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Outline

Numeration systems

Signature

Morphic Signatures ~ Regular Abstract Numeration Systems
Periodic Signatures ~ Rational Base Numeration Systems

Going further



Numeration Systems

Numbers
e Abstract quantities
e Axiomatised in Math

Ex: 8, V2, w,etc.

Evaluation

Representation

Words
e Sequence of letters/digits

e Used for effective
computation

Ex: abbac, 3.141592. .. |




The Three Components of a NS

Alphabet
Authorised digits

Evaluation function

e word — number
e the value of a word u is written 7(u)

Representation function

e number — word
e the representation of a number n is written (n)






Ex: Our Usual System (Base 10)

Alphabet
{0, 1, 2, 3, 4,5, 6,7, 8, 9}

Representation

®ee% ®eee — 19 (a digit 1 followed by a digit 9)



Ex: Our Usual System (Base 10)

Alphabet
{0, 1, 2, 3, 4,5, 6,7, 8 9}

Representation

%% e%ee — 19 (a digit 1 followed by a digit 9)

Evaluation

235 —



Ex: Our Usual System (Base 10)

Alphabet
{0, 1, 2, 3, 4,5, 6,7, 8 9}

Representation

%% e%ee — 19 (a digit 1 followed by a digit 9)

Evaluation

00000

235 —



Ex: Our Usual System (Base 10)

Alphabet
{0, 1, 2, 3, 4,5, 6,7, 8 9}

Representation

%% e%ee — 19 (a digit 1 followed by a digit 9)

Evaluation

0000000000 OOOOOOO000 0OOOOCOOO00

235 —



Ex: Our Usual System (Base 10)

Alphabet
{0, 1, 2, 3, 4,5, 6,7, 8 9}

Representation
%0 %0 %000 19 (a digit 1 followed by a digit 9)

0000000 F_>

Evaluation

235 —

Q000000000
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G
00000
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Ex: Our Usual System (Base 10)

Alphabet
{0, 1, 2, 3, 4,5, 6,7, 8 9}

Representation

OO
e 0 0e00e

19 (a digit 1 followed by a digit 9)

Evaluation

235 —




Two Ways to Define a NS

Define the evaluation (Concrete NS)

m Choose how to evaluate a word: a,---a; — f(an, - ,a1)
where f is an arithmetic function

® Among words with the same value, choose a canonical one



Two Ways to Define a NS

Define the evaluation (Concrete NS)

m Choose how to evaluate a word: a,---a; — f(ap, - ,a1)
where f is an arithmetic function

® Among words with the same value, choose a canonical one

Define the representation (Abstract NS, Lecomte-Rigo '01)

m Choose a language L of representations

m Choose an order for the alphabet of L
m The n-th word of L is the representation of n:

m a shorter word is smaller than a longer word;
m two word of the same length are ordered lexicographically.

Almost all concrete NS are also abstract NS.



Example of Concrete NS: Fibonacci (Zeckendorf) @

m Based on the sequence: Fo =1, [ =2, Fpyo = Fhy1 + Fn
m Alphabet: {0,1}
m Evaluation: a,---ag — Y p_oakFk



Example of Concrete NS: Fibonacci (Zeckendorf) @

m Based on the sequence: Fo =1, [ =2, Fpyo = Fhy1 + Fn
m Alphabet: {0,1}

m Evaluation: a,---ag — Y p_oakFk

m Representation of N: (10 + 0)*(1 + ¢)

&V

_O—®

/@0 ’@io\®il/‘ .

