Query languages for property graphs From RPQs to Cypher

NoSQL and New SQL course

M2 LID, Université Gustave-Eiffel

2024-2025

version 4

Introduction

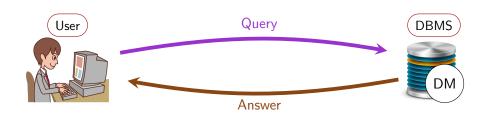
2

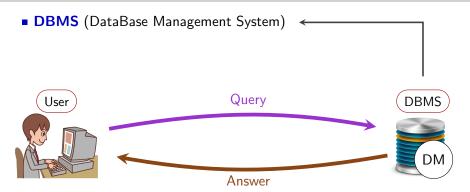
Navigation

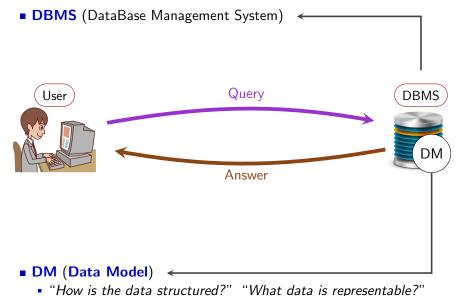
From any frame, the page number is a link to the navigable outline.

Term translations

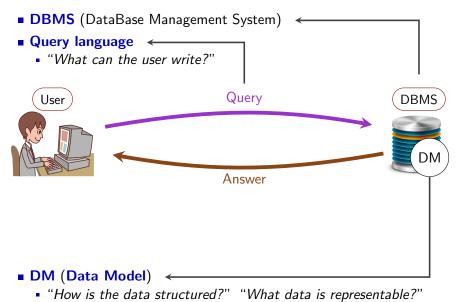
There is a French/English lexicon at the end.



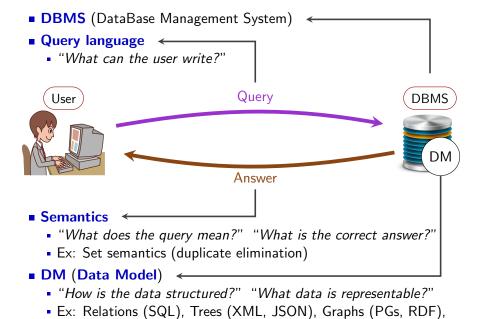




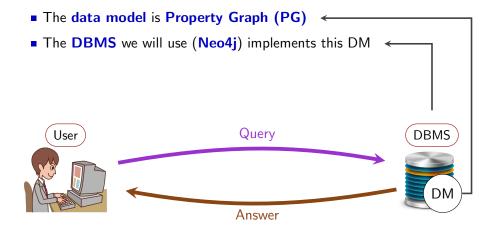
- Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),

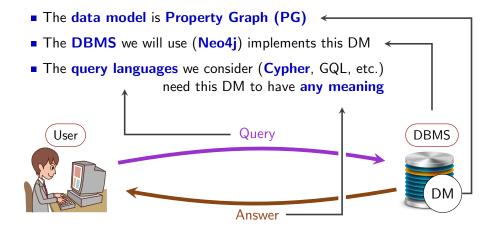


- Ex: Relations (SQL), Trees (XML, JSON), Graphs (PGs, RDF),

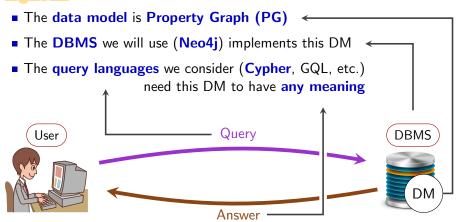


■ The data model is Property Graph (PG) Query **DBMS** User Answer





In part II:



Vast majority of DMBS's are relational, not graph

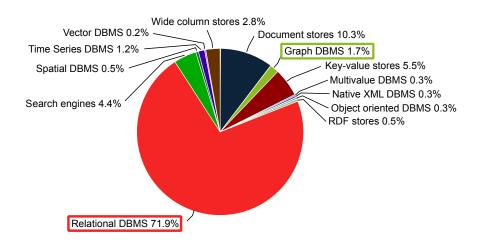


Figure and data from db-engines.com, August 2023

Graph DBMS's has grown in popularity for ten years Relational DBMS's continued their slow decline

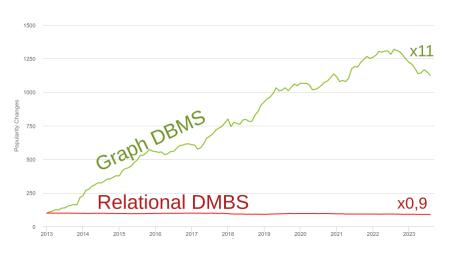
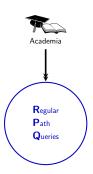
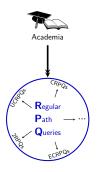


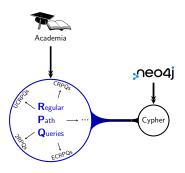
Figure and data from db-engines.com, August 2023



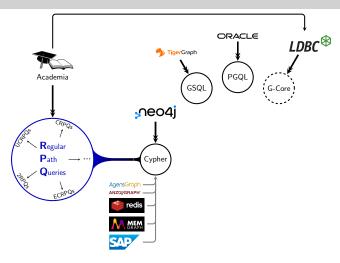
Late 1980's - RPQs are invented



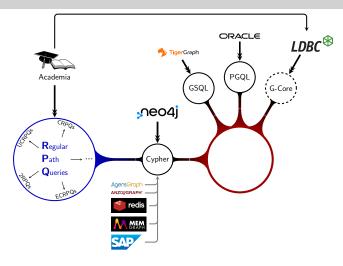
Since 1990's - RPQs are studied and extended in academia



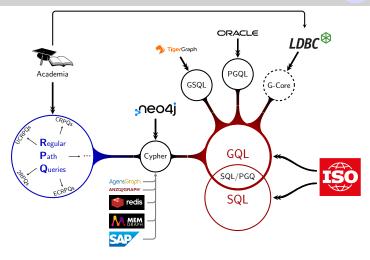
2011 – The query language Cypher is released with the DBMS Neo4j



Mid 2010's – Cypher is successful and new graph DBMS's appear. Some use Cypher, some come with their own query language.

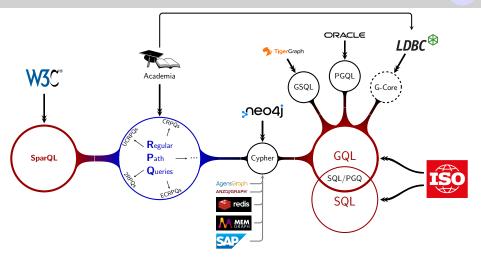


Late 2010's – Idea to merge existing languages for interoperability



2023 – SQL/PGQ support for querying PG's in SQL 2024 – GQL, standard query language for PG's

A bit of history



Side note: In SPARQL, the standard language for the RDF DM, features *Property paths* which are also based on RPQ's.

Course I: Theoretical Foundations

Data model: Graphs

Query language: RPQs

Course II & III: A practical application

■ Data model: Property graphs

Query language: Cypher

Part I: Theoretical foundations

Part I: Theoretical foundations

1. Data model: labeled graphs

Our data model : (Labeled) graphs (1)

A graph consists of ...

Vertices

Example

- Edges
- Edge labels

Example

A graph consists of ...

- Vertices
- Edges
- Edge labels

0

1)

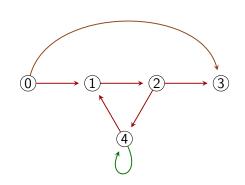
(4)

Our data model : (Labeled) graphs (1)

Example

A graph consists of ...

- Vertices
- Edges
- Edge labels

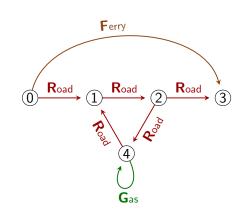


Our data model : (Labeled) graphs (1)

Example

A graph consists of ...

