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3Numeration Systems

Numbers

• Abstract quantities

• Axiomatised in Math

Ex: 8,
√
2, π, etc .

Words

• Sequence of letters/digits

• Used for effective
computation

Ex: abbac , 3.141592 · · · ,

Representation

Evaluation



4The Three Components of a NS

Alphabet

Authorised digits

Evaluation function

• word 7→ number
• the value of a word u is written π(u)

Representation function

• number 7→ word
• the representation of a number n is written 〈n〉



5Ex: Our Usual System (Base 10)

Alphabet

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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6Two Ways to Define a NS

Define the evaluation (Concrete NS)

Choose how to evaluate a word: an · · · a1 7→ f (an, · · · , a1)
where f is an arithmetic function

Among words with the same value, choose a canonical one



6Two Ways to Define a NS

Define the evaluation (Concrete NS)

Choose how to evaluate a word: an · · · a1 7→ f (an, · · · , a1)
where f is an arithmetic function

Among words with the same value, choose a canonical one

Define the representation (Abstract NS, Lecomte-Rigo ’01)

Choose a language L of representations

Choose an order for the alphabet of L

The n-th word of L is the representation of n:

a shorter word is smaller than a longer word;
two word of the same length are ordered lexicographically.

Almost all concrete NS are also abstract NS.



7Example of Concrete NS: Fibonacci (Zeckendorf)

Based on the sequence: F0 = 1, F1 = 2, Fn+2 = Fn+1 + Fn

Alphabet: {0,1}
Evaluation: an · · · a0 7→

∑n
k=0 akFk
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Based on the sequence: F0 = 1, F1 = 2, Fn+2 = Fn+1 + Fn

Alphabet: {0,1}
Evaluation: an · · · a0 7→

∑n
k=0 akFk

Representation of N: (10 + 0)∗(1 + ε)
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Based on the sequence: F0 = 1, F1 = 2, Fn+2 = Fn+1 + Fn

Alphabet: {0,1}
Evaluation: an · · · a0 7→

∑n
k=0 akFk

Representation of N: (10 + 0)∗(1 + ε)

Natural padding letter: 0
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8Example of Abstract NS: a∗b∗

Alphabet: {a, b} ordered a < b

Representation of N: a∗b∗
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8Example of Abstract NS: a∗b∗

Alphabet: {a, b} ordered a < b

Representation of N: a∗b∗

Evaluation: an · · · a1 7→ ???
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8Example of Abstract NS: a∗b∗

Alphabet: {a, b,#} ordered # < a < b

Representation of N: a∗b∗

Evaluation: an · · · a1 7→ ???

Padding letter: assume one or add one.
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9A few details

We assume alphabets to be ordered

We assume languages to be prefix-closed

We assume languages to be padded :

there is a padding letter # such that #∗L = L;
the padding letter is the least in the alphabet.

We consider regular ANS’s and nonregular ANS’s
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11Signature of a tree

Let’s forget about letters for a moment.

We obtain a (rooted, ordered, infinite) tree with a loop.

Such a tree has a canonical breadth-first traversal.
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11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1 2



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1 2 1



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1 2 1 2



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1 2 1 2 2



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1 2 1 2 2 1



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1 2 1 2 2 1 2



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1 2 1 2 2 1 2 2



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1 2 1 2 2 1 2 2 1



11Signature of a tree

Definition

The signature of a tree is the sequence of the degree of the nodes
taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

s = 2 1 2 2 1 2 1 2 2 1 2 2 1 · · ·



12Signature is characteristic of tree

s =( 3 2 1 )ω

0



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2

3



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2

3

4



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2

3

4

5



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2

3

4

5

6



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2

3

4

5

6

7



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2

3

4

5

6

7

8



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2

3

4

5

6

7

8

9



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2

3

4

5

6

7

8

9

10



12Signature is characteristic of tree

s =( 3 2 1 )ω

0

1

2

3

4

5

6

7

8

9

10

11



13Serialisation of a prefix-closed language

Definition

The labeling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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14The pair (signature,labeling) is characteristic

s = (3 2 1)ω

λ = (012 12 1)ω
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Theorem (MS17a)

L: a prefix-closed language.
Signature(L) is a morphic ⇔ L is a regular language.
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σ: a morphism A∗ → A∗.

σ is prolongable on a if σ(a) starts with the letter a.
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σ is prolongable on a if σ(a) starts with the letter a.