@
@ 1@ o
U el

o o
@O

oy~
oS =g

iﬁ

&V *V

V



Example of Concrete NS: Fibonacci (Zeckendorf) @

m Based on the sequence: Fo =1, [ =2, Fpyo = Fhy1 + Fn
m Alphabet: {0,1}

m Evaluation: a,---ag — Y p_oakFk

m Representation of N: (10 + 0)*(1 + ¢)
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Example of Concrete NS: Fibonacci (Zeckendorf) @

m Based on the sequence: Fo =1, [ =2, Fpyo = Fhy1 + Fn
m Alphabet: {0,1}

m Evaluation: a,---ag — Y p_oakFk

m Representation of N: (10 + 0)*(1 + ¢)
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Example of Concrete NS: Fibonacci (Zeckendorf) @

m Based on the sequence: Fo =1, [ =2, Fpyo = Fhy1 + Fn
m Alphabet: {0,1}

m Evaluation: a,---ag — Y p_oakFk

m Representation of N: (10 + 0)*(1 + ¢)

m Natural padding letter: 0
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Example of Abstract NS: a*b*

m Alphabet: {a, b} ordered a < b
m Representation of N: a*b*



Example of Abstract NS: a*b*

m Alphabet: {a, b} ordered a < b

m Representation of N: a*b*

CRCRCRCRCNC



Example of Abstract NS: a*b*

m Alphabet: {a, b} ordered a < b

m Representation of N: a*b*

CRCRCRCRCNC



Example of Abstract NS: a*b*

m Alphabet: {a, b} ordered a < b

m Representation of N: a*b*

Poggc
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Example of Abstract NS: a*b*

m Alphabet: {a, b} ordered a < b
m Representation of N: a*b*

m Evaluation: a,---a; — 777

CRCRCRCRCNC



Example of Abstract NS: a*b*

m Alphabet: {a,b,#} ordered # < a< b
m Representation of N: a*b*
m Evaluation: a,---a; — 777

m Padding letter: assume one or add one.
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oS ogNoaSo2

CRCRRCRNC



A few details

m We assume alphabets to be ordered

m We assume languages to be prefix-closed
m We assume languages to be padded :

m there is a padding letter # such that #*L = L;
m the padding letter is the least in the alphabet.

m We consider regular ANS'’s and nonregular ANS's
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Signature of a tree

m Let's forget about letters for a moment.
m We obtain a (rooted, ordered, infinite) tree with a loop.

m Such a tree has a canonical breadth-first traversal.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature of a tree @

Definition
The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.
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Signature is characteristic of tree

s=(32 1)
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Signature is characteristic of tree
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Signature is characteristic of tree
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Signature is characteristic of tree

s=(32 1)



Signature is characteristic of tree

s=(32 1)
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Signature is characteristic of tree

s=(32 1)




Signature is characteristic of tree

s=(32 1)




Signature is characteristic of tree

s=(32 1)




Signature is characteristic of tree

s=(32 1)




Signature is characteristic of tree

s=(32 1)
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.



Serialisation of a prefix-closed language @
Definition

The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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A=010010100100101001



Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language

Definition
The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.

s=2122121221221---
A=010010100100101001010 ---
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The pair (signature,labeling) is characteristic

s=(321)
A= (01212 1)~
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Theorem (MS17a)

L: a prefix-closed language.
Signature(L) is a morphic & L is a regular language.



Word Morphisms

o: a morphism A* — A*.

Running examples

Fibonacci morphism: {a, b} — {a, b}*
arrab
b— a



Word Morphisms

o: a morphism A* — A*.

Running examples

Fibonacci morphism: {a, b} — {a, b}*
arrab
b— a

A periodic morphism: {a, b,c} — {a, b, c}*
a» abc

b+ ab
crcC



Word Morphisms

o: a morphism A* — A*.

o is prolongable on a if o(a) starts with the letter a.

Running examples

Fibonacci morphism: {a, b} — {a, b}*
arrab
b— a

A periodic morphism: {a, b,c} — {a, b, c}*
a > abc

b+— ab
crc



Word Morphisms

o: a morphism A* — A*.

o is prolongable on a if o(a) starts with the letter a.
In this case, 0“(a) exists and is called a pure morphic word .

Running examples

Fibonacci morphism: {a, b} — {a, b}*
arrab
b— a

A periodic morphism: {a, b,c} — {a, b, c}*
a» abc

b+ ab
crcC



Word Morphisms

o: a morphism A* — A*.

o is prolongable on a if o(a) starts with the letter a.
In this case, 0“(a) exists and is called a pure morphic word .

f . a letter-to-letter morphism A* — B*.
— f(0“(a)) is called a morphic word .