- Vertices
- Edges
- Edge labels



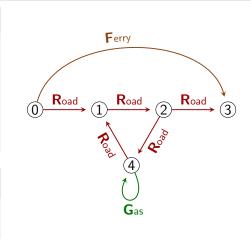
Definition

A labeled graph is a triplet (V, L, E)

- V is a finite set of vertices
- L is a finite set of labels
 E ⊆ V × L × V is a finite set of edges

Formal representation of G

- $V = \{0, 1, 2, 3, 4\}$
- $L = \{ \mathbf{R}, \mathbf{F}, \mathbf{G} \}$
- $E = \{ (0, \mathbf{R}, 1), (1, \mathbf{R}, 2), (2, \mathbf{R}, 3), (2, \mathbf{R}, 4), (4, \mathbf{R}, 1), (0, \mathbf{F}, 3), (4, \mathbf{G}, 4) \}$



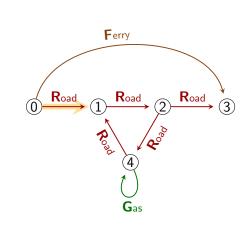
Definition

A labeled graph is a triplet (V, L, E)

- V is a finite set of vertices
- *L* is a finite set of **labels**
- $E \subseteq V \times L \times V$ is a finite set of **edges**

Formal representation of G

- $V = \{0, 1, 2, 3, 4\}$
- $E = \{ (0, \mathbf{R}, 1), (1, \mathbf{R}, 2), (2, \mathbf{R}, 3), (2, \mathbf{R}, 4), (4, \mathbf{R}, 1), (0, \mathbf{F}, 3), (4, \mathbf{G}, 4) \}$



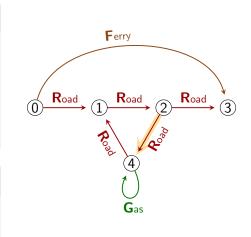
Definition

A labeled graph is a triplet (V, L, E)

- V is a finite set of vertices
- L is a finite set of labels
- $E \subseteq V \times L \times V$ is a finite set of **edges**

Formal representation of G

- $V = \{0, 1, 2, 3, 4\}$
- $L = \{R, F, G\}$
- $E = \{ (0, \mathbf{R}, 1), (1, \mathbf{R}, 2), (2, \mathbf{R}, 3), (2, \mathbf{R}, 4), (4, \mathbf{R}, 1), (0, \mathbf{F}, 3), (4, \mathbf{G}, 4) \}$



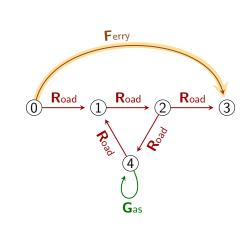
Definition

A labeled graph is a triplet (V, L, E)

- V is a finite set of vertices
- L is a finite set of labels
- $E \subseteq V \times L \times V$ is a finite set of **edges**

Formal representation of G

- $V = \{0, 1, 2, 3, 4\}$
- $L = \{ \mathbf{R}, \mathbf{F}, \mathbf{G} \}$
- $E = \{ (0, \mathbf{R}, 1), (1, \mathbf{R}, 2), (2, \mathbf{R}, 3), (2, \mathbf{R}, 4), (4, \mathbf{R}, 1), (0, \mathbf{F}, 3), (4, \mathbf{G}, 4) \}$



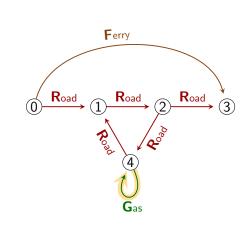
Definition

A labeled graph is a triplet (V, L, E)

- V is a finite set of vertices
- L is a finite set of labels
- $E \subseteq V \times L \times V$ is a finite set of **edges**

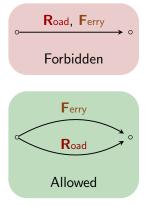
Formal representation of G

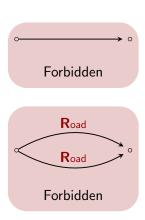
- $V = \{0, 1, 2, 3, 4\}$
- $L = \{ \mathbf{R}, \mathbf{F}, \mathbf{G} \}$
- $E = \{ (0, \mathbf{R}, 1), (1, \mathbf{R}, 2), (2, \mathbf{R}, 3), (2, \mathbf{R}, 4), (4, \mathbf{R}, 1), (0, \mathbf{F}, 3), (4, \mathbf{G}, 4) \}$



Our graphs are single-labeled and single-edge

- Each edge has exactly one label.
- There cannot be two identical edges.





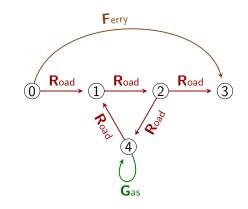
The graph DM is about topology, not data

- We encode the existence of entities and of relations between entities
 Ex: cities, roads
- We don't encode specific data of an entity or relation
 Ex: names, distances

Examples

Our model cannot encode that

- the road from 0 to 1 is 2km long
- the gas price is 2€ in vertex 4



Part I: Theoretical foundations

2. Regular Path Queries

A regular path query is a walk pattern matching.

An RPQ

- is a regular expression
- sent to a graph
- to match walks.

A **letter** is a symbol coming from a finite set, the **alphabet**.

In our case, the alphabet is the label-set of the graph.

- {R, F, G} is an alphabet
- R and G are letters

A **letter** is a symbol coming from a finite set, the **alphabet**.

In our case, the alphabet is the label-set of the graph.

Examples:

- {R, F, G} is an alphabet
- R and G are letters

A **word** is a finite sequence of letters

Examples words:

- RGRR
- R
- \bullet ε , the empty word

A **letter** is a symbol coming from a finite set, the **alphabet**.

In our case, the alphabet is the label-set of the graph.

Examples:

- \blacksquare {**R**, **F**, **G**} is an alphabet
- R and G are letters

A **word** is a finite sequence of letters

Examples words:

- RGRR
- R
- \bullet ε , the empty word

A **language** is a finite or infinite set of words

Example languages:

- {**R**, **RG**}
- **■** {**R**, **RR**, **RRR**, . . . }
- The words with one **G**
- The words with a prime number of G

- Each letter is a regexp
- lacksquare is a regexp

Ex: ε , **R** and **F** are regexps

- Each letter is a regexp
- \bullet ε is a regexp

Ex: ε , **R** and **F** are regexps

Concatenation ·

If Q_1 and Q_2 are regexps Then $Q_1 \cdot Q_2$ is a regexp

Ex: $\mathbf{R} \cdot \mathbf{R}$ and $\mathbf{G} \cdot \mathbf{F}$ are regexps $(\mathbf{R} \cdot \mathbf{R}) \cdot (\mathbf{G} \cdot \mathbf{F})$ is a regexp

- Each letter is a regexp
- ullet ε is a regexp

Ex: ε , **R** and **F** are regexps

Concatenation ·

If Q_1 and Q_2 are regexps Then $Q_1 \cdot Q_2$ is a regexp

Ex: $\mathbf{R} \cdot \mathbf{R}$ and $\mathbf{G} \cdot \mathbf{F}$ are regexps $(\mathbf{R} \cdot \mathbf{R}) \cdot (\mathbf{G} \cdot \mathbf{F})$ is a regexp

Disjunction +

If Q_1 and Q_2 are regexps **Then** $Q_1 + Q_2$ is a regexp

Ex: $\mathbf{R} + \mathbf{R}$ and $\mathbf{G} + \mathbf{F}$ are regexps $(\mathbf{R} \cdot \mathbf{R}) + (\mathbf{G} \cdot \mathbf{F})$ is a regexp

- Each letter is a regexp
- \bullet ε is a regexp

Ex: ε , **R** and **F** are regexps

Concatenation •

If Q_1 and Q_2 are regexps Then $Q_1 \cdot Q_2$ is a regexp

Ex: $\mathbf{R} \cdot \mathbf{R}$ and $\mathbf{G} \cdot \mathbf{F}$ are regexps $(\mathbf{R} \cdot \mathbf{R}) \cdot (\mathbf{G} \cdot \mathbf{F})$ is a regexp

Disjunction +

If Q_1 and Q_2 are regexps Then $Q_1 + Q_2$ is a regexp

Ex: $\mathbf{R} + \mathbf{R}$ and $\mathbf{G} + \mathbf{F}$ are regexps $(\mathbf{R} \cdot \mathbf{R}) + (\mathbf{G} \cdot \mathbf{F})$ is a regexp

Kleene star *

If Q is a regexp Then Q^* is a regexp

Ex: \mathbf{R}^* and \mathbf{G}^* are regexps $((\mathbf{R}^* \cdot) + \mathbf{F})^*$ is a regexp

Examples:

- $2 L(\mathbf{R} \cdot \mathbf{F} \cdot \mathbf{G}) = \{\mathbf{RFG}\}$

- $2 L(\mathbf{R} \cdot \mathbf{F} \cdot \mathbf{G}) = \{\mathbf{RFG}\}$

- $2 L(\mathbf{R} \cdot \mathbf{F} \cdot \mathbf{G}) = \{\mathbf{RFG}\}$

```
Examples:
```

- - L(R·F·G) = {RFG}
 L(R+G) = {R,G}
- 4 $L(\mathbf{R} \cdot \mathbf{R} + \mathbf{G} \cdot \mathbf{R}) = L((\mathbf{R} + \mathbf{G}) \cdot \mathbf{R}) = \{\mathbf{RR}, \mathbf{GR}\}$
- **5** $L(\mathbf{R}^*) = \{\varepsilon, \mathbf{R}, \mathbf{RR}, \mathbf{RRR}, \ldots\}$
- 6 $L((\mathbf{R} + \mathbf{G})^*) =$
- $L((\mathbf{R} \cdot \mathbf{R})^*) =$

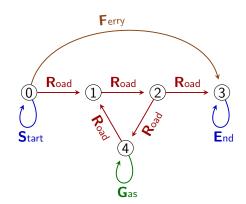
- $2 L(\mathbf{R} \cdot \mathbf{F} \cdot \mathbf{G}) = \{\mathbf{RFG}\}$
- 3 $L(R + G) = \{R, G\}$
- $L(\mathbf{R} \cdot \mathbf{R} + \mathbf{G} \cdot \mathbf{R}) = L((\mathbf{R} + \mathbf{G}) \cdot \mathbf{R}) = \{\mathbf{RR}, \mathbf{GR}\}$
- 5 $L(\mathbf{R}^*) = \{\varepsilon, \mathbf{R}, \mathbf{RR}, \mathbf{RRR}, \ldots\}$
- 6 $L((\mathbf{R} + \mathbf{G})^*) = \{\varepsilon, \mathbf{R}, \mathbf{G}, \mathbf{RR}, \mathbf{RG}, \mathbf{GG}, \ldots\}$
- 7 $L((\mathbf{R} \cdot \mathbf{R})^*) = \{\varepsilon, \mathbf{RR}, \mathbf{RRRR}, \mathbf{RRRRRR}, \ldots\}$ "words of even length"
- 8 $L(\mathbf{R}^* \cdot \mathbf{G} \cdot \mathbf{R}^*) = \{\mathbf{G}, \mathbf{RG}, \mathbf{GR}, \mathbf{RGR}, \mathbf{RRG}, \ldots\}$ "words over $\{\mathbf{G}, \mathbf{R}\}$ with exactly one \mathbf{G} "

```
Examples:
```

- 1 $L(R) = \{R\}$
- $2 L(R \cdot F \cdot G) = \{RFG\}$
- 3 $L(R + G) = \{R, G\}$
- 5 $L(\mathbf{R}^*) = \{\varepsilon, \mathbf{R}, \mathbf{RR}, \mathbf{RRR}, \ldots\}$
- 6 $L((\mathbf{R} + \mathbf{G})^*) = \{\varepsilon, \mathbf{R}, \mathbf{G}, \mathbf{RR}, \mathbf{RG}, \mathbf{GG}, \ldots\}$
- 7 $L((\mathbf{R} \cdot \mathbf{R})^*) = \{\varepsilon, \mathbf{RR}, \mathbf{RRRR}, \mathbf{RRRRRR}, \ldots\}$ "words of even length"
- **8** $L(\mathbf{R}^* \cdot \mathbf{G} \cdot \mathbf{R}^*) = \{\mathbf{G}, \mathbf{RG}, \mathbf{GR}, \mathbf{RGR}, \mathbf{RRG}, \ldots\}$ "words over $\{\mathbf{G}, \mathbf{R}\}$ with exactly one \mathbf{G} "

Any language denoted by a regexp is called regular.

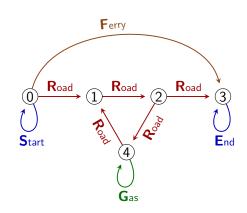
- queries a graph $\mathcal{D} = (V, L, E)$
- is a **regexp** over *L*
- lacktriangle matches a set of walks in ${\cal D}$



- queries a graph $\mathcal{D} = (V, L, E)$
 - is a **regexp** over *L*
- lacktriangle matches a set of walks in ${\mathcal D}$

A walk in \mathcal{D} is a consistent sequence of edges in \mathcal{D} .

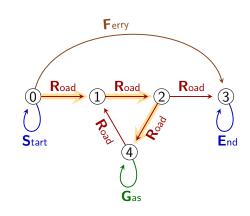
Example walk	Label
$0 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 4$	RRR
$0 \xrightarrow{\mathbf{S}} 0 \xrightarrow{\mathbf{F}} 3$	SF
$0 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 4 \xrightarrow{\mathbf{G}}$	
$4 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 3$	RRRGRRR



- queries a graph $\mathcal{D} = (V, L, E)$
 - is a **regexp** over *L*
- lacksquare matches a set of walks in ${\mathcal D}$

A walk in \mathcal{D} is a consistent sequence of edges in \mathcal{D} .

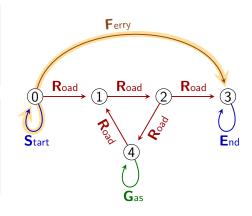
Example walk	Label
$0 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 4$	RRR
$0 \xrightarrow{\mathbf{S}} 0 \xrightarrow{\mathbf{F}} 3$	SF
$0 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 4 \xrightarrow{\mathbf{G}}$	
$4 \xrightarrow{\mathbb{R}} 1 \xrightarrow{\mathbb{R}} 2 \xrightarrow{\mathbb{R}} 3$	RRRGRRR



- queries a graph $\mathcal{D} = (V, L, E)$
 - is a **regexp** over *L*
- lacktriangle matches a set of walks in ${\mathcal D}$

A walk in \mathcal{D} is a consistent sequence of edges in \mathcal{D} .

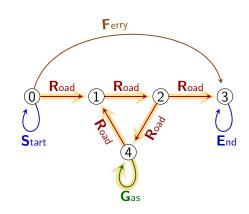
Example walk	Label
$0 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 4$	RRR
$0 \xrightarrow{\mathbf{S}} 0 \xrightarrow{\mathbf{F}} 3$	SF
$0 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 4 \xrightarrow{\mathbf{G}}$	
$4 \xrightarrow{R} 1 \xrightarrow{R} 2 \xrightarrow{R} 3$	RRRGRRR



- queries a graph $\mathcal{D} = (V, L, E)$
 - is a **regexp** over *L*
- lacksquare matches a set of walks in ${\mathcal D}$

A walk in $\mathcal D$ is a consistent sequence of edges in $\mathcal D$.

Example walk	Label
$0 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 4$	RRR
$0 \xrightarrow{\mathbf{S}} 0 \xrightarrow{\mathbf{F}} 3$	SF
$0 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 4 \xrightarrow{\mathbf{G}}$	
$4 \xrightarrow{\mathbf{R}} 1 \xrightarrow{\mathbf{R}} 2 \xrightarrow{\mathbf{R}} 3$	RRRGRRR



- queries a graph $\mathcal{D} = (V, L, E)$
 - is a **regexp** over *L*
- lacktriangle matches a set of walks in ${\mathcal D}$

A walk in \mathcal{D} is a consistent sequence of edges in \mathcal{D} .

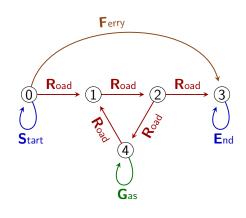
The **label of a walk** is the **word** formed by the label of its edges.

Example walk Label
$$0 \xrightarrow{R} 1 \xrightarrow{R} 2 \xrightarrow{R} 4 \qquad RRR$$

$$0 \xrightarrow{S} 0 \xrightarrow{F} 3 \qquad SF$$

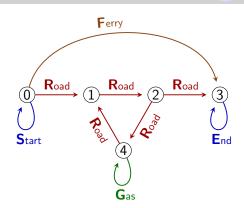
$$0 \xrightarrow{R} 1 \xrightarrow{R} 2 \xrightarrow{R} 4 \xrightarrow{G}$$

$$4 \xrightarrow{R} 1 \xrightarrow{R} 2 \xrightarrow{R} 3 \qquad RRRGRRR$$

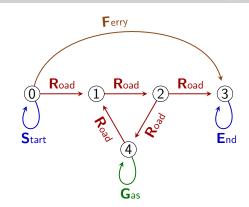


A walk w is a match to an RPQ Q if the label of w is in L(Q).

$$L(Q_1) = \{\mathbf{R}\}$$



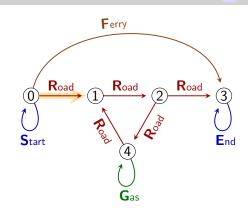
$$L(Q_1) = \{\mathbf{R}\}$$



$$L(Q_1) = \{\mathbf{R}\}$$

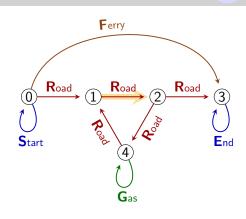
The matches to Q_1 are the walks labeled by some word in $L(Q_1)$, that is labeled by \mathbf{R} .

