
Query languages for property graphs

From RPQs to Cypher

NoSQL and New SQL course

M2 LID, Université Gustave-Eiffel

2024-2025

version 4

Introduction

About this PDF 2

Navigation

From any frame, the page numberpage number is a link to the navigable outline.

Term translations

There is a French/English lexiconFrench/English lexicon at the end.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

Overview of query answering 3

DBMS (DataBase Management System)

Query language
“What can the user write?”

Query

Answer

User DBMS

DM

Semantics
“What does the query mean?” “What is the correct answer?”
Ex: Set semantics (duplicate elimination)

DM (Data Model)
“How is the data structured?” “What data is representable?”
Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),
etc.

This segment is about query languages for property graphs

In part II:

The data model is Property Graph (PG)

The DBMS we will use (Neo4j) implements this DM

The query languages we consider (Cypher, GQL, etc.)
need this DM to have any meaning

Query

Answer

User DBMS

DM

This segment is about query languages for property graphs

In part II:

The data model is Property Graph (PG)

The DBMS we will use (Neo4j) implements this DM

The query languages we consider (Cypher, GQL, etc.)
need this DM to have any meaning

Query

Answer

User DBMS

DM

This segment is about query languages for property graphs

In part II:

The data model is Property Graph (PG)

The DBMS we will use (Neo4j) implements this DM

The query languages we consider (Cypher, GQL, etc.)
need this DM to have any meaning

Query

Answer

User DBMS

DM

This segment is about query languages for property graphs

In part II:In part II:

The data model is Property Graph (PG)

The DBMS we will use (Neo4j) implements this DM

The query languages we consider (Cypher, GQL, etc.)
need this DM to have any meaning

Query

Answer

User DBMS

DM

Popularity of Graph DBMS’s (1) 5

Vast majority of DMBS’s are relational, not graph

Document stores 10.3%

Graph DBMS 1.7%

Key-value stores 5.5%

Multivalue DBMS 0.3%
Native XML DBMS 0.3%
Object oriented DBMS 0.3%
RDF stores 0.5%

Relational DBMS 71.9%

Search engines 4.4%

Spatial DBMS 0.5%

Time Series DBMS 1.2%

Vector DBMS 0.2%
Wide column stores 2.8%

Figure and data from db-engines.com, August 2023

db-engines.com

Popularity of Graph DBMS’s (2) 6

Graph DBMS’s has grown in popularity for ten years

Relational DBMS’s continued their slow decline

Figure and data from db-engines.com, August 2023

db-engines.com

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

⋯SparQL

PGQL

GSQL G-Core

Academia

Late 1980’s – RPQs are invented

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

⋯SparQL

PGQL

GSQL G-Core

Academia

Since 1990’s – RPQs are studied and extended in academia

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

⋯SparQL

PGQL

GSQL G-Core

Academia

2011 – The query language Cypher is released with the DBMS Neo4j

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

⋯SparQL

PGQL

GSQL G-Core

Academia

Mid 2010’s – Cypher is successful and new graph DBMS’s appear.
Some use Cypher, some come with their own query language.

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

⋯SparQL

PGQL

GSQL G-Core

Academia

Late 2010’s – Idea to merge existing languages for interoperability

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

⋯SparQL

PGQL

GSQL G-Core

Academia

2023 – SQL/PGQ support for querying PG’s in SQL
2024 – GQL, standard query language for PG’s

A bit of history 7

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

⋯SparQL

PGQL

GSQL G-Core

Academia

Side note: In SPARQL, the standard language for the RDF DM, features
Property paths which are also based on RPQ’s.

Outline 8

Course I: Theoretical Foundations

Data model: Graphs
Query language: RPQs

Course II& III: A practical application

Data model: Property graphs
Query language: Cypher

Part I: Theoretical foundations

Part I: Theoretical foundations

1. Data model: labeled graphs

Our data model : (Labeled) graphs (1) 11

Example

A graph consists of ...

Vertices

Edges

Edge labels

0 1 2 3

4

Our data model : (Labeled) graphs (1) 11

Example

A graph consists of ...

VerticesVertices

Edges

Edge labels

0 1 2 3

4

Our data model : (Labeled) graphs (1) 11

Example

A graph consists of ...

Vertices

EdgesEdges

Edge labels

0 1 2 3

4

Our data model : (Labeled) graphs (1) 11

Example

A graph consists of ...

Vertices

Edges

Edge labelsEdge labels

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Our data model : (Labeled) graphs (2) 12

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L × V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4), (4,R, 1),
(0,F, 3), (4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Our data model : (Labeled) graphs (2) 12

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L × V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1)(0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4), (4,R, 1),
(0,F, 3), (4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Our data model : (Labeled) graphs (2) 12

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L × V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4)(2,R, 4), (4,R, 1),
(0,F, 3), (4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Our data model : (Labeled) graphs (2) 12

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L × V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4), (4,R, 1),
(0,F, 3)(0,F, 3), (4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Our data model : (Labeled) graphs (2) 12

Formalisation

Definition

A labeled graph is a triplet
(V , L,E)

V is a finite set of vertices
L is a finite set of labels
E ⊆ V × L × V is a finite set
of edges

Formal representation of G

V = {0, 1, 2, 3, 4}
L = {R,F,G}
E = { (0,R, 1), (1,R, 2),
(2,R, 3), (2,R, 4), (4,R, 1),
(0,F, 3), (4,G, 4)(4,G, 4) }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Example graph G

Limits to the graph data model (1) 13

Our graphs are single-labeled and single-edge

Each edge has exactly one label.
There cannot be two identical edges.

Road, Ferry

Forbidden Forbidden

Ferry

Road

Allowed

Road

Road

Forbidden

Limits to the graph data model (2) 14

The graph DM is about topology, not data

We encode the existence of entities and of relations between entities
Ex: cities, roads

We don’t encode specific data of an entity or relation
Ex: names, distances

Examples

Our model cannot encode that
the road from 0 to 1 is 2km
long
the gas price is 2€ in vertex 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Part I: Theoretical foundations

2. Regular Path Queries

What is an RPQ? 16

A regular path query is a walk pattern matching.

An RPQ
is a regular expression
sent to a graph
to match walks.

Terminology reminder from automata theory 17

A letter is a symbol coming from
a finite set, the alphabet.

In our case, the alphabet is the
label-set of the graph.

Examples:
{R,F,G} is an alphabet
R and G are letters

A word is a finite sequence of let-
ters

Examples words:
RGRR
R
ε, the empty word

A language is a finite or infinite
set of words

Example languages:
{R,RG}
{R,RR,RRR, . . .}
The words with one G
The words with a prime num-
ber of G

Terminology reminder from automata theory 17

A letter is a symbol coming from
a finite set, the alphabet.

In our case, the alphabet is the
label-set of the graph.

Examples:
{R,F,G} is an alphabet
R and G are letters

A word is a finite sequence of let-
ters

Examples words:
RGRR
R
ε, the empty word

A language is a finite or infinite
set of words

Example languages:
{R,RG}
{R,RR,RRR, . . .}
The words with one G
The words with a prime num-
ber of G

Terminology reminder from automata theory 17

A letter is a symbol coming from
a finite set, the alphabet.

In our case, the alphabet is the
label-set of the graph.

Examples:
{R,F,G} is an alphabet
R and G are letters

A word is a finite sequence of let-
ters

Examples words:
RGRR
R
ε, the empty word

A language is a finite or infinite
set of words

Example languages:
{R,RG}
{R,RR,RRR, . . .}
The words with one G
The words with a prime num-
ber of G

The four ways to build a regexp 18

Atoms

Each letter is a regexp
ε is a regexp

Ex: ε, R and F are regexps

Concatenation ⋅

If Q1 and Q2 are regexps
Then Q1 ⋅ Q2 is a regexp

Ex: R ⋅ R and G ⋅ F are regexps
(R ⋅ R) ⋅ (G ⋅ F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R+R and G+F are regexps
(R ⋅R)+ (G ⋅ F) is a regexp

Kleene star
∗

If Q is a regexp
Then Q

∗
is a regexp

Ex: R
∗
and G

∗
are regexps

((R∗⋅) + F)∗ is a regexp

The four ways to build a regexp 18

Atoms

Each letter is a regexp
ε is a regexp

Ex: ε, R and F are regexps

Concatenation ⋅

If Q1 and Q2 are regexps
Then Q1 ⋅ Q2 is a regexp

Ex: R ⋅ R and G ⋅ F are regexps
(R ⋅ R) ⋅ (G ⋅ F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R+R and G+F are regexps
(R ⋅R)+ (G ⋅ F) is a regexp

Kleene star
∗

If Q is a regexp
Then Q

∗
is a regexp

Ex: R
∗
and G

∗
are regexps

((R∗⋅) + F)∗ is a regexp

The four ways to build a regexp 18

Atoms

Each letter is a regexp
ε is a regexp

Ex: ε, R and F are regexps

Concatenation ⋅

If Q1 and Q2 are regexps
Then Q1 ⋅ Q2 is a regexp

Ex: R ⋅ R and G ⋅ F are regexps
(R ⋅ R) ⋅ (G ⋅ F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R+R and G+F are regexps
(R ⋅R)+ (G ⋅ F) is a regexp

Kleene star
∗

If Q is a regexp
Then Q

∗
is a regexp

Ex: R
∗
and G

∗
are regexps

((R∗⋅) + F)∗ is a regexp

The four ways to build a regexp 18

Atoms

Each letter is a regexp
ε is a regexp

Ex: ε, R and F are regexps

Concatenation ⋅

If Q1 and Q2 are regexps
Then Q1 ⋅ Q2 is a regexp

Ex: R ⋅ R and G ⋅ F are regexps
(R ⋅ R) ⋅ (G ⋅ F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R+R and G+F are regexps
(R ⋅R)+ (G ⋅ F) is a regexp

Kleene star
∗

If Q is a regexp
Then Q

∗
is a regexp

Ex: R
∗
and G

∗
are regexps

((R∗⋅) + F)∗ is a regexp

Language described by a regexp Q 19

Each regexp Q denotes a language L(Q)

Examples:
1 L(R) = {R}

2 L(R ⋅ F ⋅ G) = {RFG}
3 L(R + G) = {R,G}
4 L(R ⋅ R + G ⋅ R) = L((R + G) ⋅ R) = {RR,GR}
5 L(R∗) = {ε, R, RR, RRR, . . .}
6 L((R + G)∗) =

{ε, R, G, RR, RG, GG, . . .}

7 L((R ⋅ R)∗) =

{ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

8 L(R∗ ⋅ G ⋅ R∗) =

{G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language denoted by a regexp is called regular.

Language described by a regexp Q 19

Each regexp Q denotes a language L(Q)

Examples:
1 L(R) = {R}
2 L(R ⋅ F ⋅ G) = {RFG}

3 L(R + G) = {R,G}
4 L(R ⋅ R + G ⋅ R) = L((R + G) ⋅ R) = {RR,GR}
5 L(R∗) = {ε, R, RR, RRR, . . .}
6 L((R + G)∗) =

{ε, R, G, RR, RG, GG, . . .}

7 L((R ⋅ R)∗) =

{ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

8 L(R∗ ⋅ G ⋅ R∗) =

{G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language denoted by a regexp is called regular.

Language described by a regexp Q 19

Each regexp Q denotes a language L(Q)

Examples:
1 L(R) = {R}
2 L(R ⋅ F ⋅ G) = {RFG}
3 L(R + G) = {R,G}

4 L(R ⋅ R + G ⋅ R) = L((R + G) ⋅ R) = {RR,GR}
5 L(R∗) = {ε, R, RR, RRR, . . .}
6 L((R + G)∗) =

{ε, R, G, RR, RG, GG, . . .}

7 L((R ⋅ R)∗) =

{ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

8 L(R∗ ⋅ G ⋅ R∗) =

{G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language denoted by a regexp is called regular.

Language described by a regexp Q 19

Each regexp Q denotes a language L(Q)

Examples:
1 L(R) = {R}
2 L(R ⋅ F ⋅ G) = {RFG}
3 L(R + G) = {R,G}
4 L(R ⋅ R + G ⋅ R) = L((R + G) ⋅ R) = {RR,GR}

5 L(R∗) = {ε, R, RR, RRR, . . .}
6 L((R + G)∗) =

{ε, R, G, RR, RG, GG, . . .}

7 L((R ⋅ R)∗) =

{ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

8 L(R∗ ⋅ G ⋅ R∗) =

{G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language denoted by a regexp is called regular.

Language described by a regexp Q 19

Each regexp Q denotes a language L(Q)

Examples:
1 L(R) = {R}
2 L(R ⋅ F ⋅ G) = {RFG}
3 L(R + G) = {R,G}
4 L(R ⋅ R + G ⋅ R) = L((R + G) ⋅ R) = {RR,GR}
5 L(R∗) = {ε, R, RR, RRR, . . .}
6 L((R + G)∗) =

{ε, R, G, RR, RG, GG, . . .}

7 L((R ⋅ R)∗) =

{ε, RR, RRRR, RRRRRR, . . .}
“words of even length”

8 L(R∗ ⋅ G ⋅ R∗) =

{G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language denoted by a regexp is called regular.

Language described by a regexp Q 19

Each regexp Q denotes a language L(Q)

Examples:
1 L(R) = {R}
2 L(R ⋅ F ⋅ G) = {RFG}
3 L(R + G) = {R,G}
4 L(R ⋅ R + G ⋅ R) = L((R + G) ⋅ R) = {RR,GR}
5 L(R∗) = {ε, R, RR, RRR, . . .}
6 L((R + G)∗) = {ε, R, G, RR, RG, GG, . . .}
7 L((R ⋅ R)∗) = {ε, RR, RRRR, RRRRRR, . . .}

“words of even length”

8 L(R∗ ⋅ G ⋅ R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language denoted by a regexp is called regular.

Language described by a regexp Q 19

Each regexp Q denotes a language L(Q)

Examples:
1 L(R) = {R}
2 L(R ⋅ F ⋅ G) = {RFG}
3 L(R + G) = {R,G}
4 L(R ⋅ R + G ⋅ R) = L((R + G) ⋅ R) = {RR,GR}
5 L(R∗) = {ε, R, RR, RRR, . . .}
6 L((R + G)∗) = {ε, R, G, RR, RG, GG, . . .}
7 L((R ⋅ R)∗) = {ε, RR, RRRR, RRRRRR, . . .}

“words of even length”

8 L(R∗ ⋅ G ⋅ R∗) = {G,RG,GR,RGR,RRG, . . .}
“words over {G,R} with exactly one G”

Any language denoted by a regexp is called regular.

Definition of RPQs and matching walks 20

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R
−→ 1

R
−→ 2

R
−→ 4 RRR

0
S
−→ 0

F
−→ 3 SF

0
R
−→ 1

R
−→ 2

R
−→ 4

G
−→

4
R
−→ 1

R
−→ 2

R
−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 20

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R
−→ 1

R
−→ 2

R
−→ 4 RRR

0
S
−→ 0

F
−→ 3 SF

0
R
−→ 1

R
−→ 2

R
−→ 4

G
−→

4
R
−→ 1

R
−→ 2

R
−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 20

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R
−→ 1

R
−→ 2

R
−→ 4 RRR

0
S
−→ 0

F
−→ 3 SF

0
R
−→ 1

R
−→ 2

R
−→ 4

G
−→

4
R
−→ 1

R
−→ 2

R
−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 20

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R
−→ 1

R
−→ 2

R
−→ 4 RRR

0
S
−→ 0

F
−→ 3 SF

0
R
−→ 1

R
−→ 2

R
−→ 4

G
−→

4
R
−→ 1

R
−→ 2

R
−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 20

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R
−→ 1

R
−→ 2

R
−→ 4 RRR

0
S
−→ 0

F
−→ 3 SF

0
R
−→ 1

R
−→ 2

R
−→ 4

G
−→

4
R
−→ 1

R
−→ 2

R
−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 20

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R
−→ 1

R
−→ 2

R
−→ 4 RRR

0
S
−→ 0

F
−→ 3 SF

0
R
−→ 1

R
−→ 2

R
−→ 4

G
−→

4
R
−→ 1

R
−→ 2

R
−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Definition of RPQs and matching walks 20

A Regular Path Query (RPQ)
queries a graph D = (V , L,E)
is a regexp over L
matches a set of walks in D

A walk in D is a consistent se-
quence of edges in D.

The label of a walk is the word
formed by the label of its edges.

Example walk Label

0
R
−→ 1

R
−→ 2

R
−→ 4 RRR

0
S
−→ 0

F
−→ 3 SF

0
R
−→ 1

R
−→ 2

R
−→ 4

G
−→

4
R
−→ 1

R
−→ 2

R
−→ 3 RRRGRRR

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

A walk w is a match to an
RPQ Q if the label of w is in
L(Q).

Matching atoms 21

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label

0 → 1 R
1 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4 → 4 G

Matching atoms 21

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label

0 → 1 R
1 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4 → 4 G

Matching atoms 21

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0 → 10 → 1 RR

1 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4 → 4 G

Matching atoms 21

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0 → 1 R
1 → 21 → 2 RR

2 → 3 R
2 → 4 R
4 → 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4 → 4 G

Matching atoms 21

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0 → 1 R
1 → 2 R
2 → 32 → 3 RR

2 → 4 R
4 → 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4 → 4 G

Matching atoms 21

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0 → 1 R
1 → 2 R
2 → 3 R
2 → 42 → 4 RR

4 → 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4 → 4 G

Matching atoms 21

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0 → 1 R
1 → 2 R
2 → 3 R
2 → 4 R
4 → 14 → 1 RR

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4 → 4 G

Matching atoms 21

Matching query Q1 = R

L(Q1) = {R}

The matches to Q1 are the walks
labeled by some word in L(Q1),
that is labeled by R.

