rangle$

$$\begin{array}{cccc} u <_{\mathsf{rad}} v & \text{if} & |u| < |v| \\ & \text{or} & |u| = |v| & \& & u <_{\mathsf{lex}} v \end{array}$$

 $\label{eq:Example: 2 < rad} \mathsf{Example: 2 < _{rad} 12} \quad 12 <_{\mathsf{rad}} 21.$

Definition (ANS L)

L: language over an ordered alphabet A. $\langle n \rangle_L$ is the (n+1)-th word of L in the radix order.

In our scheme, $\langle n \rangle_L$ is the word that labels the path $0 \rightarrow n$.

Proposition

- L: regular ANS of signature (s, λ_1)
- K: regular ANS of signature (s, λ_2)

The conversion function $\langle n \rangle_L \mapsto \langle n \rangle_K$ is realised by a finite, pure sequential and letter-to-letter transducer.

In other words, L and K are equivalent as NS.

Given a morphic signature s,

Let C = the class of all regular ANS's with signature s

 In C, some regular ANS's are associated with a DFA with the minimal number of states

Given a morphic signature s,

Let C = the class of all regular ANS's with signature s

- In C, some regular ANS's are associated with a DFA with the minimal number of states
- This automaton is unique (up to alphabet bijection)

Given a morphic signature s,

Let C = the class of all regular ANS's with signature s

- In C, some regular ANS's are associated with a DFA with the minimal number of states
- This automaton is unique (up to alphabet bijection)
- ... and may be computed from the automaton associated with any NS in C (surminimisation, next slide).

Given a morphic signature s,

Let C = the class of all regular ANS's with signature s

- In C, some regular ANS's are associated with a DFA with the minimal number of states
- This automaton is unique (up to alphabet bijection)
- ... and may be computed from the automaton associated with any NS in C (surminimisation, next slide).
- C contains a Dumont-Thomas* NS

Given a morphic signature s,

Let C = the class of all regular ANS's with signature s

- In C, some regular ANS's are associated with a DFA with the minimal number of states
- This automaton is unique (up to alphabet bijection)
- ... and may be computed from the automaton associated with any NS in C (surminimisation, next slide).
- C contains a Dumont-Thomas* NS
- If C contains a concrete[†] numeration system, then its automaton is surminimal.

Surminimisation

Surminimisation

Surminimisation

1 Numeration systems

2 Signature

3 Morphic Signatures \sim Regular Abstract Numeration Systems

4 Periodic Signatures \sim Rational Base Numeration Systems

5 Going further

Fact

p: an integer base L_p : representation of \mathbb{N} in base p. The language L_p has signature p^{ω} and Labeling $(01\cdots(p-1))^{\omega}$

Fact

```
p: an integer base
L_p: representation of \mathbb{N} in base p.
The language L_p has signature p^{\omega} and Labeling (01\cdots(p-1))^{\omega}
```

Proposition (MS17b)

```
 \begin{array}{l} \frac{p}{q}: \text{ a rational base.} \\ L_{\frac{p}{q}}: \text{ representation of } \mathbb{N} \text{ in base } \frac{p}{q}. \\ u: \text{ the Christoffel rhythm of slope } \frac{p}{q}. \\ v: \text{ the canonical labeling associated with } \frac{p}{q}. \\ \text{The language } L_{\frac{p}{q}} \text{ has for signature } u^{\omega} \text{ and for Labeling } v^{\omega}. \end{array}
```


- base *p* > 1
- alphabet $A_p = \{0, 1, \cdots, p-1\}$

Integer Base

base
$$p > 1$$
 alphabet $A_p = \{0, 1, \dots, p-1\}$

• value
$$\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n a_i p^i$$

Example (base 3) -
$$\pi(12) = (3 \times 1) + (1 \times 2) = 5$$

 $\pi(122) = (9 \times 1) + (3 \times 2) + (1 \times 2) = 17$

Integer Base

• alphabet
$$A_p = \{0, 1, \cdots, p-1\}$$

• value
$$\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n a_i p^i$$

• $\pi(A_p^*) = \mathbb{N}$

- Base $\frac{p}{q} > 1$ irreducible fraction (p > q and $p \land q = 1$).
- Representation $\langle n \rangle_{\frac{p}{a}} = \langle n' \rangle_{\frac{p}{a}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

- Base ^p/_q > 1 irreducible fraction (p > q and p ∧ q = 1).
 Alphabet A_p = {0, 1, ..., p − 1}
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:

• (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:

• (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$: $\langle 3 \rangle_{\frac{3}{2}} =$

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$: $\langle 3 \rangle_{\frac{3}{2}} =$ $2 \times 3 = 3 \times N_1 + a_0;$ $\uparrow \qquad \uparrow \qquad \uparrow$ $q \qquad n \qquad p$

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$: $\langle 3 \rangle_{\frac{3}{2}} =$

 $2 \times 3 = 3 \times N_1 + a_0; \quad \Rightarrow N_1 = 2 \text{ and } a_0 = 0.$

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by **p**.