Running examples

Fibonacci morphism: {a, b} — {a, b}*
arrab
b— a

A periodic morphism: {a, b,c} — {a, b, c}*
a» abc

b+ ab
crcC



Morphic Signature

let f, : A* — D* be the (letter-to-letter) morphism defined by
m DCN

m Vb, f,(b) = |o(b)|
We call f;(0*(a)) a morphic signature.

Example: Fibonacci morphism
o(a) = ab
o(b) =a



Morphic Signature

let f, : A* — D* be the (letter-to-letter) morphism defined by
m DCN

m Vb, f,(b) = |o(b)|
We call f;(0*(a)) a morphic signature.

Example: Fibonacci morphism
olay=ab = fy(a)=2
ob)=a = f(b)=1



Morphic Signature

let f, : A* — D* be the (letter-to-letter) morphism defined by
m DCN

m Vb, f,(b) = |o(b)|
We call f;(0*(a)) a morphic signature.

Example: Fibonacci morphism
olay=ab = fy(a)=2

o(b)=a = f(b)=1
f(0¥(a)) = 2122121221221212212122 - -



Morphic Signature

let f, : A* — D* be the (letter-to-letter) morphism defined by
m DCN

m Vb, f,(b) = |o(b)|
We call f;(0*(a)) a morphic signature.

Example: a periodic morphism
o(a) = abc

o(b) = ab

o(c)=c



Morphic Signature

let f, : A* — D* be the (letter-to-letter) morphism defined by
m DCN

m Vb, f,(b) = |o(b)|

We call f;(0*(a)) a morphic signature.

Example: a periodic morphism
o(a)=abc = fy(a)=3
o(b)y=ab = f,(b)=2
o(c)=c = f,(c)=1



Morphic Signature

let f, : A* — D* be the (letter-to-letter) morphism defined by

m DCN
m Vb, f,(b) = |o(b)|
We call f;(0*(a)) a morphic signature.

Example: a periodic morphism
o(a)=abc = f,(a)=3
o(b)=ab = f,(b)=2
o(c)=c = f,(c)=1
o(abc) = abcabc hence f,(c“(a))

(321)~



Morphic Labeling

If g is a morphism such that

= Vb, |g(b)| = |o(b)]

mifg(b)=cpcr---ck theng<c <-- <ck
We call g(0“(a)) a morphic labeling.



Morphic Labeling

If g is a morphism such that

= Vb, |g(b)| = |o(b)]

mifg(b)=cpcr---ck theng<c <-- <ck
We call g(0“(a)) a morphic labeling.

Example: Fibonacci morphism

ola)=ab = f,(a)=2
o(b) = a = f(b)=1

f,(0¥(a)) = 2122121221221212212122---

If we choose g:
g(a) = 01
g(b) =0



Morphic Labeling

If g is a morphism such that

= Vb, |g(b)| = |o(b)]

mifg(b)=cpcr---ck theng<c <-- <ck
We call g(0“(a)) a morphic labeling.

Example: Fibonacci morphism

ola)=ab = f,(a)=2
o(b) = a = f(b)=1

f,(0¥(a)) = 2122121221221212212122- -

If we choose g:
g(a) = 01
g(b) =0



Morphic Labeling

If g is a morphism such that

= Vb, |g(b)| = |o(b)]

mifg(b)=cpcr---ck theng<c <-- <ck
We call g(0“(a)) a morphic labeling.

Example: Fibonacci morphism

ola)=ab = f,(a)=2
o(b) = a = f(b)=1

f,(0¥(a)) = 2122121221221212212122---

If we choose g:
g(a) = 01
g(p) =0



Morphic Labeling

If g is a morphism such that

= Vb, |g(b)| = |o(b)]

mifg(b)=cpcr---ck theng<c <-- <ck
We call g(0“(a)) a morphic labeling.

Example: Fibonacci morphism

ola)=ab = f,(a)=2
o(b) = a = f(b)=1

fy(0¥(a)) = 2122121221221212212122---
If we choose g:
g(a) = 01
g(b) =0

g(o¥(a)) = 010010100100101001010 ---



Morphic Labeling

If g is a morphism such that

= Vb, |g(b)| = |o(b)]

mifg(b)=cpcr---ck theng<c <-- <ck
We call g(0“(a)) a morphic labeling.