Match for Q1 Label
0 → 1 R
1 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Matching Q2 = G

L(Q2) = {G}

Match for Q2 Label
4 → 44 → 4 G

Disjunction 22

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0 → 1 R
1 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R
0 → 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 22

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0 → 1 R
1 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R
0 → 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 22

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0 → 10 → 1 RR
1 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R
0 → 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 22

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0 → 1 R
1 → 21 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R
0 → 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 22

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0 → 1 R
1 → 2 R
2 → 32 → 3 R
2 → 4 R
4 → 1 R
0 → 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 22

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0 → 1 R
1 → 2 R
2 → 3 R
2 → 42 → 4 R
4 → 1 R
0 → 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 22

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0 → 1 R
1 → 2 R
2 → 3 R
2 → 4 R
4 → 14 → 1 R
0 → 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 22

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0 → 1 R
1 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R
0 → 30 → 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Disjunction 22

Q3 = R+F

L(Q3) = {R,F}

The matches to Q3 are the walks
labeled by some word in L(Q3),
that is labeled by R or by F.

Match for Q3 Label
0 → 1 R
1 → 2 R
2 → 3 R
2 → 4 R
4 → 1 R
0 → 3 F

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 23

Q4 = R ⋅ R

L(Q4) = {RR}

Match for Q4 Label

0 → 1 → 2 RR
1 → 2 → 3 RR
1 → 2 → 4 RR
2 → 4 → 1 RR
4 → 1 → 2 RR

Matches for Q5 = S ⋅R ⋅R ⋅R

L(Q5) = {SRRR}

0 → 0 → 1 → 2 → 3 SRRR
0 → 0 → 1 → 2 → 4 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 23

Q4 = R ⋅ R

L(Q4) = {RR}

Match for Q4 Label
0 → 1 → 20 → 1 → 2 RRRR

1 → 2 → 3 RR
1 → 2 → 4 RR
2 → 4 → 1 RR
4 → 1 → 2 RR

Matches for Q5 = S ⋅R ⋅R ⋅R

L(Q5) = {SRRR}

0 → 0 → 1 → 2 → 3 SRRR
0 → 0 → 1 → 2 → 4 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 23

Q4 = R ⋅ R

L(Q4) = {RR}

Match for Q4 Label
0 → 1 → 2 RR
1 → 2 → 31 → 2 → 3 RRRR

1 → 2 → 4 RR
2 → 4 → 1 RR
4 → 1 → 2 RR

Matches for Q5 = S ⋅R ⋅R ⋅R

L(Q5) = {SRRR}

0 → 0 → 1 → 2 → 3 SRRR
0 → 0 → 1 → 2 → 4 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 23

Q4 = R ⋅ R

L(Q4) = {RR}

Match for Q4 Label
0 → 1 → 2 RR
1 → 2 → 3 RR
1 → 2 → 41 → 2 → 4 RRRR

2 → 4 → 1 RR
4 → 1 → 2 RR

Matches for Q5 = S ⋅R ⋅R ⋅R

L(Q5) = {SRRR}

0 → 0 → 1 → 2 → 3 SRRR
0 → 0 → 1 → 2 → 4 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 23

Q4 = R ⋅ R

L(Q4) = {RR}

Match for Q4 Label
0 → 1 → 2 RR
1 → 2 → 3 RR
1 → 2 → 4 RR
2 → 4 → 12 → 4 → 1 RRRR

4 → 1 → 2 RR

Matches for Q5 = S ⋅R ⋅R ⋅R

L(Q5) = {SRRR}

0 → 0 → 1 → 2 → 3 SRRR
0 → 0 → 1 → 2 → 4 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 23

Q4 = R ⋅ R

L(Q4) = {RR}

Match for Q4 Label
0 → 1 → 2 RR
1 → 2 → 3 RR
1 → 2 → 4 RR
2 → 4 → 1 RR
4 → 1 → 24 → 1 → 2 RRRR

Matches for Q5 = S ⋅R ⋅R ⋅R

L(Q5) = {SRRR}

0 → 0 → 1 → 2 → 3 SRRR
0 → 0 → 1 → 2 → 4 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 23

Q4 = R ⋅ R

L(Q4) = {RR}

Match for Q4 Label
0 → 1 → 2 RR
1 → 2 → 3 RR
1 → 2 → 4 RR
2 → 4 → 1 RR
4 → 1 → 2 RR

Matches for Q5 = S ⋅R ⋅R ⋅R

L(Q5) = {SRRR}

0 → 0 → 1 → 2 → 3 SRRR
0 → 0 → 1 → 2 → 4 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 23

Q4 = R ⋅ R

L(Q4) = {RR}

Match for Q4 Label
0 → 1 → 2 RR
1 → 2 → 3 RR
1 → 2 → 4 RR
2 → 4 → 1 RR
4 → 1 → 2 RR

Matches for Q5 = S ⋅R ⋅R ⋅R

L(Q5) = {SRRR}

0 → 0 → 1 → 2 → 30 → 0 → 1 → 2 → 3 SRRR
0 → 0 → 1 → 2 → 4 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation 23

Q4 = R ⋅ R

L(Q4) = {RR}

Match for Q4 Label
0 → 1 → 2 RR
1 → 2 → 3 RR
1 → 2 → 4 RR
2 → 4 → 1 RR
4 → 1 → 2 RR

Matches for Q5 = S ⋅R ⋅R ⋅R

L(Q5) = {SRRR}

0 → 0 → 1 → 2 → 3 SRRR
0 → 0 → 1 → 2 → 40 → 0 → 1 → 2 → 4 SRRR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation + disjunction 24

Q6 = S ⋅ (R+F)
L(Q6) = {SR,SF}

Match for Q6 Label
0 → 0 → 1 SR
0 → 0 → 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =

{SFE,SFR,SGE,
SGR,RFE,RFR,RGE,RGR}

Match for Q7 Label
0 → 0 → 3 → 3 SFE
2 → 4 → 4 → 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation + disjunction 24

Q6 = S ⋅ (R+F)
L(Q6) = {SRSR,SF}

Match for Q6 Label
0 → 0 → 10 → 0 → 1 SRSR
0 → 0 → 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =

{SFE,SFR,SGE,
SGR,RFE,RFR,RGE,RGR}

Match for Q7 Label
0 → 0 → 3 → 3 SFE
2 → 4 → 4 → 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation + disjunction 24

Q6 = S ⋅ (R+F)
L(Q6) = {SR,SFSF}

Match for Q6 Label
0 → 0 → 1 SR
0 → 0 → 30 → 0 → 3 SFSF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =

{SFE,SFR,SGE,
SGR,RFE,RFR,RGE,RGR}

Match for Q7 Label
0 → 0 → 3 → 3 SFE
2 → 4 → 4 → 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation + disjunction 24

Q6 = S ⋅ (R+F)
L(Q6) = {SR,SF}

Match for Q6 Label
0 → 0 → 1 SR
0 → 0 → 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) =

{SFE,SFR,SGE,
SGR,RFE,RFR,RGE,RGR}

Match for Q7 Label
0 → 0 → 3 → 3 SFE
2 → 4 → 4 → 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation + disjunction 24

Q6 = S ⋅ (R+F)
L(Q6) = {SR,SF}

Match for Q6 Label
0 → 0 → 1 SR
0 → 0 → 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) = {SFE,SFR,SGE,
SGR,RFE,RFR,RGE,RGR}

Match for Q7 Label
0 → 0 → 3 → 3 SFE
2 → 4 → 4 → 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation + disjunction 24

Q6 = S ⋅ (R+F)
L(Q6) = {SR,SF}

Match for Q6 Label
0 → 0 → 1 SR
0 → 0 → 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) = {SFESFE,SFR,SGE,
SGR,RFE,RFR,RGE,RGR}

Match for Q7 Label
0 → 0 → 3 → 30 → 0 → 3 → 3 SFESFE
2 → 4 → 4 → 1 RGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Concatenation + disjunction 24

Q6 = S ⋅ (R+F)
L(Q6) = {SR,SF}

Match for Q6 Label
0 → 0 → 1 SR
0 → 0 → 3 SF

Q7 = (S+R)(F+G)(E+R)

L(Q7) = {SFE,SFR,SGE,
SGR,RFE,RFR,RGE,RGRRGR}

Match for Q7 Label
0 → 0 → 3 → 3 SFE
2 → 4 → 4 → 12 → 4 → 4 → 1 RGRRGR

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Kleene star 25

Q8 = R
∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0 → 1 R
1 → 2 R

⋮
2 → 4 → 1 RR

⋮
1 → 2 → 4 → 1 RRR

⋮
1 → 2 → 4 →

RRRRRR
1 → 2 → 4 → 1

⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 25

Q8 = R
∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0 → 1 R
1 → 2 R

⋮
2 → 4 → 1 RR

⋮
1 → 2 → 4 → 1 RRR

⋮
1 → 2 → 4 →

RRRRRR
1 → 2 → 4 → 1

⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 25

Q8 = R
∗

L(Q8) = {RR,RR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0 → 10 → 1 RR
1 → 2 R

⋮
2 → 4 → 1 RR

⋮
1 → 2 → 4 → 1 RRR

⋮
1 → 2 → 4 →

RRRRRR
1 → 2 → 4 → 1

⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 25

Q8 = R
∗

L(Q8) = {RR,RR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0 → 1 R
1 → 21 → 2 RR

⋮
2 → 4 → 1 RR

⋮
1 → 2 → 4 → 1 RRR

⋮
1 → 2 → 4 →

RRRRRR
1 → 2 → 4 → 1

⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 25

Q8 = R
∗

L(Q8) = {R,RRRR,RRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0 → 1 R
1 → 2 R

⋮
2 → 4 → 12 → 4 → 1 RRRR

⋮
1 → 2 → 4 → 1 RRR

⋮
1 → 2 → 4 →

RRRRRR
1 → 2 → 4 → 1

⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 25

Q8 = R
∗

L(Q8) = {R,RR,RRRRRR,RRRR,
RRRRR,RRRRRR, . . .}

Match for Q8 Label
0 → 1 R
1 → 2 R

⋮
2 → 4 → 1 RR

⋮
1 → 2 → 4 → 11 → 2 → 4 → 1 RRRRRR

⋮
1 → 2 → 4 →

RRRRRR
1 → 2 → 4 → 1

⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 25

Q8 = R
∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRRRRRRRR, . . .}

Match for Q8 Label
0 → 1 R
1 → 2 R

⋮
2 → 4 → 1 RR

⋮
1 → 2 → 4 → 1 RRR

⋮
1 → 2 → 4 →1 → 2 → 4 →

RRRRRRRRRRRR
1 → 2 → 4 → 11 → 2 → 4 → 1

⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

22
lapslaps

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 25

Q8 = R
∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, }

Match for Q8 Label
0 → 1 R
1 → 2 R

⋮
2 → 4 → 1 RR

⋮
1 → 2 → 4 → 1 RRR

⋮
1 → 2 → 4 →

RRRRRR
1 → 2 → 4 → 1

⋮⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

33
lapslaps

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 25

Q8 = R
∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, }

Match for Q8 Label
0 → 1 R
1 → 2 R

⋮
2 → 4 → 1 RR

⋮
1 → 2 → 4 → 1 RRR

⋮
1 → 2 → 4 →

RRRRRR
1 → 2 → 4 → 1

⋮⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

4242
lapslaps

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Kleene star 25

Q8 = R
∗

L(Q8) = {R,RR,RRR,RRRR,
RRRRR,RRRRRR, }

Match for Q8 Label
0 → 1 R
1 → 2 R

⋮
2 → 4 → 1 RR

⋮
1 → 2 → 4 → 1 RRR

⋮
1 → 2 → 4 →

RRRRRR
1 → 2 → 4 → 1

⋮⋮

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

nn
lapslaps

Gas

Start End

! L(Q8) is infinite !

! Infinitely many matches !

Computing matches (1) 26

Exercice

Find a finite representation of the
matches to Q9 = S(R + F)∗E.

Answer

(

0
S
−→ 0

R
−→ 1

R
−→ 2

(R
−→ 4

R
−→ 1

R
−→ 2)

∗

R
−→ 3

E
−→ 3

)

+ (0 S
−→ 0

F
−→ 1

E
−→ 3)

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Computing matches (1) 26

Exercice

Find a finite representation of the
matches to Q9 = S(R + F)∗E.

Answer

(

0
S
−→ 0

R
−→ 1

R
−→ 2

(R
−→ 4

R
−→ 1

R
−→ 2)

∗

R
−→ 3

E
−→ 3

)

+ (0 S
−→ 0

F
−→ 1

E
−→ 3)

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Computing matches (1) 26

Exercice

Find a finite representation of the
matches to Q9 = S(R + F)∗E.

Answer

(0 S
−→ 0

R
−→ 1

R
−→ 2

(R
−→ 4

R
−→ 1

R
−→ 2)

∗

R
−→ 3

E
−→ 3)

+ (0 S
−→ 0

F
−→ 1

E
−→ 3)

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Computing matches (2) 27

Exercice

Find a finite repr. of the matches
to Q10 = S(R+F)∗G(R+F)∗E.

Answer

0
S
−→ 0

R
−→ 1

R
−→ 2

R
−→ 4

(R
−→ 1

R
−→ 2

R
−→ 4)

∗

G
−→ 4

(R
−→ 1

R
−→ 2

R
−→ 4)

∗

R
−→ 1

R
−→ 2

R
−→ 3

E
−→ 3

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Computing matches (2) 27

Exercice

Find a finite repr. of the matches
to Q10 = S(R+F)∗G(R+F)∗E.

Answer

0
S
−→ 0

R
−→ 1

R
−→ 2

R
−→ 4

(R
−→ 1

R
−→ 2

R
−→ 4)

∗

G
−→ 4

(R
−→ 1

R
−→ 2

R
−→ 4)

∗

R
−→ 1

R
−→ 2

R
−→ 3

E
−→ 3

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Any idea an how to compute
matches in general?

Regexps may be transformed into a finite automaton 29

For instance: Glushkov Construction (aka. position automaton, Berry-Sethi)

Input Regexp Q
Output Nondeterministic Automaton A

L(A) = L(Q)
A is small: O(size(Q)) states
A is computed efficiently: O(size(Q)2)

S(R + F)∗G(R + F)∗E

S0(R1 + F2)∗G3(R4 + F5)∗E6

i

S0

R1

G3

R4

E6

F2

F5

S

R

R

R

R

E

R

R

F

F
E

F

F

F

F

G G

Regexps may be transformed into a finite automaton 29

For instance: Glushkov Construction (aka. position automaton, Berry-Sethi)

Input Regexp Q
Output Nondeterministic Automaton A

L(A) = L(Q)
A is small: O(size(Q)) states
A is computed efficiently: O(size(Q)2)

S(R + F)∗G(R + F)∗E

S0(R1 + F2)∗G3(R4 + F5)∗E6

i

S0

R1

G3

R4

E6

F2

F5

S

R

R

R

R

E

R

R

F

F
E

F

F

F

F

G G

Regexps may be transformed into a finite automaton 29

For instance: Glushkov Construction (aka. position automaton, Berry-Sethi)

Input Regexp Q
Output Nondeterministic Automaton A

L(A) = L(Q)
A is small: O(size(Q)) states
A is computed efficiently: O(size(Q)2)

S(R + F)∗G(R + F)∗E

S0(R1 + F2)∗G3(R4 + F5)∗E6

i

S0

R1

G3

R4

E6

F2

F5

S

R

R

R

R

E

R

R

F

F
E

F

F

F

F

G G

Regexps may be transformed into a finite automaton 29

For instance: Glushkov Construction (aka. position automaton, Berry-Sethi)

Input Regexp Q
Output Nondeterministic Automaton A

L(A) = L(Q)
A is small: O(size(Q)) states
A is computed efficiently: O(size(Q)2)

S(R + F)∗G(R + F)∗E

S0(R1 + F2)∗G3(R4 + F5)∗E6

i

S0

R1

G3

R4

E6

F2

F5

S

R

R

R

R

E

R

R

F

F
E

F

F

F

F

G G

A graph is essentially an automaton 30

Exercice: compute the product graph×query

i

S0

R1

G3

R4

E6

F2

F5

S

R

R

R

R

E

R

R

F

F
E

F

F

F

F

G G

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

A graph is essentially an automaton 30

Exercice: compute the product graph×query

i

S0

R1

G3

R4

E6

F2

F5

S

R

R

R

R

E

R

R

F

F
E

F

F

F

F

G G

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Part I: Theoretical foundations

3. RPQ semantics

Computing a finite answer 32

RPQ

Answer

User Graph DBMS

! Infinitely many matches but the user expects finite answer !

A RPQ semantics = a way to interpret RPQs

The semantics defines the correct answer
⇒ The same query has different answers under different semantics

Goal of an RPQ semantics: ensure the answer to be finite, while
remaining meaningful and easy to compute.

Computing a finite answer 32

RPQ

Answer

User Graph DBMS

! Infinitely many matches but the user expects finite answer !

A RPQ semantics = a way to interpret RPQs

The semantics defines the correct answer
⇒ The same query has different answers under different semantics

Goal of an RPQ semantics: ensure the answer to be finite, while
remaining meaningful and easy to compute.