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$: $\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 =$

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$: $\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 =$ $2 \times 2 = 3 \times N_2 + a_1;$

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$:

$$\langle 3 \rangle_{rac{3}{2}} \hspace{0.1 cm} = \hspace{0.1 cm} \langle 2 \rangle_{rac{3}{2}} \hspace{0.1 cm} 0 \hspace{0.1 cm} = \hspace{0.1 cm}$$

 $2 \times 2 = 3 \times N_2 + a_1; \quad \Rightarrow N_2 = 1 \text{ and } a_1 = 1.$

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$: $\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 = \langle 1 \rangle_{\frac{3}{2}} 10 =$

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

Example: computing
$$\langle 3 \rangle_{\frac{3}{2}}$$
:
 $\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 = \langle 1 \rangle_{\frac{3}{2}} 10 =$
2 × 1 = **3** × N₃ + a₂;

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$: $\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 = \langle 1 \rangle_{\frac{3}{2}} 10 =$ **2** × 1 = **3** × N₃ + a₂; \Rightarrow N₃ = 0 and a₂ = 2.

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by **p**.

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$: $\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 = \langle 1 \rangle_{\frac{3}{2}} 10 = 210$

- Base \$\frac{p}{q} > 1\$ irreducible fraction (\$p > q\$ and \$p \lambda q = 1\$).
 Alphabet \$A_p = {0, 1, \ldots, p 1}\$
- Representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}} .a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by \mathbf{p} .

Example: computing $\langle 3 \rangle_{\frac{3}{2}}$:

$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} 0 = \langle 1 \rangle_{\frac{3}{2}} 10 = 210$$

• Evaluation $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n \left(\frac{a_i}{q}\right) \left(\frac{p}{q}\right)^i$

$L_{\frac{3}{2}}$, representation of $\mathbb N$ in base $\frac{3}{2}$

$L_{\frac{3}{2}}$, representation of $\mathbb N$ in base $\frac{3}{2}$

$L_{\frac{3}{2}}$, representation of $\mathbb N$ in base $\frac{3}{2}$

Properties of $L_{\frac{p}{q}}$

- $L_{\frac{p}{q}}$ is right-extendible.
- $L_{\frac{p}{q}}$ is prefix-closed.
- **Base** $\frac{p}{q}$ is the ANS built from $L_{\frac{p}{q}}$.

Properties of $L_{\frac{p}{q}}$

Theorem (Akiyama Frougny Sakarovitch, 2008) $L_{\frac{p}{q}}$ is not a context-free language.

Properties of $L_{\frac{p}{q}}$

Theorem (Akiyama Frougny Sakarovitch, 2008)

 $L_{\frac{p}{q}}$ is not a context-free language.

 $L_{\frac{p}{q}}$ has the Finite Left Iteration Property : For every word $u, v, L_{\frac{p}{2}} \cap (uv^*)$ is finite

Fact

```
p: an integer base
L_p: representation of \mathbb{N} in base p.
The language L_p has signature p^{\omega} and Labeling (01\cdots(p-1))^{\omega}
```

Proposition (MS17b)

```
 \begin{array}{l} \frac{p}{q}: \text{ a rational base.} \\ L_{\frac{p}{q}}: \text{ representation of } \mathbb{N} \text{ in base } \frac{p}{q}. \\ u: \text{ the Christoffel rhythm of slope } \frac{p}{q}. \\ v: \text{ the canonical labeling associated with } \frac{p}{q}. \\ \text{The language } L_{\frac{p}{q}} \text{ has for signature } u^{\omega} \text{ and for Labeling } v^{\omega}. \end{array}
```

Christoffel Word and Christoffel Rhythm

Christoffel Word and Christoffel Rhythm

Christoffel Word and Christoffel Rhythm

Definition (Canonical Labeling)

the *p*-tuple: $(0, q, (2q), \dots, (p-1)q) \mod p$ Example: (0, 2, 1) for $\frac{3}{2}$ and (0, 3, 1, 4, 2) for $\frac{5}{3}$.

Definition (Canonical Labeling)

the p-tuple: $(0, q, (2q), \dots, (p-1)q) \pmod{p}$

Example: (0,2,1) for $\frac{3}{2}$ and (0,3,1,4,2) for $\frac{5}{3}$.

Proposition (MS17b)

 $\begin{array}{l} \frac{p}{q}: \text{ a base.} \\ u: \text{ the Christoffel rhythm of slope } \frac{p}{q}. \\ v: \text{ the canonical labeling associated with } \frac{p}{q}. \\ \text{The language } L_{\frac{p}{q}} \text{ has for signature } u^{\omega} \text{ and for labeling } v^{\omega}. \end{array}$

What About Arbitrary Periodic Signatures?

What About Arbitrary Periodic Signatures?