Match for Q_1 Label $0 \rightarrow 1$



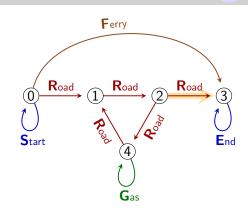
$$L(Q_1) = \{\mathbf{R}\}$$

Match for
$$Q_1$$
 Label $0 \rightarrow 1$ R R



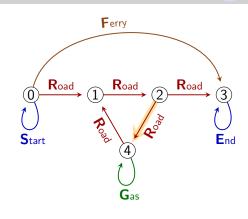
$$L(Q_1) = \{\mathbf{R}\}$$

Match for Q_1	Label	
$0 \rightarrow 1$	R	
$1 \rightarrow 2$	R	
$2 \rightarrow 3$	R	



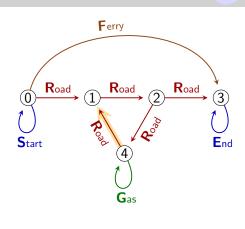
$$L(Q_1) = \{\mathbf{R}\}$$

Match for Q_1	Label	
$0 \rightarrow 1$	R	
$1 \rightarrow 2$	R	
$2 \rightarrow 3$	R	
$2 \rightarrow 4$	R	



$$L(Q_1) = \{\mathbf{R}\}$$

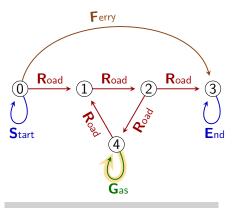
Match for Q_1	Label	
$0 \rightarrow 1$	R	
$1 \rightarrow 2$	R	
$2 \rightarrow 3$	R	
$2 \rightarrow 4$	R	
4 → 1	R	



$$L(Q_1)=\{{\bf R}\}$$

The matches to Q_1 are the walks labeled by some word in $L(Q_1)$, that is labeled by \mathbb{R} .

Match for Q_1	Label
$0 \rightarrow 1$	R
$1 \rightarrow 2$	R
$2 \rightarrow 3$	R
$2 \rightarrow 4$	R
$4 \rightarrow 1$	R



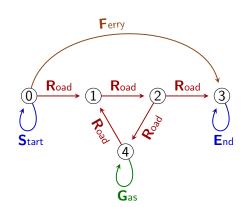
Matching
$$Q_2 = \mathbf{G}$$

$$L(Q_2) = \{\mathbf{G}\}$$

Match for Q_2 Label \mathbf{G}

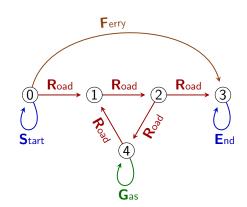
$$Q_3 = \mathbf{R} + \mathbf{F}$$

$$L(Q_3)=\{{\bf R},{\bf F}\}$$



$$Q_3 = \mathbf{R} + \mathbf{F}$$

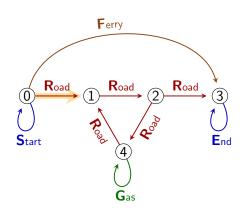
$$L(Q_3) = \{ \mathbf{R}, \mathbf{F} \}$$



$$Q_3 = \mathbf{R} + \mathbf{F}$$

$$L(Q_3) = \{\mathbf{R}, \mathbf{F}\}$$

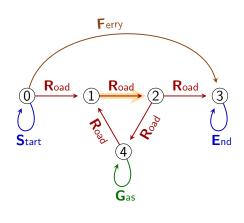
Match for Q_3	Label	
$0 \rightarrow 1$	R	
$1 \rightarrow 2$	R	
$2 \rightarrow 3$	R	
$2 \rightarrow 4$	R	
$4 \rightarrow 1$	R	
$0 \rightarrow 3$	F	



$$Q_3 = \mathbf{R} + \mathbf{F}$$

$$L(Q_3) = \{\mathbf{R}, \mathbf{F}\}$$

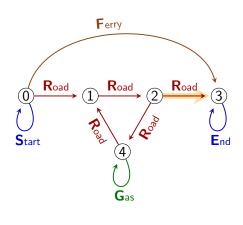
Match for Q_3	Label	
$0 \rightarrow 1$	R	
$1 \rightarrow 2$	R	
$2 \rightarrow 3$	R	
$2 \rightarrow 4$	R	
$4 \rightarrow 1$	R	
$0 \rightarrow 3$	F	



$$Q_3 = \mathbf{R} + \mathbf{F}$$

$$L(Q_3) = \{\mathbf{R}, \mathbf{F}\}$$

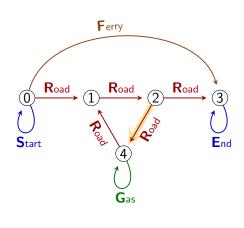
Match for Q	₃ Label
$0 \rightarrow 1$	R
$1 \rightarrow 2$	R
$2 \rightarrow 3$	R
$2 \rightarrow 4$	R
$4 \rightarrow 1$	R
$0 \rightarrow 3$	F



$$Q_3 = \mathbf{R} + \mathbf{F}$$

$$L(Q_3) = \{\mathbf{R}, \mathbf{F}\}$$

Match for	Q_3 Label
$0 \rightarrow 1$	R
$1 \rightarrow 2$	R
$2 \rightarrow 3$	R
$2 \rightarrow 4$	R
$4 \rightarrow 1$	R
$0 \rightarrow 3$	F

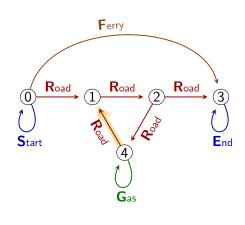


$$Q_3 = \mathbf{R} + \mathbf{F}$$

$$L(Q_3) = \{\mathbf{R}, \mathbf{F}\}$$

The matches to Q_3 are the walks labeled by some word in $L(Q_3)$, that is labeled by ${\bf R}$ or by ${\bf F}$.

Match for Q_3	Label	
$0 \rightarrow 1$	R	
$1 \rightarrow 2$	R	
$2 \rightarrow 3$	R	
$2 \rightarrow 4$	R	
4 → 1	R	
$0 \rightarrow 3$	F	

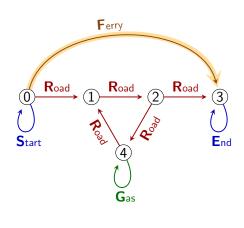


$$Q_3 = \mathbf{R} + \mathbf{F}$$

$$L(Q_3) = \{\mathbf{R}, \mathbf{F}\}$$

The matches to Q_3 are the walks labeled by some word in $L(Q_3)$, that is labeled by ${\bf R}$ or by ${\bf F}$.

Match for Q_3	Label	
$0 \rightarrow 1$	R	
$1 \rightarrow 2$	R	
$2 \rightarrow 3$	R	
$2 \rightarrow 4$	R	
$4 \rightarrow 1$	R	
$0 \rightarrow 3$	F	

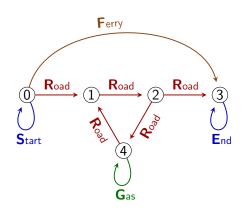


$$Q_3 = \mathbf{R} + \mathbf{F}$$

$$L(Q_3) = \{\mathbf{R}, \mathbf{F}\}$$

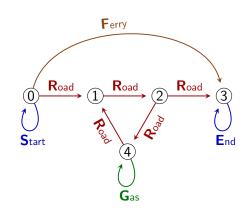
The matches to Q_3 are the walks labeled by some word in $L(Q_3)$, that is labeled by ${\bf R}$ or by ${\bf F}$.