Endpoint semantics (1) 33

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1 → 0 → 2 → 2 → 3 (1,3)
2 → 2 (2,2)
0 → 0 → 2 → 3 → 0 → 3 (0,3)
1 → 0 → 3 (1,3)

Full answer is: {(1, 3), (2, 2), (0, 3)}

Endpoint semantics (1) 33

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1 → 0 → 2 → 2 → 3 (1,3)
2 → 2 (2,2)
0 → 0 → 2 → 3 → 0 → 3 (0,3)
1 → 0 → 3 (1,3)

Full answer is: {(1, 3), (2, 2), (0, 3)}

Endpoint semantics (1) 33

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
11 → 0 → 2 → 2 → 33 (1,3)(1,3)
2 → 2 (2,2)
0 → 0 → 2 → 3 → 0 → 3 (0,3)
1 → 0 → 3 (1,3)

Full answer is: {(1, 3)(1, 3), (2, 2), (0, 3)}

Endpoint semantics (1) 33

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1 → 0 → 2 → 2 → 3 (1,3)
22 → 22 (2,2)(2,2)
0 → 0 → 2 → 3 → 0 → 3 (0,3)
1 → 0 → 3 (1,3)

Full answer is: {(1, 3), (2, 2)(2, 2), (0, 3)}

Endpoint semantics (1) 33

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a set of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1 → 0 → 2 → 2 → 3 (1,3)
2 → 2 (2,2)
00 → 0 → 2 → 3 → 0 → 33 (0,3)(0,3)
1 → 0 → 3 (1,3)

Full answer is: {(1, 3), (2, 2), (0, 3)(0, 3)}

Endpoint semantics (1) 33

Used by SparQL (RDF) and arguably GQL with keyword ANY WALK

Principles

Returns a setset of pairs of vertices (and not walks)
Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints
1 → 0 → 2 → 2 → 3 (1,3)
2 → 2 (2,2)
0 → 0 → 2 → 3 → 0 → 3 (0,3)
11 → 0 → 33 (1,3)(1,3)

Full answer is: {(1, 3)(1, 3), (2, 2), (0, 3)}

Endpoint semantics (2) 34

Evaluating a reachability query

Q11 = GR
∗

Match Endpoints

4 → 4 (4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 3 (4,3)

⋮ ⋮
4 → 4 → 1 → 2

→ 4 → 1 → 2
→ 3 (4,3)

⋮ ⋮

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q11 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 34

Evaluating a reachability query

Q11 = GR
∗

Match Endpoints

4 → 44 → 4 (4,4)(4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 3 (4,3)

⋮ ⋮
4 → 4 → 1 → 2

→ 4 → 1 → 2
→ 3 (4,3)

⋮ ⋮

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q11 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 34

Evaluating a reachability query

Q11 = GR
∗

Match Endpoints

4 → 4 (4,4)
4 → 4 → 14 → 4 → 1 (4,1)(4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 3 (4,3)

⋮ ⋮
4 → 4 → 1 → 2

→ 4 → 1 → 2
→ 3 (4,3)

⋮ ⋮

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q11 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 34

Evaluating a reachability query

Q11 = GR
∗

Match Endpoints

4 → 4 (4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 24 → 4 → 1 → 2 (4,2)(4,2)
4 → 4 → 1 → 2 → 3 (4,3)

⋮ ⋮
4 → 4 → 1 → 2

→ 4 → 1 → 2
→ 3 (4,3)

⋮ ⋮

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q11 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 34

Evaluating a reachability query

Q11 = GR
∗

Match Endpoints

4 → 4 (4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 34 → 4 → 1 → 2 → 3 (4,3)(4,3)

⋮ ⋮
4 → 4 → 1 → 2

→ 4 → 1 → 2
→ 3 (4,3)

⋮ ⋮

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer to Q11 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (2) 34

Evaluating a reachability query

Q11 = GR
∗

Match Endpoints

4 → 4 (4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 3 (4,3)

⋮ ⋮
4 → 4 → 1 → 24 → 4 → 1 → 2

→ 4 → 1 → 2→ 4 → 1 → 2
→ 3→ 3 (4,3)(4,3)

⋮ ⋮

Other matches do not add new
pairs to the answer

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

11
lapslaps

Gas

Start End

Answer to Q11 under endpoint
sem.: {(4, 4), (4, 1), (4, 2), (4, 3)}

Endpoint semantics (3) 35

Pros and cons

Pros

Efficient algorithms
Output is always small
Well grounded theory

Cons

Very limited information in the answer
User: “I want to go from Paris to Lyon by car”
Database: “Yes you can”

Endpoint semantics (3) 35

Pros and cons

Pros

Efficient algorithms
Output is always small
Well grounded theory

Cons

Very limited information in the answer
User: “I want to go from Paris to Lyon by car”
Database: “Yes you can”

Shortest semantics (1) 36

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = least number of edges

Example

Match Endpoints Length
1 → 0 → 2 → 3 (1, 3) 3

Shortest for (1, 3)

1 → 0 → 2 → 2 → 3 (1, 3) 4

Not shortest for (1, 3)

0 → 2 → 2 → 3 (0, 3) 3

Not shortest for (0, 3)

0 → 2 → 3 (0, 3) 2

Tied shortest for (0, 3)

0 → 0 → 3 (0, 3) 2

Tied shortest for (0, 3)

Full answer: {1 → 0 → 2 → 3, 0 → 2 → 3, 0 → 0 → 3}

Shortest semantics (1) 36

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = least number of edges

Example

Match Endpoints Length
1 → 0 → 2 → 3 (1, 3) 3

Shortest for (1, 3)

1 → 0 → 2 → 2 → 3 (1, 3) 4

Not shortest for (1, 3)

0 → 2 → 2 → 3 (0, 3) 3

Not shortest for (0, 3)

0 → 2 → 3 (0, 3) 2

Tied shortest for (0, 3)

0 → 0 → 3 (0, 3) 2

Tied shortest for (0, 3)

Full answer: {1 → 0 → 2 → 3, 0 → 2 → 3, 0 → 0 → 3}

Shortest semantics (1) 36

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = least number of edges

Example

Match Endpoints Length
1 → 0 → 2 → 3 (1, 3)(1, 3) 3

Shortest for (1, 3)

1 → 0 → 2 → 2 → 3 (1, 3)(1, 3) 4

Not shortest for (1, 3)

0 → 2 → 2 → 3 (0, 3) 3

Not shortest for (0, 3)

0 → 2 → 3 (0, 3) 2

Tied shortest for (0, 3)

0 → 0 → 3 (0, 3) 2

Tied shortest for (0, 3)

Full answer: {1 → 0 → 2 → 3, 0 → 2 → 3, 0 → 0 → 3}

Shortest semantics (1) 36

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = least number of edges

Example

Match Endpoints Length
1 → 0 → 2 → 31 → 0 → 2 → 3 (1, 3)(1, 3) 33 Shortest for (1, 3)Shortest for (1, 3)
1 → 0 → 2 → 2 → 31 → 0 → 2 → 2 → 3 (1, 3)(1, 3) 44 Not shortest for (1, 3)Not shortest for (1, 3)
0 → 2 → 2 → 3 (0, 3) 3

Not shortest for (0, 3)

0 → 2 → 3 (0, 3) 2

Tied shortest for (0, 3)

0 → 0 → 3 (0, 3) 2

Tied shortest for (0, 3)

Full answer: {1 → 0 → 2 → 31 → 0 → 2 → 3, 0 → 2 → 3, 0 → 0 → 3}

Shortest semantics (1) 36

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = least number of edges

Example

Match Endpoints Length
1 → 0 → 2 → 3 (1, 3) 3 Shortest for (1, 3)
1 → 0 → 2 → 2 → 3 (1, 3) 4 Not shortest for (1, 3)
0 → 2 → 2 → 3 (0, 3)(0, 3) 3

Not shortest for (0, 3)

0 → 2 → 3 (0, 3)(0, 3) 2

Tied shortest for (0, 3)

0 → 0 → 3 (0, 3)(0, 3) 2

Tied shortest for (0, 3)

Full answer: {1 → 0 → 2 → 3, 0 → 2 → 3, 0 → 0 → 3}

Shortest semantics (1) 36

Used in GSQL (TigerGraph), PGQL (Oracle) and GQL with ALL SHORTEST

Principles

Return walks
For each endpoints (s, t), return the “best” match from s to t
Best = shortest = least number of edges

Example

Match Endpoints Length
1 → 0 → 2 → 3 (1, 3) 3 Shortest for (1, 3)
1 → 0 → 2 → 2 → 3 (1, 3) 4 Not shortest for (1, 3)
0 → 2 → 2 → 30 → 2 → 2 → 3 (0, 3)(0, 3) 33 Not shortest for (0, 3)Not shortest for (0, 3)
0 → 2 → 30 → 2 → 3 (0, 3)(0, 3) 22 Tied shortest for (0, 3)Tied shortest for (0, 3)
0 → 0 → 30 → 0 → 3 (0, 3)(0, 3) 22 Tied shortest for (0, 3)Tied shortest for (0, 3)

Full answer: {1 → 0 → 2 → 3, 0 → 2 → 30 → 2 → 3, 0 → 0 → 30 → 0 → 3}

Shortest semantics (2) 37

Evaluating a reachability query

Q12 = GR
∗

Answer under shortest sem.

Walk Shortest for

4 → 4 (4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 3 (4,3)

Example of discarded match

4 → 4 → 1 → 2 → 4 is not in
the answer because it is longer
than 4 → 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 37

Evaluating a reachability query

Q12 = GR
∗

Answer under shortest sem.

Walk Shortest for

4 → 44 → 4 (4,4)(4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 3 (4,3)

Example of discarded match

4 → 4 → 1 → 2 → 4 is not in
the answer because it is longer
than 4 → 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 37

Evaluating a reachability query

Q12 = GR
∗

Answer under shortest sem.

Walk Shortest for

4 → 4 (4,4)
4 → 4 → 14 → 4 → 1 (4,1)(4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 3 (4,3)

Example of discarded match

4 → 4 → 1 → 2 → 4 is not in
the answer because it is longer
than 4 → 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 37

Evaluating a reachability query

Q12 = GR
∗

Answer under shortest sem.

Walk Shortest for

4 → 4 (4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 24 → 4 → 1 → 2 (4,2)(4,2)
4 → 4 → 1 → 2 → 3 (4,3)

Example of discarded match

4 → 4 → 1 → 2 → 4 is not in
the answer because it is longer
than 4 → 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 37

Evaluating a reachability query

Q12 = GR
∗

Answer under shortest sem.

Walk Shortest for

4 → 4 (4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 34 → 4 → 1 → 2 → 3 (4,3)(4,3)

Example of discarded match

4 → 4 → 1 → 2 → 4 is not in
the answer because it is longer
than 4 → 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (2) 37

Evaluating a reachability query

Q12 = GR
∗

Answer under shortest sem.

Walk Shortest for

4 → 4 (4,4)
4 → 4 → 1 (4,1)
4 → 4 → 1 → 2 (4,2)
4 → 4 → 1 → 2 → 3 (4,3)

Example of discarded match

4 → 4 → 1 → 2 → 44 → 4 → 1 → 2 → 4 is not in
the answer because it is longer
than 4 → 44 → 4

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (3) 38

Exercice: evaluating some queries

Q13 = S(R+F)∗E

Answer to Q13:
?

Q14 = S(R+F)∗G(R+F)∗E

Answer to Q14:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (3) 38

Exercice: evaluating some queries

Q13 = S(R+F)∗E

Answer to Q13:

{ 0 → 0 → 3 → 30 → 0 → 3 → 3 }

Q14 = S(R+F)∗G(R+F)∗E

Answer to Q14:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (3) 38

Exercice: evaluating some queries

Q13 = S(R+F)∗E

Answer to Q13:

{ 0 → 0 → 3 → 3 }

Q14 = S(R+F)∗G(R+F)∗E

Answer to Q14:

{ 0 → 0 → 1 → 2 → 40 → 0 → 1 → 2 → 4
→ 4 → 1 → 2 → 3 → 3→ 4 → 1 → 2 → 3 → 3 }

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Shortest semantics (4) 39

Pros and con

Pros

Returns walks

Efficient algorithms (BFS in the product graph×query)

If there are matches from s to t, at least one of them is in the answer

Cons

The shortest walk is not always the “best”
“Do we always want to take the ferry over the direct road?”
(Real query languages allow to assign costs to edges/atoms)

No vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the average time?”
“What is the connectedness level?”

Shortest semantics (4) 39

Pros and con

Pros

Returns walks

Efficient algorithms (BFS in the product graph×query)

If there are matches from s to t, at least one of them is in the answer

Cons

The shortest walk is not always the “best”
“Do we always want to take the ferry over the direct road?”
(Real query languages allow to assign costs to edges/atoms)

No vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the average time?”
“What is the connectedness level?”

Trail semantics (1) 40

Used by Cypher (Neo4j) and GQL with keyword ALL TRAIL

Principle

Return a set of walks
Apply a filter on the set of matching walks
The filter is: each walk that repeats an edge is filtered out

Examples

Match Decision
1 → 0 → 2 → 2 → 3 No repetition ⇒ Kept in the answer
1 → 0 → 20 → 2 → 3 → 0 → 20 → 2 Repeated edges ⇒ Filtered out

Trail semantics (1) 40

Used by Cypher (Neo4j) and GQL with keyword ALL TRAIL

Principle

Return a set of walks
Apply a filter on the set of matching walks
The filter is: each walk that repeats an edge is filtered out

Examples

Match Decision
1 → 0 → 2 → 2 → 3 No repetition ⇒ Kept in the answer
1 → 0 → 20 → 2 → 3 → 0 → 20 → 2 Repeated edges ⇒ Filtered out

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk

Yes

The straight road

Yes

The road with 1 lap

No

The road with 2 laps

No

⋮

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q15 under trail semantics:

{

0 → 0 → 3 → 3

}

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walkThe ferry walk

Yes

The straight road

Yes

The road with 1 lap

No

The road with 2 laps

No

⋮

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q15 under trail semantics:

{

0 → 0 → 3 → 3

}

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walkThe ferry walk YesYes
The straight road

Yes

The road with 1 lap

No

The road with 2 laps

No

⋮

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q15 under trail semantics:

{ 0 → 0 → 3 → 30 → 0 → 3 → 3 }

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight roadThe straight road

Yes

The road with 1 lap

No

The road with 2 laps

No

⋮

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q15 under trail semantics:

{ 0 → 0 → 3 → 3 }

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight roadThe straight road YesYes
The road with 1 lap

No

The road with 2 laps

No

⋮

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q15 under trail semantics:

{ 0 → 0 → 3 → 3, 0 → 0 → 1 → 2 → 3 → 30 → 0 → 1 → 2 → 3 → 3 }

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lapThe road with 1 lap

No

The road with 2 laps

No

⋮

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q15 under trail semantics:

{ 0 → 0 → 3 → 3, 0 → 0 → 1 → 2 → 3 → 3 }

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lapThe road with 1 lap NoNo
The road with 2 laps

No

⋮

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Answer of Q15 under trail semantics:

{ 0 → 0 → 3 → 3, 0 → 0 → 1 → 2 → 3 → 3 }

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lap No
The road with 2 lapsThe road with 2 laps

No

⋮

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

22
lapslaps

Gas

Start End

Answer of Q15 under trail semantics:

{ 0 → 0 → 3 → 3, 0 → 0 → 1 → 2 → 3 → 3 }

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lap No
The road with 2 lapsThe road with 2 laps NoNo

⋮

No

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

22
lapslaps

Gas

Start End

Answer of Q15 under trail semantics:

{ 0 → 0 → 3 → 3, 0 → 0 → 1 → 2 → 3 → 3 }

Trail semantics (2) 41

Evaluating Q15

Q15 = S(R+F)∗E

Applying the filter

Matches Keep?

The ferry walk Yes
The straight road Yes
The road with 1 lap No
The road with 2 laps No

⋮⋮ NoNo

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

> 2> 2
lapslaps

Gas

Start End

Answer of Q15 under trail semantics:

{ 0 → 0 → 3 → 3, 0 → 0 → 1 → 2 → 3 → 3 }

Trail semantics (3) 42

Exercice: evaluating some queries

Q16 = GR
∗

Answer to Q16:
?

Q17 = S(R+F)∗G(R+F)∗E

Answer to Q17:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 42

Exercice: evaluating some queries

Q16 = GR
∗

Answer to Q16:

{ 4 → 4 ,
4 → 4 → 1 ,
4 → 4 → 1 → 2 ,
4 → 4 → 1 → 2 → 3 ,
4 → 4 → 1 → 2 → 4 }

Q17 = S(R+F)∗G(R+F)∗E

Answer to Q17:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 42

Exercice: evaluating some queries

Q16 = GR
∗

Answer to Q16:

{ 4 → 44 → 4 ,
4 → 4 → 1 ,
4 → 4 → 1 → 2 ,
4 → 4 → 1 → 2 → 3 ,
4 → 4 → 1 → 2 → 4 }

Q17 = S(R+F)∗G(R+F)∗E

Answer to Q17:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 42

Exercice: evaluating some queries

Q16 = GR
∗

Answer to Q16:

{ 4 → 4 ,
4 → 4 → 14 → 4 → 1 ,
4 → 4 → 1 → 2 ,
4 → 4 → 1 → 2 → 3 ,
4 → 4 → 1 → 2 → 4 }

Q17 = S(R+F)∗G(R+F)∗E

Answer to Q17:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 42

Exercice: evaluating some queries

Q16 = GR
∗

Answer to Q16:

{ 4 → 4 ,
4 → 4 → 1 ,
4 → 4 → 1 → 24 → 4 → 1 → 2 ,
4 → 4 → 1 → 2 → 3 ,
4 → 4 → 1 → 2 → 4 }

Q17 = S(R+F)∗G(R+F)∗E

Answer to Q17:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 42

Exercice: evaluating some queries

Q16 = GR
∗

Answer to Q16:

{ 4 → 4 ,
4 → 4 → 1 ,
4 → 4 → 1 → 2 ,
4 → 4 → 1 → 2 → 34 → 4 → 1 → 2 → 3 ,
4 → 4 → 1 → 2 → 4 }

Q17 = S(R+F)∗G(R+F)∗E

Answer to Q17:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 42

Exercice: evaluating some queries

Q16 = GR
∗

Answer to Q16:

{ 4 → 4 ,
4 → 4 → 1 ,
4 → 4 → 1 → 2 ,
4 → 4 → 1 → 2 → 3 ,
4 → 4 → 1 → 2 → 44 → 4 → 1 → 2 → 4 }

Q17 = S(R+F)∗G(R+F)∗E

Answer to Q17:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 42

Exercice: evaluating some queries

Q16 = GR
∗

Answer to Q16:

{ 4 → 4 ,
4 → 4 → 1 ,
4 → 4 → 1 → 2 ,
4 → 4 → 1 → 2 → 3 ,
4 → 4 → 1 → 2 → 4 }

Q17 = S(R+F)∗G(R+F)∗E

Answer to Q17:
?