Theorem (MS17b)

- $\exists \text{ smart labeling } \boldsymbol{\lambda} = (\lambda_0 \cdots \lambda_{p-1})^{\omega} \text{ such that} \\ L_{\mathbf{s},\boldsymbol{\lambda}}, \text{ the language generated by } (\mathbf{s},\boldsymbol{\lambda}), \\ \text{ is a noncanonical representation of } \mathbb{N} \text{ in base } \frac{p}{q}.$
 - If $\frac{p}{q}$ is an integer, $L_{s,\lambda}$ is a regular language.
 - If $\frac{p}{q}$ is not integer, $L_{s,\lambda}$ is a FLIP language.

Reminder: concrete numeration system

- Alphabet A of digits
- Evaluation function: $val: a_n \cdots a_0 \mapsto f(a_n, \ldots, a_0)$,

where f is an arithmetic function

• Among $\{u \in A^* | \pi(u) = n\}$ one is chosen to be the canonical representation of n

Definition

L is a noncanonical representation of $\ensuremath{\mathbb{N}}$ in a concrete NS if

$$\forall n \in \mathbb{N}, \quad \exists u \in L, \quad \pi(u) = n$$

What About Arbitrary Periodic Signatures?

Theorem (MS17b)

- $\exists \text{ smart labeling } \boldsymbol{\lambda} = (\lambda_0 \cdots \lambda_{p-1})^{\omega} \text{ such that} \\ L_{\mathbf{s},\boldsymbol{\lambda}}, \text{ the language generated by } (\mathbf{s},\boldsymbol{\lambda}), \\ \text{ is a noncanonical representation of } \mathbb{N} \text{ in base } \frac{p}{q}.$
 - If $\frac{p}{q}$ is an integer, $L_{s,\lambda}$ is a regular language.
 - If $\frac{p}{q}$ is not integer, $L_{s,\lambda}$ is a FLIP language.

And **Eventually** Periodic Signatures?

Theorem (MS17b)

- $\exists \text{ smart labeling } \boldsymbol{\lambda} = \underbrace{\ell_0 \cdots \ell_m}_{\boldsymbol{k}} (\lambda_0 \cdots \lambda_p)^{\omega} \text{ such that} \\ L_{\mathbf{s}, \boldsymbol{\lambda}}, \text{ the language generated by } (\mathbf{s}, \boldsymbol{\lambda}), \\ \text{ is a noncanonical representation of } \mathbb{N} \text{ in base } \frac{p}{q}.$
 - If $\frac{p}{q}$ is an integer, $L_{s,\lambda}$ is a regular language.
 - If $\frac{p}{q}$ is not integer, $L_{s,\lambda}$ is a FLIP language.

1 Numeration systems

2 Signature

3 Morphic Signatures \sim Regular Abstract Numeration Systems

4 Periodic Signatures \sim Rational Base Numeration Systems

5 Going further

$\mathsf{Two \ correspondance \ Signature} \leftrightarrow \mathsf{Numeration \ systems}$

- For regular ANS's, labeling does not matter.
 - All regular ANS's with the same signature are equivalent.
- For ANS's with ultimately periodic signature
 - labeling matters,
 - if we use the smart labeling, equivalent to some base $\frac{p}{q}$

Question: When does the smart labeling work?

Answer: When the signature is *directed* by $\frac{p}{q}$

Question: When does the smart labeling work?

Answer: When the signature is *directed* by $\frac{p}{q}$

Ex: $s = 213012 \cdots$

Directed Signature (idea in M16)

Question: When does the smart labeling work?

Answer: When the signature is *directed* by $\frac{p}{q}$

Ex: $s = 213012 \cdots$

... that is, when its path in the plane stays between two lines of slope $\frac{3}{2}$

$\mathsf{Two \ correspondance \ Signature} \leftrightarrow \mathsf{Numeration \ systems}$

- For regular ANS's, labeling does not matter.
 - All regular ANS's with the same signature are equivalent.
- For ANS's with signatures directed by $\frac{p}{q}$
 - labeling matters,
 - if we use the smart labeling, equivalent to base $\frac{p}{q}$

$\mathsf{Two \ correspondance} \ \ \mathsf{Signature} \ \leftrightarrow \ \mathsf{Numeration \ systems}$

- For regular ANS's, labeling does not matter.
 - All regular ANS's with the same signature are equivalent.
- For ANS's with signatures directed by $\frac{p}{q}$
 - labeling matters,
 - if we use the smart labeling, equivalent to base $\frac{p}{q}$

 \Rightarrow A regular ANS directed by $p \in \mathbb{N}$ is equivalent to base p.

Two correspondance Signature ↔ Numeration systems For regular ANS's, labeling does not matter. All regular ANS's with the same signature are equivalent. For ANS's with signatures directed by ^p/_q labeling matters, if we use the smart labeling, equivalent to base ^p/_q

 \Rightarrow A regular ANS directed by $p \in \mathbb{N}$ is equivalent to base p.

Conjecture/Future work (since 2014...)

```
 \begin{array}{l} \beta: \text{ a Pisot (or maybe Parry) number} \\ S_{\beta}: \text{ the classical concrete NS based on } \beta \\ \text{A regular ANS directed by } \beta \text{ is equivalent to } S_{\beta}. \end{array}
```