Example: a periodic morphism

o(a) = abc = f,(a) =3
o(b) = ab = fy(b) =2

o(c)=c = fy(c) =1
o(abc) = abcabc hence f,(c¥(a)) = (321)¥
If we choose g:
g(a) =012
g(b) =12 g(e¥(a)) = (012121)¥

glc) =1



Proof sketch

Theorem (MS17a)

L: a prefix-closed language.
Signature(L) is morphic

=

L is a regular language.



Proof sketch

Theorem (MS17a)

L: a prefix-closed language.
Signature(L) is morphic < L is a regular language.

(0,g): a morphic signature.
(0,g) defines a finite automaton A
It is analogous to

o,8):

m the prefix graph/automaton in Dumont—Thomas '89,'91,'93

m or the correspondence used in Maes—Rigo '02.



Proof sketch

Theorem (MS17a)

L: a prefix-closed language.
Signature(L) is morphic < L is a regular language.

(0,g): a morphic signature.
(0,g) defines a finite automaton A
It is analogous to

o,8):

m the prefix graph/automaton in Dumont—Thomas '89,'91,'93

m or the correspondence used in Maes—Rigo '02.

Proposition (MS17a)
The language accepted by A,z has signature (o, g).



Automaton associated with a morphic signature

o : A" — A" prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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Automaton associated with a morphic signature

o : A" — A" prolongable on a and g: A — B*

Aog) = (A,B, 4§, {a}, A)
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Automaton associated with a morphic signature

o : A" — A" prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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Automaton associated with a morphic signature

o : A" — A" prolongable on a and g: A" — B*

Aog) = (A,B, 4§, {a}, A)

1
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g(a
g(b
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Automaton associated with a morphic signature @

o : A" — A" prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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Automaton associated with a morphic signature

o : A" — A" prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)

g( 1
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Automaton associated with a morphic signature

o : A" — A" prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)

g( 1

a
g(b
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Automaton associated with a morphic signature

o : A" — A" prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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Automaton associated with a morphic signature

o : A" — A" prolongable on a and g: A" — B*
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o : A" — A" prolongable on a and g: A" — B*
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o(a)=abc
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Back to ANS's

Observation

In basically every NS, the representations of integers follows the
radix order: Vn,p  (n) <,aq (n+ p)

Example: 2 <,3q 12 12 <,5q 21.

Definition (ANS L)

L: language over an ordered alphabet A.
(n)r is the (n+ 1)-th word of L in the radix order.

In our scheme, (n) is the word that labels the path 0 — n.



For Regular ANS's, Labeling Does not Matter @

Proposition

L: regular ANS of signature (s, \1)
K: regular ANS of signature (s, \2)

The conversion function (n); — (n)k is realised by a finite, pure
sequential and letter-to-letter transducer.

In other words, L and K are equivalent as NS.
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Class of equivalent regular ANS's

Theorem (M15)
Given a morphic signature s,
Let C = the class of all regular ANS's with signature s

m In C, some regular ANS's are associated with a DFA with the
minimal number of states

* Dumont and Thomas defined NS based on a pure morphic word
' Here, concrete = Parry—Bertrand NS
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Class of equivalent regular ANS's

Theorem (M15)
Given a morphic signature s,
Let C = the class of all regular ANS's with signature s

m In C, some regular ANS's are associated with a DFA with the
minimal number of states

This automaton is unique (up to alphabet bijection)

® ... and may be computed from the automaton associated with
any NS in C (surminimisation, next slide).

C contains a Dumont-Thomas* NS

If C contains a concrete’ numeration system, then its
automaton is surminimal.

* Dumont and Thomas defined NS based on a pure morphic word
' Here, concrete = Parry—Bertrand NS
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Fact

p: an integer base
Lp: representation of N in base p.
The language L, has signature p“ and Labeling (01---(p —1))*

Proposition (MS17b)

g: a rational base.