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (3) 42

Exercice: evaluating some queries

Q16 = GR
∗

Answer to Q16:

{ 4 → 4 ,
4 → 4 → 1 ,
4 → 4 → 1 → 2 ,
4 → 4 → 1 → 2 → 3 ,
4 → 4 → 1 → 2 → 4 }

Q17 = S(R+F)∗G(R+F)∗E

Answer to Q17:
∅∅

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Trail semantics (4) 43

Pros and cons

Pros

Returns walks

Easy to explain

Enable vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the average time?”
“What is the connectedness level?”

Cons

Inefficient in bad cases.
Ex: checking whether R

∗
GR

∗
returns anything is NP-hard

“No repeated edge” is a filter that is sometimes counterintuitive
Ex: S(R+F)∗G(R+F)∗E had matches but the answer is empty

Trail semantics (4) 43

Pros and cons

Pros

Returns walks

Easy to explain

Enable vertical post-processing
Vertical = accross the walks with the same endpoints
“What is the average time?”
“What is the connectedness level?”

Cons

Inefficient in bad cases.
Ex: checking whether R

∗
GR

∗
returns anything is NP-hard

“No repeated edge” is a filter that is sometimes counterintuitive
Ex: S(R+F)∗G(R+F)∗E had matches but the answer is empty

Computing a finite answer 44

RPQ

Answer

User Graph DBMS

! Infinitely many matches but the user expects finite answer !

Endpoint → Filters out all navigational information
Shortest → No vertical postprocessing and arbitrary metrics
Trail → Inefficient and sometimes discard meaningful matches

⟹ No RPQ semantics is clearly superior

SQL

GQL

SQL/PGQ

Cypher

Regular

Path

Queries

CRPQs

U
C
R
P
Q
s

2R
P
Q
s

ECR
PQs

⋯SparQL

PGQL

GSQL G-Core

Academia

SPARQL and most academic work on RPQs use endpoint semantics
Cypher uses trail semantics
GSQL, PGQL and G-Core uses shortest semantics (and variants)
GQL and SQL/PGQ allow to switch between many RPQ semantics

Part I: Theoretical foundations

4. Extensions to RPQs

Two user requests 47

Consider the graph with
clients (A,B)
orders (#1,#2,#3)
products (△,□,⋆)

Write two queries to extract

1 Products that were ordered
twice (that is ⭐ and □).

2 Triples (x , y , z) such that x
ordered y and z in the
same order. Ex: (A,△,□).

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

! Both are impossible with RPQs !

Two user requests 47

Consider the graph with
clients (A,B)
orders (#1,#2,#3)
products (△,□,⋆)

Write two queries to extract

1 Products that were ordered
twice (that is ⭐ and □).

2 Triples (x , y , z) such that x
ordered y and z in the
same order. Ex: (A,△,□).

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

! Both are impossible with RPQs !

Two user requests 47

Consider the graph with
clients (A,B)
orders (#1,#2,#3)
products (△,□,⋆)

Write two queries to extract

1 Products that were ordered
twice (that is ⭐ and □).

2 Triples (x , y , z) such that x
ordered y and z in the
same order. Ex: (A,△,□).

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

! Both are impossible with RPQs !

The four ways to build a regexp 48

Atoms

Each letter is a regexp
ε is a regexp

Ex: ε, R and F are regexps

Concatenation ⋅

If Q1 and Q2 are regexps
Then Q1 ⋅ Q2 is a regexp

Ex: R ⋅ R and G ⋅ F are regexps
(R ⋅ R) ⋅ (G ⋅ F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R+R and G+F are regexps
(R ⋅R)+ (G ⋅ F) is a regexp

Kleene star
∗

If Q is a regexp
Then Q

∗
is a regexp

Ex: R
∗
and G

∗
are regexps

((R∗⋅) + F)∗ is a regexp

The four ways to build a 2-way2-way regexp 48

Atoms

Each forward or backwardforward or backward
letter is a regexp
ε is a regexp

Ex: ε, R, RR, GG and F are regexps

Concatenation ⋅

If Q1 and Q2 are regexps
Then Q1 ⋅ Q2 is a regexp

Ex: R ⋅ R and G ⋅ F are regexps
(R ⋅ R) ⋅ (G ⋅ F)(R ⋅ R) ⋅ (G ⋅ F) is a regexp

Disjunction +

If Q1 and Q2 are regexps
Then Q1 + Q2 is a regexp

Ex: R + RR + R and G+F are regexps
(R ⋅R)+ (G ⋅ F) is a regexp

Kleene star
∗

If Q is a regexp
Then Q

∗
is a regexp

Ex: R
∗
and G

∗
are regexps

((R∗ ⋅ GG + F)∗((R∗ ⋅ GG + F)∗ is a regexp

2RPQ for request 1 49

Write a 2RPQ to ”extract”

1 Products that were ordered
twice (that is ⭐ and □).

Answer: Q18 = C ⋅ C

Walks and matches now may
contain backward edges

Matches to Q18:

#1 → □ ← #2, #3 → ⭐ ← #2

#1 → △ ← #1, etc.

Trail forbids using the same
edge backward and forward

Under trail, Q18 returns walks with

⭐ and □ as the middle vertex.

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

2RPQ for request 1 49

Write a 2RPQ to ”extract”

1 Products that were ordered
twice (that is ⭐ and □).

Answer: Q18 = C ⋅ C

Walks and matches now may
contain backward edges

Matches to Q18:

#1 → □ ← #2, #3 → ⭐ ← #2

#1 → △ ← #1, etc.

Trail forbids using the same
edge backward and forward

Under trail, Q18 returns walks with

⭐ and □ as the middle vertex.

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

2RPQ for request 1 49

Write a 2RPQ to ”extract”

1 Products that were ordered
twice (that is ⭐ and □).

Answer: Q18 = C ⋅ C

Walks and matches now may
contain backward edges

Matches to Q18:

#1 → □ ← #2, #3 → ⭐ ← #2

#1 → △ ← #1, etc.

Trail forbids using the same
edge backward and forward

Under trail, Q18 returns walks with

⭐ and □ as the middle vertex.

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

2RPQ for request 1 49

Write a 2RPQ to ”extract”

1 Products that were ordered
twice (that is ⭐ and □).

Answer: Q18 = C ⋅ C

Walks and matches now may
contain backward edges

Matches to Q18:

#1 → □ ← #2, #3 → ⭐ ← #2

#1 → △ ← #1, etc.

Trail forbids using the same
edge backward and forward

Under trail, Q18 returns walks with

⭐ and □ as the middle vertex.

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

2RPQ for request 2 50

Write a 2RPQ to extract

2 Triples (x , y , z) such that x
ordered y and z in the
same order. Ex: (A,△,□).

! Still impossible !

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

2RPQ for request 2 50

Write a 2RPQ to extract

2 Triples (x , y , z) such that x
ordered y and z in the
same order. Ex: (A,△,□).

! Still impossible !

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

Conjunction of Regular Path Queries (CRPQs) 51

Definition

CRPQ = graph pattern matching
that is, a graph where each edge bears an RPQ

Use-case 1: cycles

R
∗

F

Use-case 2:
Multi-way

R
∗

F

Use-case 3: Cross

R
∗

R
∗

R
∗

R
∗

Conjunction of Regular Path Queries (CRPQs) 51

Definition

CRPQ = graph pattern matching
that is, a graph where each edge bears an RPQ

Use-case 1: cycles

R
∗

F

Use-case 2:
Multi-way

R
∗

F

Use-case 3: Cross

R
∗

R
∗

R
∗

R
∗

Conjunction of Regular Path Queries (CRPQs) 51

Definition

CRPQ = graph pattern matching
that is, a graph where each edge bears an RPQ

Use-case 1: cycles

R
∗

F

Use-case 2:
Multi-way

R
∗

F

Use-case 3: Cross

R
∗

R
∗

R
∗

R
∗

Conjunction of Regular Path Queries (CRPQs) 51

Definition

CRPQ = graph pattern matching
that is, a graph where each edge bears an RPQ

Use-case 1: cycles

R
∗

F

Use-case 2:
Multi-way

R
∗

F

Use-case 3: Cross

R
∗

R
∗

R
∗

R
∗

Matches to CRPQs 52

Definition

A match in graph G to a CRPQ Q consists of
a map: Vertex(Q) → Vertex(G)
a map: Edge(Q) → Walks(G)

Query:

R
∗

F

A match: 0 3

0
R
−→ 1

R
−→ 2

R
−→ 3

0
F
−→ 3

0 1 2 3

4

Road Road

R
oa
dR

oad

Road

Ferry

Gas

Start End

Evaluating CRPQs 53

Endpoint semantics

Return the vertex map only

Shortest semantics

Two possibilities

Shortest for each RPQ
Ex: GQL, Tigergraph, etc.

Return the global minimum
Ex: None?

Trail semantics

Two possibilities:

No edge repetition for each
RPQ
Ex: GQL

No edge repetition overall
Ex: Cypher, GQL

Evaluating CRPQs 53

Endpoint semantics

Return the vertex map only

Shortest semantics

Two possibilities

Shortest for each RPQ
Ex: GQL, Tigergraph, etc.

Return the global minimum
Ex: None?

Trail semantics

Two possibilities:

No edge repetition for each
RPQ
Ex: GQL

No edge repetition overall
Ex: Cypher, GQL

CRPQ for request 2 54

Write a 2RPQ to extract

2 Triples (x , y , z) such that x
ordered y and z in the
same order. Ex: (A,△,□).

Answer:
x

y z

O

C

C

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

Which semantics?

CRPQ for request 2 54

Write a 2RPQ to extract

2 Triples (x , y , z) such that x
ordered y and z in the
same order. Ex: (A,△,□).

Answer:
x

y z

O

C

C

A

#1

△

#2

⭐□

#3B

Ordered

Contains

Ordered

Ordered

Contains

Contains

Contains

Which semantics?

Part II: Property Graphs

Part II: Property Graphs

1. Data model

Components of a property graph 57

A node (≈vertex) encodes a
complex values.
It bears labels for grouping.

Ex: t carries Teacher, Person
c carries Course

A Relation (≈edge) connects
nodes.
It bears one type (≈label) pro-
vides the nature of the relation.

Ex: e = t
TEACHES
−−−−−→ c

A property describes an aspect
of a node or an relation
It maps

a key (described aspect)
to a pure value (description)

Ex: t has name: "Victor"
e has since: 2023

A pure value (int, string,
...) contains all the information
about itself.

Ex: "Victor" has 6 letters

Components of a property graph 57

A node (≈vertex) encodes a
complex values.
It bears labels for grouping.

Ex: t carries Teacher, Person
c carries Course

A Relation (≈edge) connects
nodes.
It bears one type (≈label) pro-
vides the nature of the relation.

Ex: e = t
TEACHES
−−−−−→ c

A property describes an aspect
of a node or an relation
It maps

a key (described aspect)
to a pure value (description)

Ex: t has name: "Victor"
e has since: 2023

A pure value (int, string,
...) contains all the information
about itself.

Ex: "Victor" has 6 letters

Components of a property graph 57

A node (≈vertex) encodes a
complex values.
It bears labels for grouping.

Ex: t carries Teacher, Person
c carries Course

A Relation (≈edge) connects
nodes.
It bears one type (≈label) pro-
vides the nature of the relation.

Ex: e = t
TEACHES
−−−−−→ c

A property describes an aspect
of a node or an relation
It maps

a key (described aspect)
to a pure value (description)

Ex: t has name: "Victor"
e has since: 2023

A pure value (int, string,
...) contains all the information
about itself.

Ex: "Victor" has 6 letters

First example of a property graph 58

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Nodes : N1,N2,⋯,N5

Relations : r1, r2,⋯, r7

Types: FOLLOWS, POSTED,
ANSWERS

Labels: User, Admin,
Message

Properties, that is
Key-Value pairs:

name: "Alice"
id: 22
text: "Hello"

etc.

First example of a property graph 58

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Nodes : N1,N2,⋯,N5

Relations : r1, r2,⋯, r7

Types: FOLLOWS, POSTED,
ANSWERS

Labels: User, Admin,
Message

Properties, that is
Key-Value pairs:

name: "Alice"
id: 22
text: "Hello"

etc.

First example of a property graph 58

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Nodes : N1,N2,⋯,N5

Relations : r1, r2,⋯, r7

TypesTypes: FOLLOWS, POSTED,
ANSWERS

Labels: User, Admin,
Message

Properties, that is
Key-Value pairs:

name: "Alice"
id: 22
text: "Hello"

etc.

First example of a property graph 58

N1

UserUser

name: "Alice"

N2

UserUser

name: "Bob"

N3

UserUser , AdminAdmin

name: "Charlie"

N4

MessageMessage

id: 22
text: "Hello"

N5

MessageMessage

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Nodes : N1,N2,⋯,N5

Relations : r1, r2,⋯, r7

Types: FOLLOWS, POSTED,
ANSWERS

LabelsLabels: User, Admin,
Message

Properties, that is
Key-Value pairs:

name: "Alice"
id: 22
text: "Hello"

etc.

First example of a property graph 58

N1

User

name: "Alice"name: "Alice"

N2

User

name: "Bob"name: "Bob"

N3

User , Admin

name: "Charlie"name: "Charlie"

N4

Message

id: 22id: 22
text: "Hello"text: "Hello"

N5

Message

id: 25id: 25
text: "World"text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"on: "05-14"
r6

POSTED

on: "05-15"on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Nodes : N1,N2,⋯,N5

Relations : r1, r2,⋯, r7

Types: FOLLOWS, POSTED,
ANSWERS

Labels: User, Admin,
Message

PropertiesProperties, that is
Key-Value pairs:

name: "Alice"
id: 22
text: "Hello"

etc.

Second example of a property graph 59

0 1 2 3

4

City, Start
name: "Paris"

City, End
name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

length: 1

ROAD

length: 12

FERRY, length: 30, max speed: 60

Property graphs are very flexible 60

0 1 2 3

4

City, Start
name: "Paris"

City, End
name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

length: 1

ROAD

length: 12

FERRY, length: 30, max speed: 60

Relations with the same type may have different property keys

Nodes may have any number of labels and property keys

Third example of a property graph 61

Exercice: What’s wrong with this property graph ? Fix it !

0 1 2 3

Publication

title: "Graphs!"
author: "Victor Marsault"

year: "2022"
journal id: 2856

Publication

title: "More Graphs!"

author: "Marsault, V. and Curé, O."

year: "2023"
journal id: 1731

Publication

title: "Graphs!"
author: "V. Marsault"

journal id: 2856

Publication

title: "More Graphs!"

author: "V. Marsault, O. Curé"

year: "2024"
journal id: 2856

CITE

CITE

CITE

Part II: Property Graphs

2. Translations: Graphs ↔ Tables

Translation: Graph to Tables (1) 63

Can a graph be stored in tables?

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 63

Example – One Vertex table with one row per vertex in the graph

VertexVertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 63

Example – One table for each different label in the graph

Vertex

idid

0
1
2
3
4

RoadRoad

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

FerryFerry

#srcsrc #tgttgt

0 3

GasGas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 63

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 63

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 63

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 63

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 63

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 63

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (1) 63

Example – For each edge (i , ℓ, j) in the graph add row (i , j) in table ℓ

Vertex

idid

0
1
2
3
4

Road

#srcsrc #tgttgt

0 1
1 2
2 3
2 4
4 1

Ferry

#srcsrc #tgttgt

0 3

Gas

#srcsrc #tgttgt

4 4

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Translation: Graph to Tables (2) 64

Principles of the translation

We start from a graph (V , L,E)
Since V is finite we may enumerate it: V = {v1, . . . , vn}

One table for vertices

Vertex

idid

0
1
⋮
n

One table per label ℓ in L

ℓ

#srcsrc #tgttgt

⋮ ⋮
i j
⋮ ⋮

Table ℓ contains (i , j)
⟺ (vi , ℓ, vj) ∈ E

Exercice: Storing graph 1 in tables 65

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Node Relation
id id #src #tgt
1 1 1 2
2 2 2 1
⋮ ⋮ ⋮ ⋮

Posted Message
#eideid #vidvid
5 4
6 5

On Id
#eideid val #vidvid val
5 "05-14" 4 22
6 "05-15" 5 25

Exercice: Storing graph 1 in tables 65

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Node Relation
id id #src #tgt
1 1 1 2
2 2 2 1
⋮ ⋮ ⋮ ⋮

Posted Message
#eideid #vidvid
5 4
6 5

On Id
#eideid val #vidvid val
5 "05-14" 4 22
6 "05-15" 5 25

Exercice: Storing graph 1 in tables 65

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Node Relation
id id #src #tgt
1 1 1 2
2 2 2 1
⋮ ⋮ ⋮ ⋮

Posted Message
#eideid #vidvid
5 4
6 5

On Id
#eideid val #vidvid val
5 "05-14" 4 22
6 "05-15" 5 25

Why so many tables?Why so many tables? 65

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Node Relation
id id #src #tgt
1 1 1 2
2 2 2 1
⋮ ⋮ ⋮ ⋮

Posted Message
#eideid #vidvid
5 4
6 5

On Id
#eideid val #vidvid val
5 "05-14" 4 22
6 "05-15" 5 25

Translation: Tables to Graph (1) 66

A relational database that we want to encode in a graph

Client

loginlogin address

"Alice" "Wonderland"

"Bob" "124 Conch St."