Match for Q_3	Label	
$0 \rightarrow 1$	R	
$1 \rightarrow 2$	R	
$2 \rightarrow 3$	R	
$2 \rightarrow 4$	R	
$4 \rightarrow 1$	R	
$0 \rightarrow 3$	F	



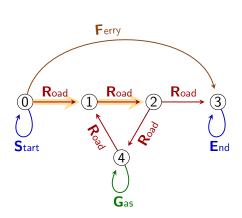
$$Q_4 = \mathbf{R} \cdot \mathbf{R}$$

$$L(Q_4)=\{{\bf RR}\}$$



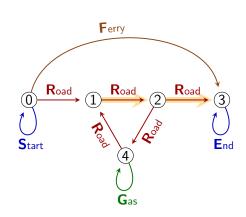
$$Q_4 = \mathbf{R} \cdot \mathbf{R}$$
 $L(Q_4) = \{\mathbf{RR}\}$

Match for Q_4 Label
 $0 \to 1 \to 2$ RR



$$Q_4 = \mathbf{R} \cdot \mathbf{R}$$

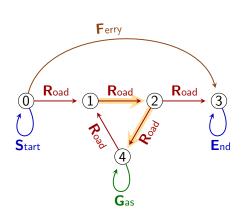
$$L(Q_4) = \{\mathbf{RR}\}$$
Match for Q_4 Label
$$0 \to 1 \to 2$$
 RR
$$1 \to 2 \to 3$$
 RR



$$Q_4 = \mathbf{R} \cdot \mathbf{R}$$

$$L(Q_4) = \{\mathbf{RR}\}$$

$$\begin{array}{cccc} \mathsf{Match for } Q_4 & \mathsf{Label} \\ 0 \to 1 \to 2 & \mathsf{RR} \\ 1 \to 2 \to 3 & \mathsf{RR} \\ 1 \to 2 \to 4 & \mathsf{RR} \end{array}$$



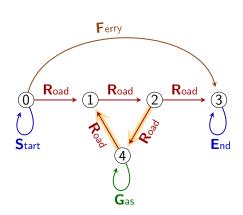
$$Q_4 = \mathbf{R} \cdot \mathbf{R}$$

$$L(Q_4) = \{\mathbf{RR}\}$$
Match for Q_4 Label
$$0 \to 1 \to 2 \quad \mathbf{RR}$$

$$1 \to 2 \to 3 \quad \mathbf{RR}$$

$$1 \to 2 \to 4 \quad \mathbf{RR}$$

$$2 \to 4 \to 1 \quad \mathbf{RR}$$



$$Q_4 = \mathbf{R} \cdot \mathbf{R}$$

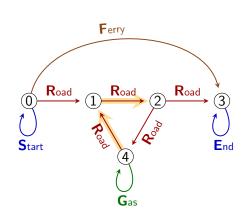
$$L(Q_4) = \{\mathbf{RR}\}$$
Match for Q_4 Label
$$0 \to 1 \to 2 \quad \mathbf{RR}$$

$$1 \to 2 \to 3 \quad \mathbf{RR}$$

$$1 \to 2 \to 4 \quad \mathbf{RR}$$

$$2 \to 4 \to 1 \quad \mathbf{RR}$$

$$4 \to 1 \to 2 \quad \mathbf{RR}$$



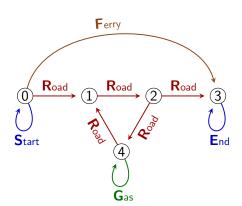
$$Q_4 = \mathbf{R} \cdot \mathbf{R}$$

$$L(Q_4) = \{\mathbf{RR}\}$$

$$\begin{array}{c} \text{Match for } Q_4 & \text{Label} \\ 0 \to 1 \to 2 & \text{RR} \\ 1 \to 2 \to 3 & \text{RR} \\ 1 \to 2 \to 4 & \text{RR} \\ 2 \to 4 \to 1 & \text{RR} \\ 4 \to 1 \to 2 & \text{RR} \end{array}$$

Matches for
$$Q_5 = \mathbf{S} \cdot \mathbf{R} \cdot \mathbf{R} \cdot \mathbf{R}$$

 $L(Q_5) = \{\mathbf{SRRR}\}$

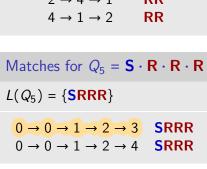


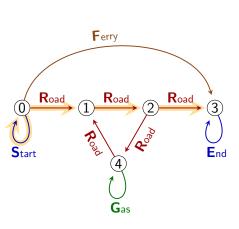
$$Q_4 = \mathbf{R} \cdot \mathbf{R}$$

$$L(Q_4) = \{\mathbf{RR}\}$$

$$\begin{array}{c} \mathsf{Match \ for \ } Q_4 & \mathsf{Label} \\ 0 \to 1 \to 2 & \mathsf{RR} \\ 1 \to 2 \to 3 & \mathsf{RR} \\ 1 \to 2 \to 4 & \mathsf{RR} \\ 2 \to 4 \to 1 & \mathsf{RR} \\ 4 \to 1 \to 2 & \mathsf{RR} \end{array}$$

$$\mathsf{Matches \ for \ } Q_5 = \mathbf{S} \cdot \mathbf{R} \cdot \mathbf{R} \cdot \mathbf{R}$$



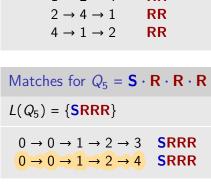


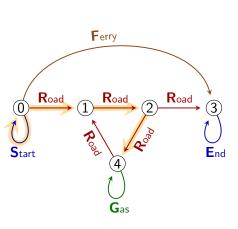
$$Q_4 = \mathbf{R} \cdot \mathbf{R}$$

$$L(Q_4) = \{\mathbf{RR}\}$$

$$\begin{array}{c} \text{Match for } Q_4 & \text{Label} \\ 0 \to 1 \to 2 & \text{RR} \\ 1 \to 2 \to 3 & \text{RR} \\ 1 \to 2 \to 4 & \text{RR} \\ 2 \to 4 \to 1 & \text{RR} \\ 4 \to 1 \to 2 & \text{RR} \end{array}$$

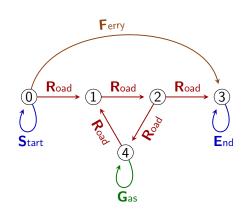
$$\begin{array}{c} \text{Matches for } Q_5 = \mathbf{S} \cdot \mathbf{R} \cdot \mathbf{R} \cdot \mathbf{R} \\ \end{array}$$





$$Q_6 = \mathbf{S} \cdot (\mathbf{R} + \mathbf{F})$$

 $L(Q_6) = \{\mathbf{SR}, \mathbf{SF}\}$



$$Q_6 = \mathbf{S} \cdot (\mathbf{R} + \mathbf{F})$$

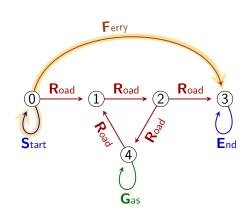
$$L(Q_6) = \{\mathbf{SR}, \mathbf{SF}\}$$
Match for Q_6 Label
$$0 \to 0 \to 1$$

$$0 \to 0 \to 3$$
SF



$$Q_6 = \mathbf{S} \cdot (\mathbf{R} + \mathbf{F})$$
 $L(Q_6) = \{\mathbf{SR}, \mathbf{SF}\}$

Match for Q_6 Label
 $0 \to 0 \to 1$ SR
 $0 \to 0 \to 3$ SF

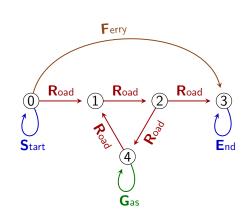


$$Q_6 = \mathbf{S} \cdot (\mathbf{R} + \mathbf{F})$$
 $L(Q_6) = \{\mathbf{SR}, \mathbf{SF}\}$

Match for Q_6 Label
 $0 \to 0 \to 1$ SR
 $0 \to 0 \to 3$ SF

$$Q_7 = (\mathbf{S} + \mathbf{R})(\mathbf{F} + \mathbf{G})(\mathbf{E} + \mathbf{R})$$