In this case, σω(a) exists and is called a pure morphic word .

f : a letter-to-letter morphism A∗ → B∗.
→ f (σω(a)) is called a morphic word .
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D ⊂ N

∀b, fσ(b) = |σ(b)|
We call fσ(σ

ω(a)) a morphic signature.
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19Morphic Labeling

If g is a morphism such that
∀b, |g(b)| = |σ(b)|
if g(b) = c0c1 · · · ck then c0 < c1 < · · · < ck

We call g(σω(a)) a morphic labeling.

Example: a periodic morphism

σ(a) = abc =⇒ fσ(a) = 3
σ(b) = ab =⇒ fσ(b) = 2
σ(c) = c =⇒ fσ(c) = 1

σ(abc) = abc abc hence fσ(σ
ω(a)) = (321)ω

If we choose g :
g(a) = 012
g(b) = 12
g(c) = 1

g(σω(a)) = (012 12 1)ω
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20Proof sketch

Theorem (MS17a)

L: a prefix-closed language.
Signature(L) is morphic ⇔ L is a regular language.

(σ, g): a morphic signature.
(σ, g) defines a finite automaton A(σ,g).
It is analogous to

the prefix graph/automaton in Dumont–Thomas ’89,’91,’93

or the correspondence used in Maes–Rigo ’02.

Proposition (MS17a)

The language accepted by A(σ,g) has signature (σ, g).



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b
σ( b ) = a

g( a ) = 0 1
g( b ) = 0



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b
σ( b ) = a

g( a ) = 0 1
g( b ) = 0

a b



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b
σ( b ) = a

g( a ) = 0 1
g( b ) = 0

a b



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b
σ( b ) = a

g( a ) = 0 1
g( b ) = 0

a b



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b
σ( b ) = a

g( a ) = 0 1
g( b ) = 0

a b



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b
σ( b ) = a

g( a ) = 0 1
g( b ) = 0

a b

0



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b
σ( b ) = a

g( a ) = 0 1
g( b ) = 0

a b

0
1



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b
σ( b ) = a

g( a ) = 0 1
g( b ) = 0

a b

0
1

0



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b c
σ( b ) = a b
σ( c ) = c

g( a ) = 0 1 2
g( b ) = 1 2
g( c ) = 1

a b

c



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b c
σ( b ) = a b
σ( c ) = c

g( a ) = 0 1 2
g( b ) = 1 2
g( c ) = 1

a b

c

0



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b c
σ( b ) = a b
σ( c ) = c

g( a ) = 0 1 2
g( b ) = 1 2
g( c ) = 1

a b

c

0

1



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b c
σ( b ) = a b
σ( c ) = c

g( a ) = 0 1 2
g( b ) = 1 2
g( c ) = 1

a b

c

0

1

2



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b c
σ( b ) = a b
σ( c ) = c

g( a ) = 0 1 2
g( b ) = 1 2
g( c ) = 1

a b

c

0

1
2

1



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b c
σ( b ) = a b
σ( c ) = c

g( a ) = 0 1 2
g( b ) = 1 2
g( c ) = 1

a b

c

0

1
2

1
2



21Automaton associated with a morphic signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b c
σ( b ) = a b
σ( c ) = c

g( a ) = 0 1 2
g( b ) = 1 2
g( c ) = 1

a b

c

0

1
2

1
2

1



22Back to ANS’s

Observation

In basically every NS, the representations of integers follows the
radix order: ∀n, p 〈n〉 ≤rad 〈n + p〉



22Back to ANS’s

Observation

In basically every NS, the representations of integers follows the
radix order: ∀n, p 〈n〉 ≤rad 〈n + p〉
u <rad v if |u| < |v |

or |u| = |v | & u <lex v

Example: 2 <rad 12 12 <rad 21.



22Back to ANS’s

Observation

In basically every NS, the representations of integers follows the
radix order: ∀n, p 〈n〉 ≤rad 〈n + p〉
u <rad v if |u| < |v |

or |u| = |v | & u <lex v

Example: 2 <rad 12 12 <rad 21.

Definition (ANS L)

L: language over an ordered alphabet A.
〈n〉L is the (n + 1)-th word of L in the radix order.

In our scheme, 〈n〉L is the word that labels the path 0 −→ n.



23For Regular ANS’s, Labeling Does not Matter

Proposition

L: regular ANS of signature (s, λ1)
K : regular ANS of signature (s, λ2)

The conversion function 〈n〉L 7→ 〈n〉K is realised by a finite, pure
sequential and letter-to-letter transducer.

In other words, L and K are equivalent as NS.
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25Class of equivalent regular ANS’s

Theorem (M15)

Given a morphic signature s,
Let C = the class of all regular ANS’s with signature s

In C , some regular ANS’s are associated with a DFA with the
minimal number of states

This automaton is unique (up to alphabet bijection)

... and may be computed from the automaton associated with
any NS in C (surminimisation, next slide).