"Eve" null

Order

idid #buyer date

0 "Alice" 01-11-1865
1 "Bob" 07-07-2022
2 "Bob" 07-11-2023

→Client.login

Product

namename price

"Watch" 42
"Rabbit" 0
"Pants" 8
"Broom&Bucket" 4

Contains

#orderorder #productproduct quant

0 "Rabbit" 1
0 "Watch" 1
1 "Pants" 7
2 "Pants" 14

→Order.id →Product.name

: part of primary key

: foreign keys

Translation: Tables to Graph (1) 66

A relational database that we want to encode in a graph

Client

loginlogin address

"Alice" "Wonderland"

"Bob" "124 Conch St."

"Eve" null

Order

idid #buyer date

0 "Alice" 01-11-1865
1 "Bob" 07-07-2022
2 "Bob" 07-11-2023

→Client.login

Product

namename price

"Watch" 42
"Rabbit" 0
"Pants" 8
"Broom&Bucket" 4

Contains

#orderorder #productproduct quant

0 "Rabbit" 1
0 "Watch" 1
1 "Pants" 7
2 "Pants" 14

→Order.id →Product.name

: part of primary key
#

:

foreign keys

Translation: Tables to Graph (1) 66

A relational database that we want to encode in a graph

Client

loginlogin address

"Alice" "Wonderland"

"Bob" "124 Conch St."

"Eve" null

Order

idid #buyer date

0 "Alice" 01-11-1865
1 "Bob" 07-07-2022
2 "Bob" 07-11-2023

→Client.login

Product

namename price

"Watch" 42
"Rabbit" 0
"Pants" 8
"Broom&Bucket" 4

Contains

#orderorder #productproduct quant

0 "Rabbit" 1
0 "Watch" 1
1 "Pants" 7
2 "Pants" 14

→Order.id →Product.name

: part of primary key
: foreign keys

Translation: Tables to Graph (1) 66

A relational database that we want to encode in a graph

Client

loginlogin address

"Alice" "Wonderland"

"Bob" "124 Conch St."

"Eve" null

Order

idid #buyer date

0 "Alice" 01-11-1865
1 "Bob" 07-07-2022
2 "Bob" 07-11-2023

→Client.login

Product

namename price

"Watch" 42
"Rabbit" 0
"Pants" 8
"Broom&Bucket" 4

Contains

#orderorder #productproduct quant

0 "Rabbit" 1
0 "Watch" 1
1 "Pants" 7
2 "Pants" 14

→Order.id →Product.name

: part of primary key
: foreign keys

Exercice: Translate these to a graph!Exercice: Translate these to a graph!

Translation: Tables to Graph (2) 67

Condition for the translation to be possible

Relational DB consists of tables T1, . . . ,Tk .

Each table Ti

has a primary key, consisting of several columns
has columns that are foreign keys

! Foreign keys can be part of the primary key.

Conditions for the database to be encodable in a graph

Each table Ti satisfies one of the following.
0 Zero foreign key is part of the primary key of Ti .
1 One foreign key is part of the primary key of Ti .
2 Two foreign keys are part of the primary key of Ti .

Translation: Tables to Graph (3) 68

Condition for the translation to be possible

Relational DB consists of tables T1, . . . ,Tk .

Each table Ti

has a primary key, consisting of several columns
has columns that are foreign keys

! Foreign keys can be part of the primary key.

Conditions for the database to be encodable in a graph

Each table Ti satisfies one of the following.
0 Zero foreign key is part of the primary key of Ti .
1 One foreign key is part of the primary key of Ti .
2 Two foreign keys are part of the primary key of Ti .

Translation: Tables to Graph (4) 69

A relational database that we want to encode in a graph

Client

loginlogin address

"Alice" "Wonderland"

"Bob" "124 Conch St."

"Eve" null

Order

idid #buyer date

0 "Alice" 01-11-1865
1 "Bob" 07-07-2022
2 "Bob" 07-11-2023

→Client.login

Product

namename price

"Watch" 42
"Rabbit" 0
"Pants" 8
"Broom&Bucket" 4

Contains

#orderorder #productproduct quant

0 "Rabbit" 1
0 "Watch" 1
1 "Pants" 7
2 "Pants" 14

→Order.id →Product.name

: part of primary key
: foreign keys

Client, Product and Order satisfy 0

Contains satisfies 2

Translation: Tables to Graph (5) 70

One vertex per row in table satisfying 0 or 1

Client
row 1

Client
row 2

Client
row 3

Order
row 1

Order
row 2

Order
row 3

Product
row 1

Product
row 2

Product
row 3

Product
row 4

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Translation: Tables to Graph (5) 70

One edge per row and per foreign-key column in each table satisfying 0 or 1

Client
row 1

Client
row 2

Client
row 3

Order
row 1

Order
row 2

Order
row 3

Product
row 1

Product
row 2

Product
row 3

Product
row 4

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Translation: Tables to Graph (5) 70

One edge per row of tables satisfying 2

Client
row 1

Client
row 2

Client
row 3

Order
row 1

Order
row 2

Order
row 3

Product
row 1

Product
row 2

Product
row 3

Product
row 4

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Translation: Tables to Graph (5) 70

Then, we add properties

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Client

name: "Alice"
address: "Wonderland"

Client

name: "Bob"
address: "..."

Client

name: "Eve"

Order

id: 0
date: 01-11-1865

⋯

⋯

Product

name: "Watch"
price: 42

Product

name: "Rabbit"
price: 0

Product

name: "Pants"
price: 8

Product

name: "..."
price: 4

Buyer

Buyer

Buyer

Contains

quant: 1

Contains

quant: 1

Contains

quant: 7

Contains

quant: 14

Translation: Tables to Graph (5) 70

Then, we add properties

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Client

name: "Alice"
address: "Wonderland"

Client

name: "Bob"
address: "..."

Client

name: "Eve"

Order

id: 0
date: 01-11-1865

⋯

⋯

Product

name: "Watch"
price: 42

Product

name: "Rabbit"
price: 0

Product

name: "Pants"
price: 8

Product

name: "..."
price: 4

Buyer

Buyer

Buyer

Contains

quant: 1

Contains

quant: 1

Contains

quant: 7

Contains

quant: 14

Translation: Tables to Graph (5) 70

Then, we add properties

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Client

name: "Alice"
address: "Wonderland"

Client

name: "Bob"
address: "..."

Client

name: "Eve"

Order

id: 0
date: 01-11-1865

⋯

⋯

Product

name: "Watch"
price: 42

Product

name: "Rabbit"
price: 0

Product

name: "Pants"
price: 8

Product

name: "..."
price: 4

Buyer

Buyer

Buyer

Contains

quant: 1

Contains

quant: 1

Contains

quant: 7

Contains

quant: 14

Translation: Tables to Graph (5) 70

Then, we add properties

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Client

name: "Alice"
address: "Wonderland"

Client

name: "Bob"
address: "..."

Client

name: "Eve"

Order

id: 0
date: 01-11-1865

⋯

⋯

Product

name: "Watch"
price: 42

Product

name: "Rabbit"
price: 0

Product

name: "Pants"
price: 8

Product

name: "..."
price: 4

Buyer

Buyer

Buyer

Contains

quant: 1

Contains

quant: 1

Contains

quant: 7

Contains

quant: 14

Translation: Tables to Graph (5) 70

Then, we add properties

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Client

name: "Alice"
address: "Wonderland"

Client

name: "Bob"
address: "..."

Client

name: "Eve"

Order

id: 0
date: 01-11-1865

⋯

⋯

Product

name: "Watch"
price: 42

Product

name: "Rabbit"
price: 0

Product

name: "Pants"
price: 8

Product

name: "..."
price: 4

Buyer

Buyer

Buyer

Contains

quant: 1

Contains

quant: 1

Contains

quant: 7

Contains

quant: 14

Translation: Tables to Graph (5) 70

Then, we add properties

Buyer

Buyer

Buyer

Contains

Contains

Contains

Co
nta

ins

Client

name: "Alice"
address: "Wonderland"

Client

name: "Bob"
address: "..."

Client

name: "Eve"

Order

id: 0
date: 01-11-1865

⋯

⋯

Product

name: "Watch"
price: 42

Product

name: "Rabbit"
price: 0

Product

name: "Pants"
price: 8

Product

name: "..."
price: 4

Buyer

Buyer

Buyer

Contains

quant: 1

Contains

quant: 1

Contains

quant: 7

Contains

quant: 14

Translation: Tables to Graph (6) 71

Takeway

Conditions for the database to be encodable in a graph

Each table Ti satisfies one of the following.
0 Zero foreign key is part of the primary key of Ti .
1 One foreign key is part of the primary key of Ti .
2 Two foreign keys are part of the primary key of Ti .

3 Three foreign keys are part of the primary key of Ti ⟹ Trouble

Trouble

#person1person1 #person2person2 #person3person3

Alice Bob Eve
⋮ ⋮ ⋮ Alice

Bob

Eve

T
rouble

Translation: Tables to Graph (6) 71

Takeway

Conditions for the database to be encodable in a graph

Each table Ti satisfies one of the following.
0 Zero foreign key is part of the primary key of Ti .
1 One foreign key is part of the primary key of Ti .
2 Two foreign keys are part of the primary key of Ti .

3 Three foreign keys are part of the primary key of Ti ⟹ Trouble

Trouble

#person1person1 #person2person2 #person3person3

Alice Bob Eve
⋮ ⋮ ⋮ Alice

Bob

Eve

T
rouble

Encoding non-binary relations in graphs (1) 72

Question: how would you do it?

Trouble

#pers1pers1 #pers2pers2 #pers3pers3

Alice Bob Eve
Alice Carl Dave

Encoding non-binary relations in graphs (2) 73

The wrong way: adding more edges

Trouble

#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Let us try to add two edges per
row of table Trouble.

! (Alice, Carl, Eve) is not a
row of table Trouble

Alice

Bob

Eve

Row
1

Carl

Dave

Ro
w
2

N
ot

a
row

Encoding non-binary relations in graphs (2) 73

The wrong way: adding more edges

Trouble

#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Let us try to add two edges per
row of table Trouble.

! (Alice, Carl, Eve) is not a
row of table Trouble

Alice

Bob

Eve

Row
1

Carl

Dave Ro
w
2

N
ot

a
row

Encoding non-binary relations in graphs (2) 73

The wrong way: adding more edges

Trouble

#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Let us try to add two edges per
row of table Trouble.

! (Alice, Carl, Eve) is not a
row of table Trouble

Alice

Bob

Eve

Row
1

Carl

Dave

Ro
w
2

N
ot

a
row

Encoding non-binary relations in graphs (3) 74

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouble

#pers1pers1 #pers2pers2 #pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

Encoding non-binary relations in graphs (3) 74

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouble

#pers1pers1 #pers2pers2 #pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

Encoding non-binary relations in graphs (3) 74

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouble

#pers1pers1 #pers2pers2 #pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

Encoding non-binary relations in graphs (3) 74

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouble

#pers1pers1#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

Encoding non-binary relations in graphs (3) 74

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouble

#pers1pers1#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

Encoding non-binary relations in graphs (3) 74

The right way : Reification

Reification
Literally, make into an object
For us, transform into a vertex

Trouble

#pers1pers1#pers1pers1 #pers2pers2#pers2pers2 #pers3pers3#pers3pers3

Alice Bob Eve
Alice Carl Dave

Alice

Bob

Eve

Dave

Carl

Row 1

Row
2

Row 1

Person1

Person2

Person3

Row 2

Person1

Person2

Person3

Encoding non-binary relations in graphs (4) 75

Reification is no miracle solution

Reification works...

Reversible (one may reconstruct the Trouble table)

Easy to generalize to any arity

...but, it is contrary to the spirit of graphs:

The graph requires extra knowledge and maintenance:
Special vertices/edges/labels
Implicitly linked labels/edges (Person1/Person2/Person3)
Integrity constraints

Query languages for graphs are based on walks, reification is funda-
mentally branching

Part II: Property Graphs

3. Storage matters

Elementary operations on graphs 77

Edge test

Given s, ℓ, t, does s
ℓ
−→ t exist?

Ex: Is there an edge 0
Road
−−−→ 4 ?

Answer: no

Successor

Given s, ℓ, compute all t such

that s
ℓ
−→ t exists.

Ex: Which nodes are reachable
from 2 by a Road edge.

Answer: 3 and 4.

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Elementary operations on graphs 77

Edge test

Given s, ℓ, t, does s
ℓ
−→ t exist?

Ex: Is there an edge 0
Road
−−−→ 4 ?

Answer: no

Successor

Given s, ℓ, compute all t such

that s
ℓ
−→ t exists.

Ex: Which nodes are reachable
from 2 by a Road edge.

Answer: 3 and 4.

0 1 2 3

4

Road Road

R
oa
dR
oad

Road

Ferry

Gas

Start End

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1:

[2] [] []

2:

[3,4] [] []

3:

[] [] []

4:

[2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(#Successors)

Successors:

O(#Successors)

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1:

[2] [] []

2:

[3,4] [] []

3:

[] [] []

4:

[2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(#Successors)

Successors:

O(#Successors)

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1:

[2] [] []

2:

[3,4] [] []

3:

[] [] []

4:

[2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(#Successors)

Successors:

O(#Successors)

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1: [2] [] []
2:

[3,4] [] []

3:

[] [] []

4:

[2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(#Successors)

Successors:

O(#Successors)

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1: [2] [] []
2: [3,4] [] []
3:

[] [] []

4:

[2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(#Successors)

Successors:

O(#Successors)

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1: [2] [] []
2: [3,4] [] []
3: [] [] []
4:

[2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(#Successors)

Successors:

O(#Successors)

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1: [2] [] []
2: [3,4] [] []
3: [] [] []
4: [2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(#Successors)

Successors:

O(#Successors)

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1: [2] [] []
2: [3,4] [] []
3: [] [] []
4: [2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(#Successors)

Successors:

O(#Successors)

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1: [2] [] []
2: [3,4] [] []
3: [] [] []
4: [2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test: O(#Successors)
Successors:

O(#Successors)

Storing adjacency lists (”Native graph storage”, ex: Neo4j) 78

A memory zone for each
vertex and edge

Each edge stores refs to
source, label, target

Each vertex stores refs to
adjacent edges
(usually indexed by label)

Road Ferry Gas

0: [1] [3] []
1: [2] [] []
2: [3,4] [] []
3: [] [] []
4: [2] [] [4]

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test: O(#Successors)
Successors: O(#Successors)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label

One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 0 0 0

0 1 2 3 4

Ferry

0 0 0 0 1 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

0 1 2 3 4

Gas

0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 1

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(1)

Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label

One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 0 0 0

0 1 2 3 4

Ferry

0 0 0 0 1 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

0 1 2 3 4

Gas

0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 1

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(1)

Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0

0 1 0 0 0

1

0 0 1 0 0

2

0 0 0 1 1

3

0 0 0 0 0

4

0 1 0 0 0

0 1 2 3 4

Ferry

0

0 0 0 1 0

1

0 0 0 0 0

2

0 0 0 0 0

3

0 0 0 0 0

4

0 0 0 0 0

0 1 2 3 4

Gas

0

0 0 0 0 0

1

0 0 0 0 0

2

0 0 0 0 0

3

0 0 0 0 0

4

0 0 0 0 1

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(1)

Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 00

1 0 0 0

1

0 0 1 0 0

2

0 0 0 1 1

3

0 0 0 0 0

4

0 1 0 0 0

0 1 2 3 4

Ferry

0

0 0 0 1 0

1

0 0 0 0 0

2

0 0 0 0 0

3

0 0 0 0 0

4

0 0 0 0 0

0 1 2 3 4

Gas

0

0 0 0 0 0

1

0 0 0 0 0

2

0 0 0 0 0

3

0 0 0 0 0

4

0 0 0 0 1

0 1 2 3 4

No edge 0
Road
−−−→ 0

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(1)

Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 11

0 0 0

1

0 0 1 0 0

2

0 0 0 1 1

3

0 0 0 0 0

4

0 1 0 0 0

0 1 2 3 4

Ferry

0

0 0 0 1 0

1

0 0 0 0 0

2

0 0 0 0 0

3

0 0 0 0 0

4

0 0 0 0 0

0 1 2 3 4

Gas

0

0 0 0 0 0

1

0 0 0 0 0

2

0 0 0 0 0

3

0 0 0 0 0

4

0 0 0 0 1

0 1 2 3 4

There is an edge 0
Road
−−−→ 1

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(1)

Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 0 0 0

0 1 2 3 4

Ferry

0

0 0 0 1 0

1

0 0 0 0 0

2

0 0 0 0 0

3

0 0 0 0 0

4

0 0 0 0 0

0 1 2 3 4

Gas

0

0 0 0 0 0

1

0 0 0 0 0

2

0 0 0 0 0

3

0 0 0 0 0

4

0 0 0 0 1

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(1)

Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 0 0 0

0 1 2 3 4

Ferry

0 0 0 0 11 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

0 1 2 3 4

Gas

0

0 0 0 0 0

1

0 0 0 0 0

2

0 0 0 0 0

3

0 0 0 0 0

4

0 0 0 0 1

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(1)

Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 0 0 0

0 1 2 3 4

Ferry

0 0 0 0 1 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

0 1 2 3 4

Gas

0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 11

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(1)

Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 0 0 0

0 1 2 3 4

Ferry

0 0 0 0 1 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

0 1 2 3 4

Gas

0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 1

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(1)

Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 0 0 0

0 1 2 3 4

Ferry

0 0 0 0 1 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

0 1 2 3 4

Gas

0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 1

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test: O(1)
Successors:

(#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 0 0 0

0 1 2 3 4

Ferry

0 0 0 0 1 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

0 1 2 3 4

Gas

0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 1

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test: O(1)
Successors: (#Vertices)

Memory: O((#Vertices)
2
)