 $L(Q_7) =$



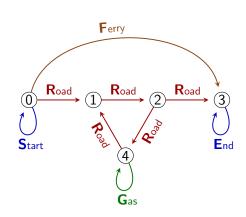
$$Q_6 = \mathbf{S} \cdot (\mathbf{R} + \mathbf{F})$$

$$L(Q_6) = \{\mathbf{SR}, \mathbf{SF}\}$$

$$\begin{array}{ccc} \text{Match for } Q_6 & \text{Label} \\ 0 \rightarrow 0 \rightarrow 1 & \mathbf{SR} \\ 0 \rightarrow 0 \rightarrow 3 & \mathbf{SF} \end{array}$$

$$Q_7 = (S+R)(F+G)(E+R)$$

 $L(Q_7) = \{SFE, SFR, SGE, SGR, RFE, RFR, RGE, RGR\}$



$$Q_6 = \mathbf{S} \cdot (\mathbf{R} + \mathbf{F})$$

$$L(Q_6) = \{\mathbf{SR}, \mathbf{SF}\}$$

$$\begin{array}{ccc} \mathsf{Match for } Q_6 & \mathsf{Label} \\ 0 \to 0 \to 1 & \mathsf{SR} \\ 0 \to 0 \to 3 & \mathsf{SF} \end{array}$$

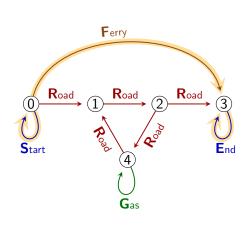
$$Q_7 = (S+R)(F+G)(E+R)$$

$$L(Q_7) = \{SFE, SFR, SGE, SGR, RFE, RFR, RGE, RGR\}$$

$$Match for Q_7 Label$$

$$0 \rightarrow 0 \rightarrow 3 \rightarrow 3 SFE$$

$$2 \rightarrow 4 \rightarrow 4 \rightarrow 1 RGR$$



$$Q_6 = \mathbf{S} \cdot (\mathbf{R} + \mathbf{F})$$

$$L(Q_6) = \{\mathbf{SR}, \mathbf{SF}\}$$

$$\mathbf{Match for } Q_6 \quad \mathbf{Label}$$

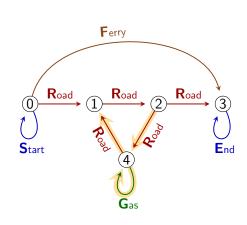
$$0 \to 0 \to 1 \quad \mathbf{SR}$$

$$0 \to 0 \to 3 \quad \mathbf{SF}$$

$$Q_7 = (S+R)(F+G)(E+R)$$

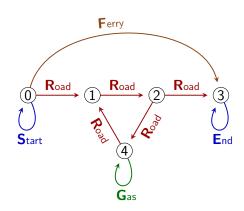
$$L(Q_7) = \{SFE, SFR, SGE, SGR, RFE, RFR, RGE, RGR\}$$

Match for Q_7 Label $0 \rightarrow 0 \rightarrow 3 \rightarrow 3$ SFE $2 \rightarrow 4 \rightarrow 4 \rightarrow 1$ RGR



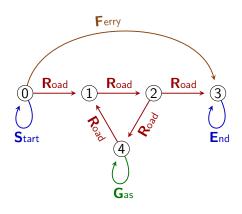
$$Q_8 = \mathbf{R}^*$$

$$L(Q_8) = \{\mathbf{R}, \mathbf{RR}, \mathbf{RRR}, \mathbf{RRRR}, \mathbf{RRRRR}, \dots\}$$

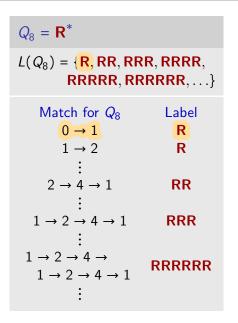


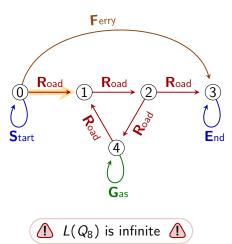
$$Q_8 = \mathbf{R}^*$$

 $L(Q_8) = \{\mathbf{R}, \mathbf{RR}, \mathbf{RRR}, \mathbf{RRRR}, \mathbf{RRRRR}, \dots\}$

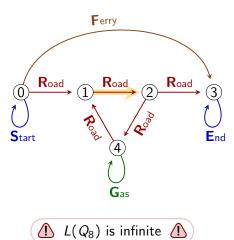


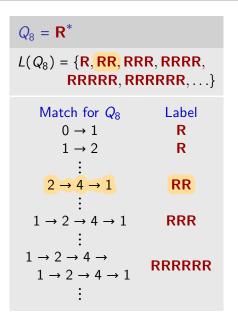
 \triangle $L(Q_8)$ is infinite \triangle

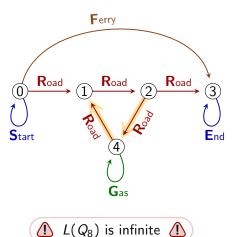


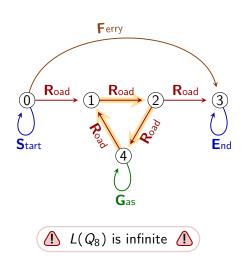












$$Q_8 = \mathbb{R}^*$$

$$L(Q_8) = \{R, RR, RRR, RRRR, RRRRR, RRRRR, \dots\}$$

$$Match for Q_8 \qquad Label$$

$$0 \to 1 \qquad R$$

$$1 \to 2 \qquad R$$

$$\vdots$$

$$2 \to 4 \to 1 \qquad RR$$

$$\vdots$$

$$1 \to 2 \to 4 \to 1 \qquad RRR$$

$$\vdots$$

$$1 \to 2 \to 4 \to 1 \qquad RRR$$

$$\vdots$$

$$1 \to 2 \to 4 \to 1 \qquad RRRR$$

$$\vdots$$

$$1 \to 2 \to 4 \to 1 \qquad RRRRR$$

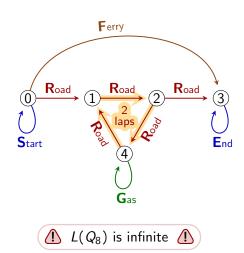
$$\vdots$$

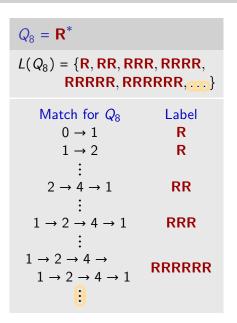
$$1 \to 2 \to 4 \to 1 \qquad RRRRRR$$

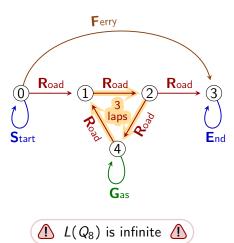
$$\vdots$$

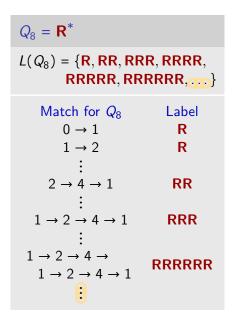
$$1 \to 2 \to 4 \to 1 \qquad RRRRRR$$

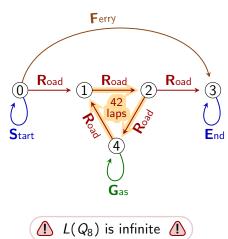
$$\vdots$$

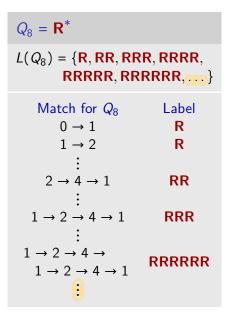


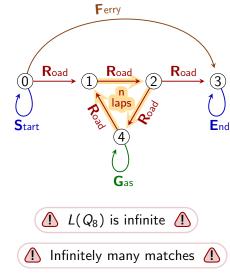




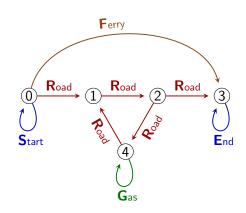








Find a finite representation of the matches to $Q_9 = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$.



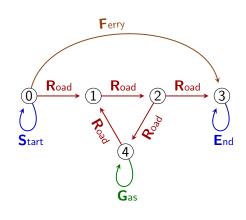
Find a finite representation of the matches to $Q_9 = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$.

Answer

$$0 \xrightarrow{S} 0 \xrightarrow{R} 1 \xrightarrow{R} 2$$

$$\left(\xrightarrow{R} 4 \xrightarrow{R} 1 \xrightarrow{R} 2 \right)^*$$

$$\xrightarrow{R} 3 \xrightarrow{E} 3$$



Find a finite representation of the matches to $Q_9 = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$.