Lp: representation of N in base g.

q

u: the Christoffel rhythm of slope g.

v: the canonical labeling associated with g.

The language Lr has for signature u“ and for Labeling v*.
q
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Integer Base

m base p>1
m alphabet A, ={0,1,--- ,p—1}

m value m(a, - - a1a0) = > aip’

Example (base 3) - 7(12)= (3x1)4+(1x2) =5
m(122) = (9x1)+(3x2)+(1x2) =17



Integer Base

base p > 1
alphabet A, = {0,1,--- ,p— 1}

m value m(a, -+~ a1a0) = Y1 aip'
W(AZ) =N

representation (n), = (n)p.a
m (n',a) is the Euclidean division de n par p.

<N>p = (Ap\{o}) ) A:;
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m Base 5 > 1 irreducible fraction (p > g and pA g =1).

m Representation (n)s = (n')s.a:
q q

m (', a) is the Euclidean division of (@ x n) by p .
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Rational Base

m Base 5 > 1 irreducible fraction (p > g and pA g =1).
m Alphabet A, ={0,1,...,p—1}

m Representation (n)p = (n')r.a:
q q

m (', a) is the Euclidean division of (@ x n) by p .

Example: computing (3)

3
2

2 x 3 =3 x N+ ap; = Ny =2 and ag = 0.
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m (', a) is the Euclidean division of (@ x n) by p .

Example: computing (3)
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2 x2= 3 x Np+ ay; =N, =1and a1 = 1.
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m (', a) is the Euclidean division of (@ x n) by p .

Example: computing (3)
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2 x1= 3 x N3+ ap;



Rational Base

m Base 5 > 1 irreducible fraction (p > g and pA g =1).
m Alphabet A, ={0,1,...,p—1}

m Representation (n)p = (n')r.a:
q q

m (', a) is the Euclidean division of (@ x n) by p .

Example: computing (3)

3
2

2 x1= 3 x N3+ ap; = N3 =0 and a, = 2.



Rational Base

m Base 5 > 1 irreducible fraction (p > g and pA g =1).
m Alphabet A, ={0,1,...,p—1}
m Representation (n)p = (n')r.a:

q q

m (', a) is the Euclidean division of (@ x n) by p .

Example: computing (3)

3
2

(3 = (30 = (1310 = 210



Rational Base

m Base 5 > 1 irreducible fraction (p > g and pA g =1).
m Alphabet A, ={0,1,...,p—1}
m Representation (n)p = (n')r.a:

q q

m (', a) is the Euclidean division of (@ x n) by p .

Example: computing (3)

3
2
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Properties of Lg

m Lo is right-extendible.
q

m Lp is prefix-closed.
q

m Base g is the ANS built from Lp.
q

Theorem (Akiyama Frougny Sakarovitch, 2008)

Lp is not a context-free language.
q

Lr has the Finite Left lteration Property :
q
For every word u,v, Le N (uv*) is finite
q



Fact

p: an integer base
Lp: representation of N in base p.
The language L, has signature p“ and Labeling (01---(p —1))*

Proposition (MS17b)

g: a rational base.

Lp: representation of N in base g.

q

u: the Christoffel rhythm of slope g.

v: the canonical labeling associated with g.

The language Lr has for signature u“ and for Labeling v*.
q



Christoffel Word and Christoffel Rhythm

Slope g: 3
Christ. word: YYXYyX
Christ. rhythm: (2, 1)
Sign. of Lg: (21)~



Christoffel Word and Christoffel Rhythm

Slope 2: 3 >
Christ. word: YYXYyX YYY X Yy X
Christ. rhythm: (2, 1) (3, 2)
Sign. of Lg: (21)~ (32)~



Christoffel Word and Christoffel Rhythm

R 1
. ............ //H:.., 2
: y //
. #5'// ....... 2
e
S 3
s )
}////
: 3 5 5
Christ. word: YYXYyX YYY X Yy X YY XYY XY X
Christ. rhythm: (2, 1) (3, 2) (2, 2, 1)

Sign. of Le: (21)~ (32)~ (221)«



Definition (Canonical Labeling)

the p-tuple: (0,9,(29),...,(p—1)q) [mod p]
Example: (0,2,1) for % and (0,3,1,4,2) for %



Definition (Canonical Labeling)

the p-tuple: (0,4,(29),...,(p—1)q) [mod p]
Example: (0,2,1) for 3 and (0,3,1,4,2) for 3.