Storing adjacency matrices (ex: RedisGraph) 79

One matrix per label
One line per vertex
One column per vertex

Cell (i , j) in L ⟺ i
L
−→ j

Road

0 0 1 0 0 0
1 0 0 1 0 0
2 0 0 0 1 1
3 0 0 0 0 0
4 0 1 0 0 0

0 1 2 3 4

Ferry

0 0 0 0 1 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

0 1 2 3 4

Gas

0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 1

0 1 2 3 4

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test: O(1)
Successors: (#Vertices)

Memory: O((#Vertices)
2
)

Storing

edge tree sets

(ex: Relational databases) 80

One tree-set (table) for each
edge type

Road: {(0, 1); (1, 2); (2, 3);
(2, 4); (4, 1)}

Ferry: {(0, 3)}
Gas: {(4, 4)}

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(log(#Edges))

Successors:

#Edges
or O(# log(Edges)) if index

Storing edge tree sets (ex: Relational databases) 80

One tree-set (table) for each
edge type

Road: {(0, 1); (1, 2); (2, 3);
(2, 4); (4, 1)}

Ferry: {(0, 3)}
Gas: {(4, 4)}

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(log(#Edges))

Successors:

#Edges
or O(# log(Edges)) if index

Storing edge tree sets (ex: Relational databases) 80

One tree-set (table) for each
edge type

Road: {(0, 1); (1, 2); (2, 3);
(2, 4); (4, 1)}

Ferry: {(0, 3)}
Gas: {(4, 4)}

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test:

O(log(#Edges))

Successors:

#Edges
or O(# log(Edges)) if index

Storing edge tree sets (ex: Relational databases) 80

One tree-set (table) for each
edge type

Road: {(0, 1); (1, 2); (2, 3);
(2, 4); (4, 1)}

Ferry: {(0, 3)}
Gas: {(4, 4)}

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test: O(log(#Edges))
Successors:

#Edges
or O(# log(Edges)) if index

Storing edge tree sets (ex: Relational databases) 80

One tree-set (table) for each
edge type

Road: {(0, 1); (1, 2); (2, 3);
(2, 4); (4, 1)}

Ferry: {(0, 3)}
Gas: {(4, 4)}

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test: O(log(#Edges))
Successors: #Edges

or O(# log(Edges)) if index

Storing edge tree sets (ex: Relational databases) 80

One tree-set (table) for each
edge type

Road: {(0, 1); (1, 2); (2, 3);
(2, 4); (4, 1)}

Ferry: {(0, 3)}
Gas: {(4, 4)}

0 1 2 3

4

Road Road

R
oa
dR

oad
Road

Ferry

Gas

Start End

Edge test: O(log(#Edges))
Successors: #Edges
or O(# log(Edges)) if index

Finding walks 81

Recap of different storage options

Edge test Successors

Adjacency list O(#Succ) O(#Succ)
Adjacency matrix O(1) O(#Vert)
Edge tree set

(†)
O(log(#Edge)) O(log(#Edge))

(†) with proper indexing

Goal

Finding walks (e.g. matching an RPQ)

Which one seems better?

Storing properties 82

Adjacency list

Memory zones contains property maps

Adjacency matrix

Cells in the matrix contains reference to edge content
Property maps for edges and nodes

Tree sets

Properties are stored in other tables (see translation)

Storing properties 82

Adjacency list

Memory zones contains property maps

Adjacency matrix

Cells in the matrix contains reference to edge content
Property maps for edges and nodes

Tree sets

Properties are stored in other tables (see translation)

Storing properties 82

Adjacency list

Memory zones contains property maps

Adjacency matrix

Cells in the matrix contains reference to edge content
Property maps for edges and nodes

Tree sets

Properties are stored in other tables (see translation)

Part II: Property Graphs

4. Strength and Weaknessess

Strength of property graph DBMS (1) 84

Native storage

Elementary graph operations are efficient

Access to property is efficient

Query answering is based on graph algorithms and not on joins
Ex: S(R+F)2, S(R+F)3, S(R+F)∗

Allows flexible schemas or a schema-less approach

! Some PG DBMS’s do not use native storage !

Strength of property graph DBMS (1) 84

Native storage

Elementary graph operations are efficient

Access to property is efficient

Query answering is based on graph algorithms and not on joins
Ex: S(R+F)2, S(R+F)3, S(R+F)∗

Allows flexible schemas or a schema-less approach

! Some PG DBMS’s do not use native storage !

Strength of property graph DBMS (2) 85

Specialized algorithms and languages

Restriction on the DM increases the liberty in the query language.

“We never have to treat the case of non-binary relations”

Graph notions in the core of the language (path as values)

Graph algorithms directly available

Strength of property graph DBMS (3) 86

Easier to grasp for humans

Easier modeling
“The data looks like the ER diagram”

Direct data visualization
“One may navigate in the data ”

Visualization of query result
(†)

(†) Arguable, see part III.

Query languages can be made user-friendly
“What you write looks like what you search for ”

⟹ Property graphs are usable by non-experts

Ex: Panama papers

Strength of property graph DBMS (3) 86

Easier to grasp for humans

Easier modeling
“The data looks like the ER diagram”

Direct data visualization
“One may navigate in the data ”

Visualization of query result
(†)

(†) Arguable, see part III.

Query languages can be made user-friendly
“What you write looks like what you search for ”

⟹ Property graphs are usable by non-experts

Ex: Panama papers

Strength of property graph DBMS (3) 86

Easier to grasp for humans

Easier modeling
“The data looks like the ER diagram”

Direct data visualization
“One may navigate in the data ”

Visualization of query result
(†)

(†) Arguable, see part III.

Query languages can be made user-friendly
“What you write looks like what you search for ”

⟹ Property graphs are usable by non-experts

Ex: Panama papers

Strength of property graph DBMS (3) 86

Easier to grasp for humans

Easier modeling
“The data looks like the ER diagram”

Direct data visualization
“One may navigate in the data ”

Visualization of query result
(†)

(†) Arguable, see part III.

Query languages can be made user-friendly
“What you write looks like what you search for ”

⟹ Property graphs are usable by non-experts

Ex: Panama papers

Weaknesses of property graph DBMS (1) 87

Efficiency

Efficiency gain from native graph storage can be mitigated
Proper indexing
Worst-case optimal join
Highly structured data cannot be leveraged

Ex: RDF engines usually do not use native graph storage

Efficiency falls off if the need is outside the scope

Non-navigational queries
When walks are not needed
Analytics (even graph analytics)

Weaknesses of property graph DBMS (1) 87

Efficiency

Efficiency gain from native graph storage can be mitigated
Proper indexing
Worst-case optimal join
Highly structured data cannot be leveraged

Ex: RDF engines usually do not use native graph storage

Efficiency falls off if the need is outside the scope

Non-navigational queries
When walks are not needed
Analytics (even graph analytics)

Weaknesses of property graph DBMS (1) 87

Efficiency

Efficiency gain from native graph storage can be mitigated
Proper indexing
Worst-case optimal join
Highly structured data cannot be leveraged

Ex: RDF engines usually do not use native graph storage

Efficiency falls off if the need is outside the scope
Non-navigational queries

When walks are not needed
Analytics (even graph analytics)

Weaknesses of property graph DBMS (1) 87

Efficiency

Efficiency gain from native graph storage can be mitigated
Proper indexing
Worst-case optimal join
Highly structured data cannot be leveraged

Ex: RDF engines usually do not use native graph storage

Efficiency falls off if the need is outside the scope
Non-navigational queries
When walks are not needed

Analytics (even graph analytics)

Weaknesses of property graph DBMS (1) 87

Efficiency

Efficiency gain from native graph storage can be mitigated
Proper indexing
Worst-case optimal join
Highly structured data cannot be leveraged

Ex: RDF engines usually do not use native graph storage

Efficiency falls off if the need is outside the scope
Non-navigational queries
When walks are not needed
Analytics (even graph analytics)

Weaknesses of property graph DBMS (2) 88

Too specialized?

PG does not handle well some data
Ex: ternary relations, extremely large values, disconnected data

Way less PG DBMS experts than Rel DBMS experts

Relational databases may simulate property graphs

User-friendly visualization and modeling tools can be made
Graph-views can be made on top of Relational DBMS
Cypher is hard to translate in SQL...

...but SQL/PGQ brings it into SQL

Weaknesses of property graph DBMS (2) 88

Too specialized?

PG does not handle well some data
Ex: ternary relations, extremely large values, disconnected data

Way less PG DBMS experts than Rel DBMS experts

Relational databases may simulate property graphs

User-friendly visualization and modeling tools can be made
Graph-views can be made on top of Relational DBMS
Cypher is hard to translate in SQL...

...but SQL/PGQ brings it into SQL

Weaknesses of property graph DBMS (2) 88

Too specialized?

PG does not handle well some data
Ex: ternary relations, extremely large values, disconnected data

Way less PG DBMS experts than Rel DBMS experts

Relational databases may simulate property graphs

User-friendly visualization and modeling tools can be made
Graph-views can be made on top of Relational DBMS
Cypher is hard to translate in SQL...

...but SQL/PGQ brings it into SQL

Weaknesses of property graph DBMS (2) 88

Too specialized?

PG does not handle well some data
Ex: ternary relations, extremely large values, disconnected data

Way less PG DBMS experts than Rel DBMS experts

Relational databases may simulate property graphs
User-friendly visualization and modeling tools can be made

Graph-views can be made on top of Relational DBMS
Cypher is hard to translate in SQL...

...but SQL/PGQ brings it into SQL

Weaknesses of property graph DBMS (2) 88

Too specialized?

PG does not handle well some data
Ex: ternary relations, extremely large values, disconnected data

Way less PG DBMS experts than Rel DBMS experts

Relational databases may simulate property graphs
User-friendly visualization and modeling tools can be made
Graph-views can be made on top of Relational DBMS

Cypher is hard to translate in SQL...

...but SQL/PGQ brings it into SQL

Weaknesses of property graph DBMS (2) 88

Too specialized?

PG does not handle well some data
Ex: ternary relations, extremely large values, disconnected data

Way less PG DBMS experts than Rel DBMS experts

Relational databases may simulate property graphs
User-friendly visualization and modeling tools can be made
Graph-views can be made on top of Relational DBMS
Cypher is hard to translate in SQL...

...but SQL/PGQ brings it into SQL

Weaknesses of property graph DBMS (2) 88

Too specialized?

PG does not handle well some data
Ex: ternary relations, extremely large values, disconnected data

Way less PG DBMS experts than Rel DBMS experts

Relational databases may simulate property graphs
User-friendly visualization and modeling tools can be made
Graph-views can be made on top of Relational DBMS
Cypher is hard to translate in SQL...

...but SQL/PGQ brings it into SQL

Part III: Cypher

Part III: Cypher

1. General presentation

Generalities 91

A Cypher query
queries a property graph
returns a table

Is a sequence of clauses
(3 clauses on the right)

Last clause is always RETURN

manipulates a working table
uses variables, which refer to col-
umn names

Example of Cypher query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.id = 22

RETURN u1.name AS uname,

p1.on AS date,

m1.text AS msg

Example Returned table

uname date msg

"Alice" "05-14" "Hello"

Generalities 91

A Cypher query
queries a property graph
returns a table

Is a sequence of clauses
(3 clauses on the right)

Last clause is always RETURN

manipulates a working table
uses variables, which refer to col-
umn names

Example of Cypher query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.id = 22

RETURN u1.name AS uname,

p1.on AS date,

m1.text AS msg

Example Returned table

uname date msg

"Alice" "05-14" "Hello"

Generalities 91

A Cypher query
queries a property graph
returns a table

Is a sequence of clauses
(3 clauses on the right)

Last clause is always RETURN

manipulates a working table
uses variables, which refer to col-
umn names

Example of Cypher query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.id = 22

RETURN u1.name AS uname,

p1.on AS date,

m1.text AS msg

Example Returned table

uname date msg

"Alice" "05-14" "Hello"

Values in Cypher 92

Values are the elements that may appear in tables
Pure values are the values with no reference to the graph
Property is a key to pure values

Values are

Base values Ex: true, 42, "NoSQL"

Graph elements Ex: nodes, relations

Paths (alternate lists of nodes and relations)

List of values Ex: [1,"Hello",true,"World,n1]

Property dictionary Ex: {name:"Victor", age:35}

How evaluation works 93

Clause 1
MATCH ...

Property
Graph

Clause 2
WITH ...

⋯ Last Clause
RETURN ...

Table 1

a

⋮

Table 2

a b

⋮

Table returned
by the query

e f g

⋮

Table n

c d

⋮

The first clause produces a table from the property graph
Subsequent clauses produces a new table from the property graph
and the prior table
Until we reach the last clause, which produces the table to return

How evaluation works 93

Clause 1
MATCH ...

Property
Graph

Clause 2
WITH ...

⋯ Last Clause
RETURN ...

Table 1

a

⋮

Table 2

a b

⋮

Table returned
by the query

e f g

⋮

Table n

c d

⋮

The first clause produces a table from the property graph

Subsequent clauses produces a new table from the property graph
and the prior table
Until we reach the last clause, which produces the table to return

How evaluation works 93

Clause 1
MATCH ...

Property
Graph

Clause 2
WITH ...

⋯ Last Clause
RETURN ...

Table 1

a

⋮

Table 2

a b

⋮

Table returned
by the query

e f g

⋮

Table n

c d

⋮

The first clause produces a table from the property graph
Subsequent clauses produces a new table from the property graph
and the prior table

Until we reach the last clause, which produces the table to return

How evaluation works 93

Clause 1
MATCH ...

Property
Graph

Clause 2
WITH ...

⋯ Last Clause
RETURN ...

Table 1

a

⋮

Table 2

a b

⋮

Table returned
by the query

e f g

⋮

Table n

c d

⋮

The first clause produces a table from the property graph
Subsequent clauses produces a new table from the property graph
and the prior table
Until we reach the last clause, which produces the table to return

Overview of read-only Cypher 94

MATCH is for pattern matching
RPQ-like (in fact C2RPQ)
Trail semantics
Projects paths into a table
Inner join with the input table
The variant OPTIONAL MATCH

does an outer join instead

WHERE filters rows
Subclause of WITH and MATCH

UNWIND splits rows for each ele-
ment in a list

WITH is for:
Column manipulation (add,
remove, rename, etc.)
Aggregation

Vertical
Horizontal (reduce)

Order and limit output size
(ORDER BY, SKIP and LIMIT)

RETURN is a mandatory WITH at
the end of the query

UNION and UNION ALL are for set
and bag union.

Overview of read-only Cypher 94

MATCH is for pattern matching
RPQ-like (in fact C2RPQ)
Trail semantics
Projects paths into a table
Inner join with the input table
The variant OPTIONAL MATCH

does an outer join instead

WHERE filters rows
Subclause of WITH and MATCH

UNWIND splits rows for each ele-
ment in a list

WITH is for:
Column manipulation (add,
remove, rename, etc.)
Aggregation

Vertical
Horizontal (reduce)

Order and limit output size
(ORDER BY, SKIP and LIMIT)

RETURN is a mandatory WITH at
the end of the query

UNION and UNION ALL are for set
and bag union.

Overview of read-only Cypher 94

MATCH is for pattern matching
RPQ-like (in fact C2RPQ)
Trail semantics
Projects paths into a table
Inner join with the input table
The variant OPTIONAL MATCH

does an outer join instead

WHERE filters rows
Subclause of WITH and MATCH

UNWIND splits rows for each ele-
ment in a list

WITH is for:
Column manipulation (add,
remove, rename, etc.)
Aggregation

Vertical
Horizontal (reduce)

Order and limit output size
(ORDER BY, SKIP and LIMIT)

RETURN is a mandatory WITH at
the end of the query

UNION and UNION ALL are for set
and bag union.

Overview of read-only Cypher 94

MATCH is for pattern matching
RPQ-like (in fact C2RPQ)
Trail semantics
Projects paths into a table
Inner join with the input table
The variant OPTIONAL MATCH

does an outer join instead

WHERE filters rows
Subclause of WITH and MATCH

UNWIND splits rows for each ele-
ment in a list

WITH is for:
Column manipulation (add,
remove, rename, etc.)
Aggregation

Vertical
Horizontal (reduce)

Order and limit output size
(ORDER BY, SKIP and LIMIT)

RETURN is a mandatory WITH at
the end of the query

UNION and UNION ALL are for set
and bag union.

Overview of read-only Cypher 94

MATCH is for pattern matching
RPQ-like (in fact C2RPQ)
Trail semantics
Projects paths into a table
Inner join with the input table
The variant OPTIONAL MATCH

does an outer join instead

WHERE filters rows
Subclause of WITH and MATCH

UNWIND splits rows for each ele-
ment in a list

WITH is for:
Column manipulation (add,
remove, rename, etc.)
Aggregation

Vertical
Horizontal (reduce)

Order and limit output size
(ORDER BY, SKIP and LIMIT)

RETURN is a mandatory WITH at
the end of the query

UNION and UNION ALL are for set
and bag union.

Overview of read-only Cypher 94

MATCH is for pattern matching
RPQ-like (in fact C2RPQ)
Trail semantics
Projects paths into a table
Inner join with the input table
The variant OPTIONAL MATCH

does an outer join instead

WHERE filters rows
Subclause of WITH and MATCH

UNWIND splits rows for each ele-
ment in a list

WITH is for:
Column manipulation (add,
remove, rename, etc.)
Aggregation

Vertical
Horizontal (reduce)

Order and limit output size
(ORDER BY, SKIP and LIMIT)

RETURN is a mandatory WITH at
the end of the query

UNION and UNION ALL are for set
and bag union.

Part III: Cypher

2. Pattern matching with MATCH

Matching nodes (1) 96

N1

UserUser

name: "Alice"

N2

UserUser

name: "Bob"

N3

UserUser , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:User)

Result:

u1

N1

N2

N3

Matching nodes (1) 96

N1

UserUser

name: "Alice"

N2

UserUser

name: "Bob"

N3

UserUser , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:User)

Result:

u1

N1

N2

N3

Matching nodes (2) 97

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

UserUser , AdminAdmin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:User:Admin)

Result:

u1

N3

Matching nodes (3) 98

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1{id:22})

Result:

u1

N4

Matching nodes (4) 99

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

Result:

?