C contains a Dumont-Thomas∗ NS

If C contains a concrete† numeration system, then its
automaton is surminimal.

∗ Dumont and Thomas defined NS based on a pure morphic word
† Here, concrete = Parry–Bertrand NS
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27Outline

1 Numeration systems

2 Signature

3 Morphic Signatures ∼ Regular Abstract Numeration Systems

4 Periodic Signatures ∼ Rational Base Numeration Systems

5 Going further
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Fact

p: an integer base
Lp: representation of N in base p.
The language Lp has signature pω and Labeling (01 · · · (p − 1))ω

Proposition (MS17b)

p
q
: a rational base.

L p

q
: representation of N in base p

q
.

u: the Christoffel rhythm of slope p
q
.

v : the canonical labeling associated with p
q
.

The language L p

q
has for signature uω and for Labeling vω.



29Integer Base

base p > 1

alphabet Ap = {0, 1, · · · , p − 1}



29Integer Base

base p > 1

alphabet Ap = {0, 1, · · · , p − 1}

value π(an · · · a1a0) =
∑n

i=0 aip
i

Example (base 3) - π(12) = (3× 1) + (1× 2) = 5
π(122) = (9× 1)+ (3× 2)+ (1× 2) = 17



29Integer Base

base p > 1

alphabet Ap = {0, 1, · · · , p − 1}

value π(an · · · a1a0) =
∑n

i=0 aip
i

π(A∗
p) = N

representation 〈n〉p = 〈n′〉p.a
(n′, a) is the Euclidean division de n par p.

〈N〉p = (Ap\{0}) · A∗
p
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Alphabet Ap = {0, 1, . . . , p − 1}

Representation 〈n〉 p

q
= 〈n′〉 p

q
.a :

(n′, a) is the Euclidean division of ( q × n) by p .

Example: computing 〈3〉 3
2
:

〈3〉 3
2

= 〈2〉 3
2
0 =

2 × 2 = 3 × N2 + a1; ⇒ N2 = 1 and a1 = 1.
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> 1 irreducible fraction (p > q and p ∧ q = 1).

Alphabet Ap = {0, 1, . . . , p − 1}

Representation 〈n〉 p

q
= 〈n′〉 p

q
.a :

(n′, a) is the Euclidean division of ( q × n) by p .

Example: computing 〈3〉 3
2
:

〈3〉 3
2

= 〈2〉 3
2
0 = 〈1〉 3

2
10 =

2 × 1 = 3 × N3 + a2; ⇒ N3 = 0 and a2 = 2.
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30Rational Base

Base p
q
> 1 irreducible fraction (p > q and p ∧ q = 1).

Alphabet Ap = {0, 1, . . . , p − 1}

Representation 〈n〉 p

q
= 〈n′〉 p

q
.a :

(n′, a) is the Euclidean division of ( q × n) by p .

Example: computing 〈3〉 3
2
:

〈3〉 3
2

= 〈2〉 3
2
0 = 〈1〉 3

2
10 = 210

Evaluation π(an · · · a1a0) =
∑n

i=0(
ai
q
)(p

q
)i



31L 3
2
, representation of N in base 3
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0

0

0

0
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2
, representation of N in base 3

2

s = (21)ω

λ = (021)ω
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32Properties of L p

q

L p

q
is right-extendible.

L p

q
is prefix-closed.

Base p
q
is the ANS built from L p

q
.

Theorem (Akiyama Frougny Sakarovitch, 2008)

L p

q
is not a context-free language.

L p

q
has the Finite Left Iteration Property :

For every word u, v , L p

q
∩ (uv∗) is finite



Fact

p: an integer base
Lp: representation of N in base p.
The language Lp has signature pω and Labeling (01 · · · (p − 1))ω

Proposition (MS17b)

p
q
: a rational base.

L p

q
: representation of N in base p

q
.

u: the Christoffel rhythm of slope p
q
.

v : the canonical labeling associated with p
q
.

The language L p

q
has for signature uω and for Labeling vω.



34Christoffel Word and Christoffel Rhythm

Slope p
q
:

Christ. word:
Christ. rhythm:
Sign. of L p

q
:

y

y
x

y
x

2

1

3
2

yy x y x
(2, 1)
(21)ω
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34Christoffel Word and Christoffel Rhythm

Slope p
q
:

Christ. word:
Christ. rhythm:
Sign. of L p

q
:

y

y
x

y
x

2

1

3
2

yy x y x
(2, 1)
(21)ω

y

y

y
x

y

y
x

3

2

5
2

yyy x yy x
(3, 2)
(32)ω

y

y
x

y

y
x

y
x

2

2

1

5
3

yy x yy x y x
(2, 2, 1)
(221)ω



Definition (Canonical Labeling)

the p-tuple: (0, q, (2q), . . . , (p − 1)q) [mod p]

Example: (0, 2, 1) for 3
2 and (0, 3, 1, 4, 2) for 5

3 .