Proposition (MS17b)

p.
£- 3 base.
q

u: the Christoffel rhythm of slope g.

v: the canonical labeling associated with 2.

The language Lr has for signature u® and for labeling v<.
q



What About Arbitrary Periodic Signatures?

Signature s = (sos1 - S(g-1))"
m Directing parameter of s: (g, p)

m the period length of s is g;
Bp=5+S+S+ -+ 5S5-1.

m Growth ratio of s: 2 .
m Intuition : #{nodes at depth i} is roughly (g)
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Signature s = (sos1 - S(g-1))"
m Directing parameter of s: (g, p)

m the period length of s is g;
Bp=5+S+S+ -+ 5S5-1.

m Growth ratio of s: 2 .
m Intuition : #{nodes at depth i} is roughly (g)

Theorem (MS17b)

3 smart labeling A = (Ao - - - A\p—1)* such that
Ls x, the language generated by (s, \),
is a noncanonical representation of N in base g.

[ Ifg is an integer, Ls x is a regular language.

[ Ifg is not integer, Ls » is a FLIP language.



Noncanonical Representation of N

Reminder: concrete numeration system

m Alphabet A of digits

m Evaluation function: val : a,---ag — f(an,...,ao),
where f is an arithmetic function

m Among {u € A*|n(u) = n} one is chosen to be
the canonical representation of n

Definition

L is a noncanonical representation of N in a concrete NS if

VneN, Fuel, n(u)=n



What About Arbitrary Periodic Signatures?

Signature s = (sos1 - S(g-1))"
m Directing parameter of s: (g, p)

m the period length of s is g;
Bp=5+S+S+ -+ 5S5-1.

m Growth ratio of s: 2 .
m Intuition : #{nodes at depth i} is roughly (g)

Theorem (MS17b)

3 smart labeling A = (Ao - - - A\p—1)* such that
Ls x, the language generated by (s, \),
is a noncanonical representation of N in base g.

[ Ifg is an integer, Ls x is a regular language.

[ Ifg is not integer, Ls » is a FLIP language.



And Eventually Periodic Signatures?

Signatures = Xxg--- Xk (Sos1 - S(qfl))w

m Directing parameter of s: (g, p)

m the period length of s is g;
Bp=5+S+S+ -+ 5S5-1.

m Growth ratio of s: 2 .
m Intuition : #{nodes at depth i} is roughly (g)

Theorem (MS17b)

3 smart labeling A = £g -+ - €y (Ao - - - A\p)“ such that
Ls x, the language generated by (s, \),

is a noncanonical representation of N in base g.

[ Ifg is an integer, Ls x is a regular language.

[ Ifg is not integer, Ls » is a FLIP language.
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Pespectives

Two correspondance Signature <+ Numeration systems

m For regular ANS'’s, labeling does not matter.
m All regular ANS'’s with the same signature are equivalent.

m For ANS'’s with ultimately periodic signature
m labeling matters,
P

m if we use the smart labeling, equivalent to some base q
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smart labeling work?

Answer: When the
signature is directed by §
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Directed Signature (idea in M16)

Question: When does the
smart labeling work?

Answer: When the
signature is directed by §

Ex: s=213012---

... that is, when its path
in the plane stays between
two lines of slope %
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Pespectives

Two correspondance Signature <+ Numeration systems

m For regular ANS'’s, labeling does not matter.

m All regular ANS'’s with the same signature are equivalent.

m For ANS's with signatures directed by g

m labeling matters,
m if we use the smart labeling, equivalent to base 5

= A regular ANS directed by p € N is equivalent to base p.

Conjecture/Future work (since 2014...)

B: a Pisot (or maybe Parry) number
Sg: the classical concrete NS based on 3

A regular ANS directed by /3 is equivalent to Sg.
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