Matching nodes (4) 99

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

Result:

u1

N1

N2

N3

N4

N5

Matching relations (1) 100

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[p1]->()

Result:

p1

r1
r2
r3
r4
r5
r6
r7

Matching relations (2) 101

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

Result:

u1 p1 m1

N1 r5 N4

N2 r6 N5

Matching relations (3) 102

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

Result:

u1

N1

N2

N2

N3

Cypher has bag semantics:
N2 has two outgoing follows

relations ⇒ two lines N2

Matching chained relations 103

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

-[:POSTED]->(m1)

Result:

u1 m1

N1 N5

N2 N4

N3 N4

Matching chained relations 103

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

-[:POSTED]->(m1)

Result:

u1 m1

N1 N5

N2 N4

N3 N4

Matching chained relations 103

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

-[:POSTED]->(m1)

Result:

u1 m1

N1 N5

N2 N4

N3 N4

Matching chained relations 103

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

-[:POSTED]->(m1)

Result:

u1 m1

N1 N5

N2 N4

N3 N4

Matching relations backward 104

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

Result:

u1 m2 u2

N1 N5 N2

Matching relations backward 104

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

Result:

u1 m2 u2

N1 N5 N2

Any-directed relation pattern 105

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:Admin)

-[:FOLLOWS]-(u2)

Result:

u1 u2

N3 N1

N3 N2

Any-directed relation pattern 105

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[:FOLLOWS]-(u2)

Result:

u1 u2

N3 N1

N3 N2

Any-directed relation pattern 105

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[:FOLLOWS]-(u2)

Result:

u1 u2

N3 N1

N3 N2

Implicit equijoin on variables 106

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

-[:FOLLOWS]->(u1)

Result:

u1 m2 u2

N1 N5 N2

The orange path is invalid: two
different nodes for u1.

Variable reuse ⟹ equality

Implicit equijoin on variables 106

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

-[:FOLLOWS]->(u1)

Result:

u1 m2 u2

N1 N5 N2

The orange path is invalid: two
different nodes for u1.

Variable reuse ⟹ equality

Implicit equijoin on variables 106

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

-[:FOLLOWS]->(u1)

Result:

u1 m2 u2

N1 N5 N2

The orange path is invalid: two
different nodes for u1.

Variable reuse ⟹ equality

Implicit equijoin on variables 106

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

-[:FOLLOWS]->(u1)

Result:

u1 m2 u2

N1 N5 N2

The orange path is invalid: two
different nodes for u1.

Variable reuse ⟹ equality

Matching paths (1) 107

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the star means one
or more.

Matching paths (1) 107

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , AdminAdmin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the star means one
or more.

Matching paths (1) 107

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , AdminAdmin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the star means one
or more.

Matching paths (1) 107

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , AdminAdmin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the star means one
or more.

Matching paths (1) 107

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , AdminAdmin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the star means one
or more.

Matching paths (1) 107

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1:Admin)

-[l1:FOLLOWS*]->(m1)

Result:

u1 l1 m1

N3 [r4] N1

N3 [r4, r1] N2

N3 [r4, r1, r2] N1

N3 [r4, r1, r3] N3

Cypher uses trail semantics.

In Cypher the star means one
or more.

An interesting query 108

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u2)-[:FOLLOWS]->

(u1)<-[:FOLLOWS]-(u3)

Result:

u2 u1 u3

N3 N1 N2

N2 N1 N3

Line 1: N3
r4
−→ N1

r2
←− N2

Line 2: N2
r2
−→ N1

r4
←− N3

No (N3, N1, N3) due to trail
semantics

An interesting query 108

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u2)-[:FOLLOWS]->

(u1)<-[:FOLLOWS]-(u3)

Result:

u2 u1 u3

N3 N1 N2

N2 N1 N3

Line 1: N3
r4
−→ N1

r2
←− N2

Line 2: N2
r2
−→ N1

r4
←− N3

No (N3, N1, N3) due to trail
semantics

An interesting query 108

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u2)-[:FOLLOWS]->

(u1)<-[:FOLLOWS]-(u3)

Result:

u2 u1 u3

N3 N1 N2

N2 N1 N3

Line 1: N3
r4
−→ N1

r2
←− N2

Line 2: N2
r2
−→ N1

r4
←− N3

No (N3, N1, N3) due to trail
semantics

Matching paths (2) 109

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

-[l1:POSTED|ANSWERS *]->(m1)

Result:

u1 l1 m1

N2 [r6, r7] N4

N5 [r7] N4

N2 [r6] N5

N1 [r5] N4

Matching paths (2) 109

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

-[l1:POSTED|ANSWERS *]->(m1)

Result:

u1 l1 m1

N2 [r6, r7] N4

N5 [r7] N4

N2 [r6] N5

N1 [r5] N4

Matching paths (2) 109

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERSANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

-[l1:POSTED|ANSWERS *]->(m1)

Result:

u1 l1 m1

N2 [r6, r7] N4

N5 [r7] N4

N2 [r6] N5

N1 [r5] N4

Matching paths (2) 109

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

-[l1:POSTED|ANSWERS *]->(m1)

Result:

u1 l1 m1

N2 [r6, r7] N4

N5 [r7] N4

N2 [r6] N5

N1 [r5] N4

Matching paths (2) 109

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)

-[l1:POSTED|ANSWERS *]->(m1)

Result:

u1 l1 m1

N2 [r6, r7] N4

N5 [r7] N4

N2 [r6] N5

N1 [r5] N4

Matching subgraphs 110

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->(u2),

(u1)-[:FOLLOWS]->(u3),

(u1)-[:POSTED]->(m1)

Result:

u1 u2 u3 m1

N2 N1 N3 N5

N2 N3 N1 N5

! CRPQ !

! Cartesian product !

Matching subgraphs 110

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->(u2),

(u1)-[:FOLLOWS]->(u3),

(u1)-[:POSTED]->(m1)

Result:

u1 u2 u3 m1

N2 N1 N3 N5

N2 N3 N1 N5

! CRPQ !

! Cartesian product !

Matching subgraphs 110

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->(u2),

(u1)-[:FOLLOWS]->(u3),

(u1)-[:POSTED]->(m1)

Result:

u1 u2 u3 m1

N2 N1 N3 N5

N2 N3 N1 N5

! CRPQ !

! Cartesian product !

Matching subgraphs 110

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->(u2),

(u1)-[:FOLLOWS]->(u3),

(u1)-[:POSTED]->(m1)

Result:

u1 u2 u3 m1

N2 N1 N3 N5

N2 N3 N1 N5

! CRPQ !

! Cartesian product !

Matching subgraphs 110

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->(u2),

(u1)-[:FOLLOWS]->(u3),

(u1)-[:POSTED]->(m1)

Result:

u1 u2 u3 m1

N2 N1 N3 N5

N2 N3 N1 N5

! CRPQ !

! Cartesian product !

Recap of MATCH 111

C2RPQ-like pattern-matching

Trail semantics (no repeated edge, globally)

Result computation:
C2RPQ evaluations → tuples of walks
project on variables
return a table: variable as column names, one line per tuple of
walks

MATCH allows C2RPQ-like pattern-matching 112

Letters are put between brackets

Exercice: find RPQs,
2RPQs and 2CRPQs
that are not expressible
with MATCH

A ↝ ()-[:A]->()

B ↝ ()<-[:B]-()

Repetitions follows a * in brackets
A

+
↝ ()-[:A *]->()

A
∗

↝ ()-[:A *0..]->()

Concatenation is done by direct chaining
A ⋅ B+ ⋅ C ↝ ()->[:A]->()-[:B*]->()-[:C]->()

Union is simulated by | in bracket or any-directed edge patterns
A + B ↝ ()-[:A|B]->()

C + C ↝ ()-[:C]-()

CRPQs are simulated with commas
A

+

B

↝ (a)-[:A*]->(b), (b)-[:B]->(a)

MATCH allows C2RPQ-like pattern-matching 112

Letters are put between brackets

Exercice: find RPQs,
2RPQs and 2CRPQs
that are not expressible
with MATCH

A ↝ ()-[:A]->()

B ↝ ()<-[:B]-()

Repetitions follows a * in brackets
A

+
↝ ()-[:A *]->()

A
∗

↝ ()-[:A *0..]->()

Concatenation is done by direct chaining
A ⋅ B+ ⋅ C ↝ ()->[:A]->()-[:B*]->()-[:C]->()

Union is simulated by | in bracket or any-directed edge patterns
A + B ↝ ()-[:A|B]->()

C + C ↝ ()-[:C]-()

CRPQs are simulated with commas
A

+

B

↝ (a)-[:A*]->(b), (b)-[:B]->(a)

MATCH allows C2RPQ-like pattern-matching 112

Letters are put between brackets

Exercice: find RPQs,
2RPQs and 2CRPQs
that are not expressible
with MATCH

A ↝ ()-[:A]->()

B ↝ ()<-[:B]-()

Repetitions follows a * in brackets
A

+
↝ ()-[:A *]->()

A
∗

↝ ()-[:A *0..]->()

Concatenation is done by direct chaining
A ⋅ B+ ⋅ C ↝ ()->[:A]->()-[:B*]->()-[:C]->()

Union is simulated by | in bracket or any-directed edge patterns
A + B ↝ ()-[:A|B]->()

C + C ↝ ()-[:C]-()

CRPQs are simulated with commas
A

+

B

↝ (a)-[:A*]->(b), (b)-[:B]->(a)

MATCH allows C2RPQ-like pattern-matching 112

Letters are put between brackets

Exercice: find RPQs,
2RPQs and 2CRPQs
that are not expressible
with MATCH

A ↝ ()-[:A]->()

B ↝ ()<-[:B]-()

Repetitions follows a * in brackets
A

+
↝ ()-[:A *]->()

A
∗

↝ ()-[:A *0..]->()

Concatenation is done by direct chaining
A ⋅ B+ ⋅ C ↝ ()->[:A]->()-[:B*]->()-[:C]->()

Union is simulated by | in bracket or any-directed edge patterns
A + B ↝ ()-[:A|B]->()

C + C ↝ ()-[:C]-()

CRPQs are simulated with commas
A

+

B

↝ (a)-[:A*]->(b), (b)-[:B]->(a)

MATCH allows C2RPQ-like pattern-matching 112

Letters are put between brackets

Exercice: find RPQs,
2RPQs and 2CRPQs
that are not expressible
with MATCH

A ↝ ()-[:A]->()

B ↝ ()<-[:B]-()

Repetitions follows a * in brackets
A

+
↝ ()-[:A *]->()

A
∗

↝ ()-[:A *0..]->()

Concatenation is done by direct chaining
A ⋅ B+ ⋅ C ↝ ()->[:A]->()-[:B*]->()-[:C]->()

Union is simulated by | in bracket or any-directed edge patterns
A + B ↝ ()-[:A|B]->()

C + C ↝ ()-[:C]-()

CRPQs are simulated with commas
A

+

B

↝ (a)-[:A*]->(b), (b)-[:B]->(a)

MATCH allows C2RPQ-like pattern-matching 112

Letters are put between brackets Exercice: find RPQs,
2RPQs and 2CRPQs
that are not expressible
with MATCH

A ↝ ()-[:A]->()

B ↝ ()<-[:B]-()

Repetitions follows a * in brackets
A

+
↝ ()-[:A *]->()

A
∗

↝ ()-[:A *0..]->()

Concatenation is done by direct chaining
A ⋅ B+ ⋅ C ↝ ()->[:A]->()-[:B*]->()-[:C]->()

Union is simulated by | in bracket or any-directed edge patterns
A + B ↝ ()-[:A|B]->()

C + C ↝ ()-[:C]-()

CRPQs are simulated with commas
A

+

B

↝ (a)-[:A*]->(b), (b)-[:B]->(a)

MATCH does not express all C2RPQs 113

RPQs

Only atoms can be unionized AA + BB
No nested stars (A∗

B)∗
No concatenation under star (A ⋅ B)∗

2RPQs

Unions of atoms with inconsistent directions A + B

NB: A + A + B + B is expressible with ()-[:A|B]-()

C2RPQs

No further restrictions

MATCH does not express all C2RPQs 113

RPQs

Only atoms can be unionized AA + BB
No nested stars (A∗

B)∗
No concatenation under star (A ⋅ B)∗

2RPQs

Unions of atoms with inconsistent directions A + B

NB: A + A + B + B is expressible with ()-[:A|B]-()

C2RPQs

No further restrictions

MATCH does not express all C2RPQs 113

RPQs

Only atoms can be unionized AA + BB
No nested stars (A∗

B)∗
No concatenation under star (A ⋅ B)∗

2RPQs

Unions of atoms with inconsistent directions A + B

NB: A + A + B + B is expressible with ()-[:A|B]-()

C2RPQs

No further restrictions

MATCH does not express all C2RPQs 113

RPQs

Only atoms can be unionized AA + BB
No nested stars (A∗

B)∗
No concatenation under star (A ⋅ B)∗

2RPQs

Unions of atoms with inconsistent directions A + B

NB: A + A + B + B is expressible with ()-[:A|B]-()

C2RPQs

No further restrictions

MATCH goes beyond C2RPQs 114

Testing properties
MATCH ()-[{date:"22-12"}]->()

Testing labels and properties on nodes
MATCH (:Admin)

MATCH ({id:21})

Returning part of the matched walks thanks to variable
MATCH (a)-[:Road*]->() ↝ source nodes
MATCH ()-[b:Road*]->() ↝ edge lists
MATCH ()-[:Road*]->(c:Gas)-[:Road*]->() ↝ middle nodes

Variable reuse allows lightweitht C2RPQ without commas

A
+

B

↝ (a)-[:A*]->()-[:B]->(a)

MATCH goes beyond C2RPQs 114

Testing properties
MATCH ()-[{date:"22-12"}]->()

Testing labels and properties on nodes
MATCH (:Admin)

MATCH ({id:21})

Returning part of the matched walks thanks to variable
MATCH (a)-[:Road*]->() ↝ source nodes
MATCH ()-[b:Road*]->() ↝ edge lists
MATCH ()-[:Road*]->(c:Gas)-[:Road*]->() ↝ middle nodes

Variable reuse allows lightweitht C2RPQ without commas

A
+

B

↝ (a)-[:A*]->()-[:B]->(a)

MATCH goes beyond C2RPQs 114

Testing properties
MATCH ()-[{date:"22-12"}]->()

Testing labels and properties on nodes
MATCH (:Admin)

MATCH ({id:21})

Returning part of the matched walks thanks to variable
MATCH (a)-[:Road*]->() ↝ source nodes
MATCH ()-[b:Road*]->() ↝ edge lists
MATCH ()-[:Road*]->(c:Gas)-[:Road*]->() ↝ middle nodes

Variable reuse allows lightweitht C2RPQ without commas

A
+

B

↝ (a)-[:A*]->()-[:B]->(a)

MATCH goes beyond C2RPQs 114

Testing properties
MATCH ()-[{date:"22-12"}]->()

Testing labels and properties on nodes
MATCH (:Admin)

MATCH ({id:21})

Returning part of the matched walks thanks to variable
MATCH (a)-[:Road*]->() ↝ source nodes
MATCH ()-[b:Road*]->() ↝ edge lists
MATCH ()-[:Road*]->(c:Gas)-[:Road*]->() ↝ middle nodes

Variable reuse allows lightweitht C2RPQ without commas

A
+

B

↝ (a)-[:A*]->()-[:B]->(a)

Sequence of MATCH clauses 115

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1 m1 u2 u3

N2 N5 N1 N3

N2 N5 N3 N1

Sequence of MATCH clauses 115

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1 m1 u2 u3

N2 N5 N1 N3

N2 N5 N3 N1

Sequence of MATCH clauses 115

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1u1 m1 u2 u3

N1 N4 ⋅ ⋅
N2 N5 ⋅ ⋅

Sequence of MATCH clauses 115

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1u1 m1 u2 u3

N1 N4 ⋅ ⋅
N2 N5 ⋅ ⋅

Sequence of MATCH clauses 115

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWSFOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1u1 m1 u2 u3

N1 N4 ⋅ ⋅
N2 N5 ⋅ ⋅

Sequence of MATCH clauses 115

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1u1 m1 u2 u3

N1 N4 ⋅ ⋅
N2 N5 ⋅ ⋅

Sequence of MATCH clauses 115

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1 m1

N1 N4

N2 N5

Table after second MATCH:

u1 m1 u2 u3

N2 N5 N1 N3

N2 N5 N3 N1

Exercice 116

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

The two following queries com-
pute similar thing:

MATCH (a)⟨pat1⟩(b)⟨pat2⟩(c)

MATCH (a)⟨pat1⟩(b)
MATCH (b)⟨pat2⟩(c)

1 Compute their answer for
⟨pat1⟩ = -[:FOLLOWS]->

⟨pat2⟩ = -[:POSTED]->

2 Can you find patterns ⟨pat1⟩
and ⟨pat2⟩ for which their an-
swer is different?

Part III: Cypher

3. Usage of WITH (or RETURN)

Column manipulation 118

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WITH clause

u1 p1 t1

N1 r5
N2 r6

Column manipulation 118

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1u1, p1p1, m1.text AS t1t1

After the MATCH clause

u1u1 p1p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WITH clause

u1u1 p1p1 t1t1

N1 r5
N2 r6

Column manipulation 118

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.textm1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WITH clause

u1 p1 t1

N1 r5
N2 r6

Column manipulation 118

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.textm1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4N4

N2 r6 N5

Execution of the WITH clause

u1 p1 t1

N1 r5 "Hello""Hello"

N2 r6

Column manipulation 118

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.textm1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5N5

Execution of the WITH clause

u1 p1 t1

N1 r5 "Hello"

N2 r6 "World""World"

Column manipulation 118

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WITH u1, p1, m1.text AS t1

After the MATCH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

After WITH:

u1 p1 t1

N1 r5 "Hello"

N2 r6 "World"

Elimination of duplicate rows 119

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[:FOLLOWS]->()

WITH DISTINCT u1

After MATCH:

u1

N1

N2

N2

N3

After WITH:

u1

N1

N2

N3

Aggregation: horizontal versus vertical 120

Aggregation = Compute one value from a list/set of value
Ex: sum, count, max, collect

Vertical aggregation = usual aggregation (GROUP BY in SQL)

A
C
C
A
B
A

aggregate
over column

aggregate
over column

aggregate
over column

A x

B y

C z

C z
B y
A x

Horizontal aggregation = aggregate over each matched paths

edge list ℓ4
aggregate over ℓ4

edge list ℓ3
aggregate over ℓ3

edge list ℓ2
aggregate over ℓ2

edge list ℓ1
aggregate over ℓ1

Aggregation: horizontal versus vertical 120

Aggregation = Compute one value from a list/set of value
Ex: sum, count, max, collect

Vertical aggregation = usual aggregation (GROUP BY in SQL)

A
C
C
A
B
A

aggregate
over column

aggregate
over column

aggregate
over column

A x

B y

C z

C z
B y
A x

Horizontal aggregation = aggregate over each matched paths

edge list ℓ4
aggregate over ℓ4

edge list ℓ3
aggregate over ℓ3

edge list ℓ2
aggregate over ℓ2

edge list ℓ1
aggregate over ℓ1

Aggregation: horizontal versus vertical 120

Aggregation = Compute one value from a list/set of value
Ex: sum, count, max, collect

Vertical aggregation = usual aggregation (GROUP BY in SQL)

A
C
C
A
B
A

aggregate
over column

aggregate
over column

aggregate
over column

A x

B y

C z

C z
B y
A x

Horizontal aggregation = aggregate over each matched paths

edge list ℓ4
aggregate over ℓ4

edge list ℓ3
aggregate over ℓ3

edge list ℓ2
aggregate over ℓ2

edge list ℓ1
aggregate over ℓ1

Vertical Aggregation 121

WITH ⟨columns⟩, ⟨aggr⟩(⟨expr⟩)

Grouping is implicit: every variable used in ⟨columns⟩ is used for
grouping

⟨aggr⟩ is a built-in aggregation function, that is, a function from list
to a single value.