Definition (Canonical Labeling)

the p-tuple: (0, q, (2q), . . . , (p − 1)q) [mod p]

Example: (0, 2, 1) for 3
2 and (0, 3, 1, 4, 2) for 5

3 .

Proposition (MS17b)

p
q
: a base.

u: the Christoffel rhythm of slope p
q
.

v : the canonical labeling associated with p
q
.

The language L p

q
has for signature uω and for labeling vω.



36What About Arbitrary Periodic Signatures?

Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter of s: (q, p)

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio of s: p
q

Intuition : #{nodes at depth i} is roughly
(

p

q

)i
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Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter of s: (q, p)

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio of s: p
q

Intuition : #{nodes at depth i} is roughly
(

p

q

)i

Theorem (MS17b)

∃ smart labeling λ = (λ0 · · ·λp−1)
ω such that

Ls,λ, the language generated by (s, λ),
is a noncanonical representation of N in base p

q
.

If p
q
is an integer, Ls,λ is a regular language.

If p
q
is not integer, Ls,λ is a FLIP language.



37Noncanonical Representation of N

Reminder: concrete numeration system

Alphabet A of digits

Evaluation function: val : an · · · a0 7→ f (an, . . . , a0),
where f is an arithmetic function

Among {u ∈ A∗|π(u) = n} one is chosen to be
the canonical representation of n

Definition

L is a noncanonical representation of N in a concrete NS if

∀n ∈ N, ∃u ∈ L, π(u) = n



38What About Arbitrary Periodic Signatures?

Signature s = (s0s1 · · · s(q−1))
ω

Directing parameter of s: (q, p)

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio of s: p
q

Intuition : #{nodes at depth i} is roughly
(

p

q

)i

Theorem (MS17b)

∃ smart labeling λ = (λ0 · · ·λp−1)
ω such that

Ls,λ, the language generated by (s, λ),
is a noncanonical representation of N in base p

q
.

If p
q
is an integer, Ls,λ is a regular language.

If p
q
is not integer, Ls,λ is a FLIP language.



39And Eventually Periodic Signatures?

Signature s = x0 · · · xk (s0s1 · · · s(q−1))
ω

Directing parameter of s: (q, p)

the period length of s is q;
p = s0 + s1 + s2 + · · ·+ sq−1.

Growth ratio of s: p
q

Intuition : #{nodes at depth i} is roughly
(

p

q

)i

Theorem (MS17b)

∃ smart labeling λ = ℓ0 · · · ℓm (λ0 · · ·λp)
ω such that

Ls,λ, the language generated by (s, λ),
is a noncanonical representation of N in base p

q
.

If p
q
is an integer, Ls,λ is a regular language.

If p
q
is not integer, Ls,λ is a FLIP language.



40Outline

1 Numeration systems

2 Signature

3 Morphic Signatures ∼ Regular Abstract Numeration Systems

4 Periodic Signatures ∼ Rational Base Numeration Systems

5 Going further



41Pespectives

Two correspondance Signature ↔ Numeration systems

For regular ANS’s, labeling does not matter.

All regular ANS’s with the same signature are equivalent.

For ANS’s with ultimately periodic signature
labeling matters,
if we use the smart labeling, equivalent to some base p

q
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Question: When does the
smart labeling work?

Answer: When the
signature is directed by p

q
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42Directed Signature (idea in M16)

Question: When does the
smart labeling work?

Answer: When the
signature is directed by p

q

Ex: s = 21 3 0 1 2 · · ·

... that is, when its path
in the plane stays between
two lines of slope 3

2

slope:32

2

1

3

0
1

2
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43Pespectives

Two correspondance Signature ↔ Numeration systems

For regular ANS’s, labeling does not matter.

All regular ANS’s with the same signature are equivalent.

For ANS’s with signatures directed by p
q

labeling matters,
if we use the smart labeling, equivalent to base p

q

⇒ A regular ANS directed by p ∈ N is equivalent to base p.

Conjecture/Future work (since 2014...)

β: a Pisot (or maybe Parry) number
Sβ : the classical concrete NS based on β

A regular ANS directed by β is equivalent to Sβ .
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