Example: count, sum, min, collect, etc.

Counting the Message nodes 122

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

MessageMessage

id: 22
text: "Hello"

N5

MessageMessage

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (m1:Message)

WITH count(m1) AS c

After MATCH:

m1

N4

N5

After WITH:

c

2

Collecting names of followers 123

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWSFOLLOWS

Query:

MATCH (u1)<-[:FOLLOWS]-(u2)

WITH u1, collect(u2.name) AS n

Result after WITH:

u1 n

N1 ["Bob","Charlie"]
N2 ["Alice"]
N3 ["Bob"]

! Grouping by u1 !

Exercice: what does this compute? 124

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTED]->()

WITH max(e.on) AS d

MATCH ()-[:POSTED

{on:d}]->(m1)

WITH m1.text as txt

e

r5
r6

d

"05-15"

d m1

"05-15" N5

txt

"World"

Exercice: what does this compute? 124

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTEDPOSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTEDPOSTED]->()

WITH max(e.on) AS d

MATCH ()-[:POSTED

{on:d}]->(m1)

WITH m1.text as txt

ee

r5r5
r6r6

d

"05-15"

d m1

"05-15" N5

txt

"World"

Exercice: what does this compute? 124

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"on: "05-14"
r6

POSTED

on: "05-15"on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTED]->()

WITH maxmax(e.onon) AS d

MATCH ()-[:POSTED

{on:d}]->(m1)

WITH m1.text as txt

e

r5
r6

d

"05-15""05-15"

d m1

"05-15" N5

txt

"World"

Exercice: what does this compute? 124

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTEDPOSTED

on: "05-15"on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTED]->()

WITH max(e.on) AS d

MATCH ()-[:POSTEDPOSTED

{on:don:d}]->(m1)

WITH m1.text as txt

e

r5
r6

d

"05-15"

d m1

"05-15" N5N5

txt

"World"

Exercice: what does this compute? 124

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH ()-[e:POSTED]->()

WITH max(e.on) AS d

MATCH ()-[:POSTED

{on:d}]->(m1)

WITH m1.texttext as txt

e

r5
r6

d

"05-15"

d m1

"05-15" N5

txt

"World""World"

Horizontal aggregation 125

Syntax

reduce(⟨acc⟩ = ⟨init⟩, ⟨var⟩ IN ⟨list⟩ | ⟨update⟩)

Equivalent to the following pseudo code
⟨acc⟩ := ⟨init⟩
for ⟨var⟩ in ⟨list⟩:

⟨acc⟩ := ⟨update⟩

Computing the length of a path 126

0 1 2 3

4

City, Start
name: "Paris"

City, End
name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

length: 1

ROAD

length: 12

FERRY, length: 30, max speed: 60

MATCH (:Start)-[e:ROAD|FERRY*]->(:End)

WITH reduce(acc=0, x IN e | acc+x.length) AS l

Computing the duration of a path 127

0 1 2 3

4

City, Start
name: "Paris"

City, End
name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

length: 1

ROAD

length: 12

FERRY, length: 30, max speed: 60

MATCH (:Start)-[e:ROAD|FERRY*]->(:End)

WITH reduce(acc = 0, x IN e

| acc + x.length*coalesce(x.max_speed,80)) AS d

Part III: Cypher

4. Subclauses of MATCH and/or WITH

Filtering rows with WHERE (1) 129

Syntax

MATCH ... WHERE ⟨condition⟩
or
WITH ... WHERE ⟨condition⟩

Remove from the table computed by MATCH or WHERE the row that make
⟨condition⟩ false

Filtering rows with WHERE (2) 130

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.on > "05-14"

After the WITH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WHERE clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Filtering rows with WHERE (2) 130

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"on: "05-14"
r6

POSTED

on: "05-15"on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.on > "05-14"

After the WITH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Execution of the WHERE clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Filtering rows with WHERE (2) 130

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)-[p1:POSTED]->(m1)

WHERE p1.on > "05-14"

After the WITH clause

u1 p1 m1

N1 r5 N4

N2 r6 N5

Final result

u1 p1 m1

N2 r6 N5

ORDER BY, LIMIT and SKIP 131

Syntax

WITH ... ORDER BY ⟨oexpr1⟩
optionalÌ ÒÒÒÒÒÒÒÒÐÒÒÒÒÒÒÒÒ Î
DESC , . . .

Í ÒÒÒÑ ÒÒÒ Ï
optional

SKIP ⟨sexpr⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

optional

LIMIT ⟨lexpr⟩
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÏ

optional

Order the table by ⟨oexpr1⟩
Ties are broken by the value of ⟨oexpr2⟩, remaining ties are broken
by ⟨oexpr3⟩, etc
DESC means the order is descending.
! We might end up with ties → Nondeterminism

Then, remove the first ⟨sexpr⟩ rows

Then, keep the first ⟨lexpr⟩ rows, at most

Compute the User with the most followers 132

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)<-[:FOLLOWS]-(u2)

WITH u1, count(u2) AS c

ORDER BY c

LIMIT 1 DESC

u1 c

N1 2

Compute the twotwo User with the most followers 133

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)<-[:FOLLOWS]-(u2)

WITH u1, count(u2) AS c

ORDER BY c DESC

LIMIT 22

Since Charlie and Bob both
have 1 follower, the final table
is either:

u1 c

N1 2
N2 1

u1 c

N1 2
N3 1

Compute the two User with the most followers 133

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (u1)<-[:FOLLOWS]-(u2)

WITH u1, count(u2) AS c

ORDER BY c DESC

LIMIT 2

Since Charlie and Bob both
have 1 follower, the final table
is either:

u1 c

N1 2
N2N2 1

u1 c

N1 2
N3N3 1

Exercice: what does this compute? 134

0 1 2 3

4

City, Start
name: "Paris"

City, End
name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

length: 1

ROAD

length: 12

FERRY, length: 30, max speed: 60

MATCH (:Start)-[e:ROAD*]->(:Gas)-[f:ROAD*]->(:End)

WITH reduce(acc=0, x IN e | acc+x.length) AS l,

reduce(acc=0, x IN f | acc+x.length) AS m

ORDER BY l+m ASC

LIMIT 1

Part III: Cypher

5. Updates

How evaluation works with update clauses 136

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

⋯ Last Clause
RETURN ...

Table 1

a

⋮

Side-effects

Table 2

a b

⋮

Modified Graph

Table returned
by the query

e f g

⋮

Table n

c d

⋮

Neo4j complies to ACID

A ⟹ Modifications are undone if evaluation fails
C ⟹ The PG must complies to IC at the end of evaluation only
I ⟹ Modifications are invisible to concurrent queries

How evaluation works with update clauses 136

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

⋯ Last Clause
RETURN ...

Table 1

a

⋮

Side-effects

Table 2

a b

⋮

Modified Graph

Table returned
by the query

e f g

⋮

Table n

c d

⋮

Neo4j complies to ACID

A ⟹ Modifications are undone if evaluation fails
C ⟹ The PG must complies to IC at the end of evaluation only
I ⟹ Modifications are invisible to concurrent queries

How evaluation works with update clauses 136

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

⋯ Last Clause
RETURN ...

Table 1

a

⋮

Side-effects

Table 2

a b

⋮

Modified Graph

Table returned
by the query

e f g

⋮

Table n

c d

⋮

Neo4j complies to ACID

A ⟹ Modifications are undone if evaluation fails
C ⟹ The PG must complies to IC at the end of evaluation only
I ⟹ Modifications are invisible to concurrent queries

How evaluation works with update clauses 136

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

⋯ Last Clause
RETURN ...

Table 1

a

⋮

Side-effects

Table 2

a b

⋮

Modified Graph

Table returned
by the query

e f g

⋮

Table n

c d

⋮

Neo4j complies to ACID

A ⟹ Modifications are undone if evaluation fails
C ⟹ The PG must complies to IC at the end of evaluation only
I ⟹ Modifications are invisible to concurrent queries

How evaluation works with update clauses 136

Clause 1
MATCH ...

Property
Graph

Clause 2
CREATE ...

⋯ Last Clause
RETURN ...

Table 1

a

⋮

Side-effects

Table 2

a b

⋮

Modified Graph

Table returned
by the query

e f g

⋮

Table n

c d

⋮

Neo4j complies to ACID

A ⟹ Modifications are undone if evaluation fails
C ⟹ The PG must complies to IC at the end of evaluation only
I ⟹ Modifications are invisible to concurrent queries

Create nodes and relations (1) 137

CREATE (a:User {name:"Alice"})

Creates a new node
Stores it in column a

CREATE (a)-[e:POSTED {on:"12-07"}]->(b)

Creates a new relation from a to b

If a the input table has no column named a, creates a new node
Idem for b
Stores the new relation in column e

Create nodes and relations (2) 138

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (a {name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

Table after MATCH clause:

a

N3

Table after CREATE clause:

a b

N3 N6

Create nodes and relations (2) 138

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

UserUser

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWSFOLLOWS

FOLLOWS

Query:

MATCH (a {name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

Table after MATCH clause:

a

N3

Table after CREATE clause:

a b

N3 N6

Create nodes and relations (2) 138

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (a {name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

Table after MATCH clause:

a

N3

Table after CREATE clause:

a b

N3 N6

The example graph stored as CREATE clauses 139

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

CREATE

(n1:User{name:"Alice"}),

(n2:User{name:"Bob"}),

(n3:User:Admin

{name:"Charlie"}),

(n4:Message {id:22,

text:"Hello"}),

(n5:Message {id:25,

text:"World"})

CREATE

(n1)-[:FOLLOWS]->(n2),

(n1)-[:POSTED

{on:"05-04"}]->(n4),

(n2)-[:FOLLOWS]->(n1),

(n2)-[:FOLLOWS]->(n3),

(n2)-[:POSTED

{on:"05-04"}]->(n5),

(n3)-[:FOLLOWS]->(n1),

(n5)-[:ANSWERS]->(n4),

Delete nodes and relations 140

DELETE a

If column a contains relations, delete them
If column a contains node:

if none of them has adjacent relation, delete them
otherwise the query fails.

DETACH DELETE a

If column a contains relations, delete them
If column a contains nodes, delete them as well as every adjacent
relations.

Modifying labels and properties (1) 141

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (a{name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

SET b:Admin, b.name="Eve"

Table after CREATE clause:

a b

N3 N6

Modifying labels and properties (1) 141

N1

User

name: "Alice"

N2

User

name: "Bob"

N3

User , Admin

name: "Charlie"

N4

Message

id: 22
text: "Hello"

N5

Message

id: 25
text: "World"

N6

User , AdminAdmin

name: "Eve"name: "Eve"

r1

FOLLOWS

r2

r3r4

r5
POSTED

on: "05-14"
r6

POSTED

on: "05-15"

r7

ANSWERS

r8

FOLLOWS

FOLLOWS

Query:

MATCH (a{name:"Charlie"})

CREATE (a)-[:FOLLOWS]->

(b:User)

SET b:Admin, b.name="Eve"

Table after CREATE clause:

a b

N3 N6

Bulk updates 142

0 1 2 3

4

City, Start
name: "Paris"

City, End
name: "Lyon"

Gas

ROAD

length: 10

ROAD

length: 2
max speed: 40

ROAD

length: 1
ROAD

length: 1

ROAD

length: 12

FERRY, length: 30, max speed: 60

MATCH ()-[e:ROAD]->()

WHERE e.max_speed IS NULL

SET e.max_speed=80

⟹ Adds the property
max speed:80 to all ROAD
that do not have one.

Appendix

Essential knowledge in part I 144

Graph data model.

Definition and language denoted by a regexp (and a 2-way regexp).

Writing abstract and concrete RPQs, 2RPQ, CRPQs.

Computing matches for RPQs, 2RPQ, CRPQs.

Concept of product graph.

What is an RPQ semantics and why we need one.

The three common RPQ semantics: definition, differences between
them and usage.

Evaluating RPQs, 2RPQs under the RPQ semantics.

Essential knowledge in part II 145

Property graph data model:
Definition
Bad modeling
Different storage options
Strenth and Weaknesses

Translations: Tables ↔ Property Graphs

Essential knowledge in part III 146

General scheme of evaluating a Cypher query.

Writing Cypher queries with MATCH, WITH, WHERE, RETURN clauses.

Writing Cypher with several clauses.

The two kinds of aggregation and how to use them with Cypher.

Writing Cypher queries to update the database (CREATE, DELETE,
etc.)

Translations: Cypher ↔ C2RPQs

Navigable outline (1) 147

Introduction
About this PDF

Overview of query answering

Property graphs vs Relational

History of query languages for PG’s

Outline

Part I: Theoretical foundations

1 Data model: labeled graphs

Definition

Limits to our data model

2 Regular Path Queries

Reminders about regular expressions

RPQs matching

Matching RPQs

Computing matches

3 RPQ semantics

Endpoint semantics

Shortest semantics

Trail semantics

4 Extensions to RPQs

Motivating examples

2RPQs

CRPQs

Navigable outline (2) 148

Part II: Property Graphs

1 Data model

Components of a property graph

Examples

2 Translations: Graphs ↔ Tables

Translation: Graph to Tables

Translation: Property Graph to table

Translation: Tables to Graph

Encoding non-binary relations in
graphs

3 Storage matters

Adjacency list

Adjacency matrix

Tree sets

Storing properties

4 Strength and Weaknessess

Strenghts

Weaknesses

Navigable outline (3) 149

Part III: Cypher

1 General presentation

Generalities

Values in Cypher

How evaluation works

Overview of read-only Cypher

2 Pattern matching with MATCH

Matching nodes

Matching relations

Matching chained relations

Implicit equijoin on variables

Matching paths

Matching subgraphs

Recap of pattern matching

Sequence of MATCH clauses

3 Usage of WITH (or RETURN)

Column manipulation

Elimination of duplicate rows

Horizontal and vertical aggregation

4 Subclauses of MATCH and/or WITH

Filtering rows with WHERE

Controling order and size of the
output

5 Updates

Create nodes and relations

Delete nodes and relations

Modifying labels and properties

Cypher allows flexible bulk updates

English-French translation I 150

English French

Acyclic Acyclique, Acircuitique

Bag, multiset Multi-ensemble

Data model (DM) Modèle de données

Edge Arête, Arc

Endpoints Extrémités

Endpoint semantics Sémantique d’extrémité

Key Clef

Label Etiquette

Match

Pattern matching Recherche de motif

Property, Attribute Propriété, Attribut

Property Graph (PG) Graphe à propriétés, Graphe de pro-
priété, Graphe attribué

English-French translation II 151

Regular Path Query (RPQ)

Semantics Semantique

Set Ensemble

Shortest semantics Sémantique de plus-court-chemin

Source Source

Target Destination

Trail

Trail semantics Sémantique sans-répétition-d’arête

Type Type

Value Valeur

Vertex, Node Sommet, Noeud

Walk, Path Chemin, Marche

	Introduction
	Part 1!III: Theoretical foundations
	Data model: labeled graphs
	Regular Path Queries
	RPQ semantics
	Extensions to RPQs

	Part 2!I: Property Graphs
	Data model
	Translations: Graphs Tables
	Storage matters
	Strength and Weaknessess

	Part 3!III: Cypher
	General presentation
	Pattern matching with keywordcolorMATCH
	Usage of keywordcolorWITH (or keywordcolorRETURN)
	Subclauses of keywordcolorMATCH and/or keywordcolorWITH
	Updates

	Appendix