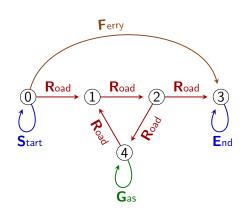
Answer

$$\left(0 \xrightarrow{S} 0 \xrightarrow{R} 1 \xrightarrow{R} 2\right)$$

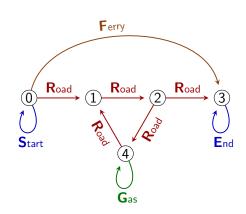
$$\left(\xrightarrow{R} 4 \xrightarrow{R} 1 \xrightarrow{R} 2\right)^{*}$$

$$\xrightarrow{R} 3 \xrightarrow{E} 3$$

$$+ \left(0 \xrightarrow{S} 0 \xrightarrow{F} 1 \xrightarrow{E} 3\right)$$



Find a finite repr. of the matches to $Q_{10} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{G}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$.



Find a finite repr. of the matches to $Q_{10} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{G}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$.

Answer

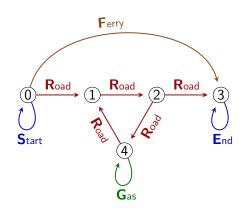
$$0 \xrightarrow{S} 0 \xrightarrow{R} 1 \xrightarrow{R} 2 \xrightarrow{R} 4$$

$$\left(\xrightarrow{R} 1 \xrightarrow{R} 2 \xrightarrow{R} 4 \right)^*$$

$$\xrightarrow{G} 4$$

$$\left(\xrightarrow{R} 1 \xrightarrow{R} 2 \xrightarrow{R} 4 \right)^*$$

$$\xrightarrow{R} 1 \xrightarrow{R} 2 \xrightarrow{R} 3 \xrightarrow{E} 3$$



Any idea an how to compute matches in general?

For instance: Glushkov Construction (aka. position automaton, Berry-Sethi)

Input Regexp Q

 $\textbf{Output} \ \ \mathsf{Nondeterministic} \ \ \mathsf{Automaton} \ \ \mathcal{A}$

- $L(\mathcal{A}) = L(Q)$
- \mathcal{A} is small: $O(\operatorname{size}(Q))$ states
- \mathcal{A} is computed efficiently: $O(\operatorname{size}(Q)^2)$

$$S(R+F)^*G(R+F)^*E$$

For instance: Glushkov Construction (aka. position automaton, Berry-Sethi)

Input Regexp QOutput Nondeterministic Automaton A

- L(A) = L(Q)
- \mathcal{A} is small: $O(\operatorname{size}(Q))$ states
- \mathcal{A} is computed efficiently: $O(\operatorname{size}(Q)^2)$

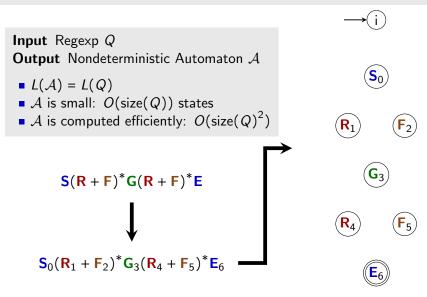
$$S(R + F)^*G(R + F)^*E$$

$$\downarrow$$

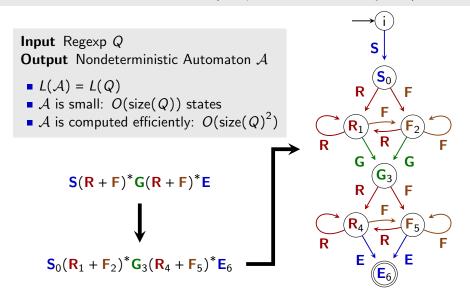
$$S_0(R_1 + F_2)^*G_3(R_4 + F_5)^*E_6$$

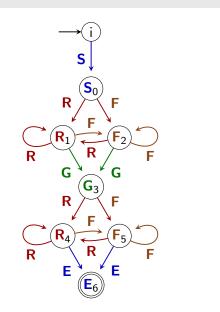
Regexps may be transformed into a finite automaton

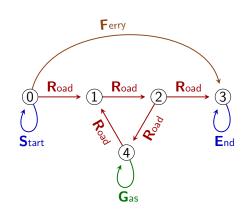
For instance: Glushkov Construction (aka. position automaton, Berry-Sethi)



For instance: Glushkov Construction (aka. position automaton, Berry-Sethi)



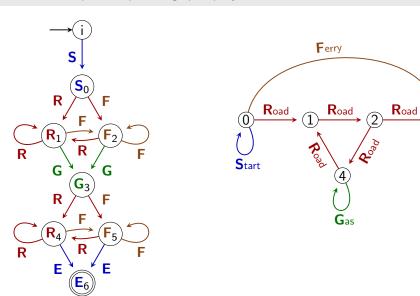




A graph is essentially an automaton

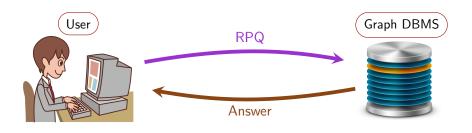
End

Exercice: compute the product graph×query

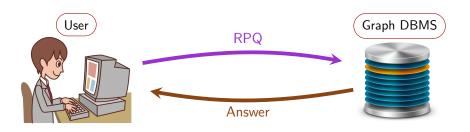


Part I: Theoretical foundations

3. RPQ semantics



Infinitely many matches but the user expects **finite** answer 1



⚠ Infinitely many matches but the user expects finite answer

- A RPQ semantics = a way to interpret RPQs
- The semantics defines the correct answer ⇒ The same query has different answers under different semantics
- Goal of an RPQ semantics: ensure the answer to be finite, while remaining meaningful and easy to compute.

Principles

- Returns a set of pairs of vertices (and not walks)
- Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks	Projection on endpoints
$1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(1,3)
$2 \rightarrow 2$	(2,2)
$0 \rightarrow 0 \rightarrow 2 \rightarrow 3 \rightarrow 0 \rightarrow 3$	(0,3)
$1 \rightarrow 0 \rightarrow 3$	(1,3)

Principles

- Returns a set of pairs of vertices (and not walks)
- Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints $\begin{array}{ll} 1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3 & (1,3) \\ 2 \rightarrow 2 & (2,2) \\ 0 \rightarrow 0 \rightarrow 2 \rightarrow 3 \rightarrow 0 \rightarrow 3 & (0,3) \\ 1 \rightarrow 0 \rightarrow 3 & (1,3) \end{array}$

Principles

- Returns a set of pairs of vertices (and not walks)
- Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints $1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3$ (1,3) (2,2) $0 \rightarrow 0 \rightarrow 2 \rightarrow 3 \rightarrow 0 \rightarrow 3$ (0,3) $1 \rightarrow 0 \rightarrow 3$ (1,3)

Principles

- Returns a set of pairs of vertices (and not walks)
- Precisely, returns the endpoints (first and last vertex) of the matches

Example

Matching walks Projection on endpoints $1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3$ (1,3) $2 \rightarrow 2$ (2,2) $0 \rightarrow 0 \rightarrow 2 \rightarrow 3 \rightarrow 0 \rightarrow 3$ (0,3) $1 \rightarrow 0 \rightarrow 3$ (1,3)

Principles

- Returns a set of pairs of vertices (and not walks)
- Precisely, returns the endpoints (first and last vertex) of the matches

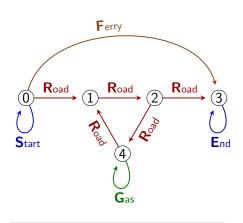
Example

$$\begin{array}{ll} \text{Matching walks} & \text{Projection on endpoints} \\ 1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3 & (1,3) \\ 2 \rightarrow 2 & (2,2) \\ 0 \rightarrow 0 \rightarrow 2 \rightarrow 3 \rightarrow 0 \rightarrow 3 & (0,3) \\ 1 \rightarrow 0 \rightarrow 3 & (1,3) \end{array}$$

$$Q_{11} = GR^*$$

Match	Endpoints
4 → 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 3$	3 (4,3)
:	:
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	
\rightarrow 4 \rightarrow 1 \rightarrow 2	
\rightarrow 3	3 (4,3)
:	:

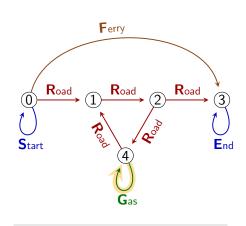
Other matches do not add new pairs to the answer



$$Q_{11} = GR^*$$

Match	Endpoints
4 -> 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow$	3 (4,3)
:	:
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	
\rightarrow 4 \rightarrow 1 \rightarrow 2	
\rightarrow	3 (4,3)
:	:

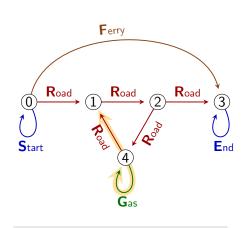
Other matches do not add new pairs to the answer



$$Q_{11} = \mathbf{GR}^*$$

Match	Endpoints
$4 \rightarrow 4$ $4 \rightarrow 4 \rightarrow 1$	(4,4) (4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 3$	3 (4,3)
$\vdots \\ 4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	•
\rightarrow 4 \rightarrow 1 \rightarrow 2	
→ 3 :	3 (4,3) :

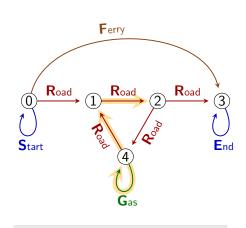
Other matches do not add new pairs to the answer



$$Q_{11} = \mathbf{GR}^*$$

Match	Endpoints
4 → 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	→ 3 (4,3)
:	:
$4 \to 4 \to 1 \to 2$	
$\rightarrow 4 \rightarrow 1 \rightarrow 2$	_
-	→ 3 (4,3)
:	:

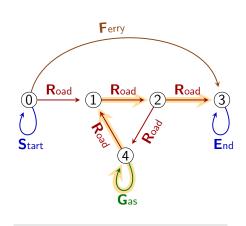
Other matches do not add new pairs to the answer



$$Q_{11} = \mathbf{GR}^*$$

Match	Endpoints
4 → 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow$	3 (4,3)
:	
$4 \to 4 \to 1 \to 2$	
$\rightarrow 4 \rightarrow 1 \rightarrow 2$	='
-	3 (4,3)
:	:

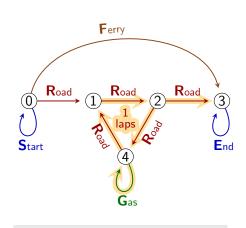
Other matches do not add new pairs to the answer



$$Q_{11} = GR^*$$

Match	Endpoints
4 → 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow$	3 (4,3)
<u> </u>	:
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	
$\rightarrow 4 \rightarrow 1 \rightarrow 2$	
\rightarrow	3 (4,3)
:	:

Other matches do not add new pairs to the answer



Pros and cons

Pros

- Efficient algorithms
- Output is always small
- Well grounded theory

Pros and cons

Pros

- Efficient algorithms
- Output is always small
- Well grounded theory

Cons

- Very limited information in the answer
 - User: "I want to go from Paris to Lyon by car"
 - Database: "Yes you can"

Principles

- Return walks
- For each endpoints (s, t), return the "best" match from s to t
- $\blacksquare \ \mathsf{Best} = \mathsf{shortest} = \mathsf{least} \ \mathsf{number} \ \mathsf{of} \ \mathsf{edges}$

Example

Match	Endpoints	Length
$1 \to 0 \to 2 \to 3$	(1,3)	3
$1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(1,3)	4
$0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(0,3)	3
$0 \rightarrow 2 \rightarrow 3$	(0,3)	2
$0 \rightarrow 0 \rightarrow 3$	(0,3)	2

Principles

- Return walks
- For each endpoints (s, t), return the "best" match from s to t
- lacksquare Best = shortest = least number of edges

Example

Match	Endpoints	Length
$1 \to 0 \to 2 \to 3$	(1,3)	3
$1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(1,3)	4
$0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(0,3)	3
$0 \rightarrow 2 \rightarrow 3$	(0,3)	2
$0 \rightarrow 0 \rightarrow 3$	(0,3)	2

Principles

- Return walks
- For each endpoints (s, t), return the "best" match from s to t
- $\blacksquare \ \mathsf{Best} = \mathsf{shortest} = \mathsf{least} \ \mathsf{number} \ \mathsf{of} \ \mathsf{edges}$

Example

Match	Endpoints	Length	
$1 \to 0 \to 2 \to 3$	(1,3)	3	Shortest for $(1,3)$
$1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(1,3)	4	Not shortest for $(1,3)$
$0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(0,3)	3	
$0 \rightarrow 2 \rightarrow 3$	(0,3)	2	
$0 \rightarrow 0 \rightarrow 3$	(0,3)	2	

Principles

- Return walks
- For each endpoints (s, t), return the "best" match from s to t
- Best = shortest = least number of edges

Example

Match	Endpoints	Length	
$1 \to 0 \to 2 \to 3$	(1,3)	3	Shortest for $(1,3)$
$1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(1,3)	4	Not shortest for $(1,3)$
$0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(0,3)	3	
$0 \rightarrow 2 \rightarrow 3$	(0,3)	2	
$0 \rightarrow 0 \rightarrow 3$	(0,3)	2	

Principles

- Return walks
- For each endpoints (s, t), return the "best" match from s to t
- $\blacksquare \ \mathsf{Best} = \mathsf{shortest} = \mathsf{least} \ \mathsf{number} \ \mathsf{of} \ \mathsf{edges}$

Example

Match

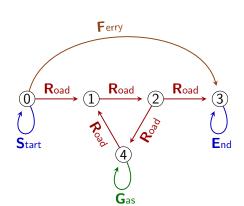
Match	Liiupoiiits	Length	
$1 \to 0 \to 2 \to 3$	(1,3)	3	Shortest for $(1,3)$
$1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(1,3)	4	Not shortest for $(1,3)$
$0 \rightarrow 2 \rightarrow 2 \rightarrow 3$	(0,3)	3	Not shortest for $(0,3)$
$0 \rightarrow 2 \rightarrow 3$	(0,3)	2	Tied shortest for $(0,3)$
$0 \rightarrow 0 \rightarrow 3$	(0,3)	2	Tied shortest for $(0,3)$

$$Q_{12} = \mathbf{GR}^*$$

Answer under shortest sem.

14/ 11

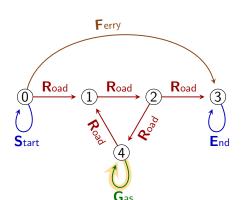
vvalk	Shortest for
4 → 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow$	



$$Q_{12} = \mathbf{GR}^*$$

Answer under shortest sem.

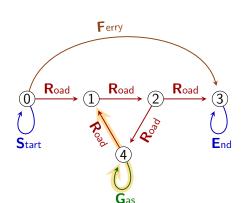
VValk	Shortest for
4 -> 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 3$	3 (4,3)



$$Q_{12} = \mathbf{GR}^*$$

Answer under shortest sem.

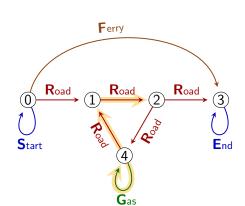
Walk	Shortest for
4 → 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 3$	3 (4,3)



$$Q_{12} = \mathbf{GR}^*$$

Answer under shortest sem.

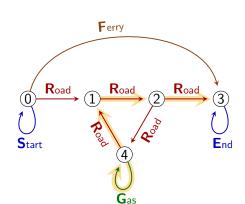
Walk	Shortest for
4 → 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 1$	



$$Q_{12} = \mathbf{GR}^*$$

Answer under shortest sem.

Walk	Shortest for
4 → 4	(4,4)
$4 \rightarrow 4 \rightarrow 1$	(4,1)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,2)
$4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 3$	(4,3)



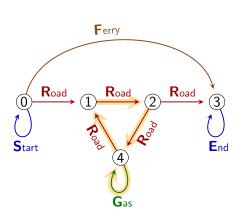
$$Q_{12} = GR^*$$

Answer under shortest sem.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Walk	Shortest for
	$4 \rightarrow 4 \rightarrow 1$ $4 \rightarrow 4 \rightarrow 1 \rightarrow 2$	(4,1) (4,2)

Example of discarded match

 $4 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 4$ is not in the answer because it is longer than $4 \rightarrow 4$



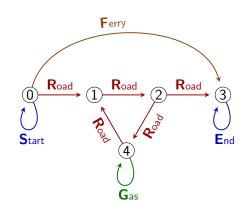
Exercice: evaluating some queries

$$Q_{13} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Answer to Q_{13} :

$$Q_{14} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{G}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Answer to Q_{14} :

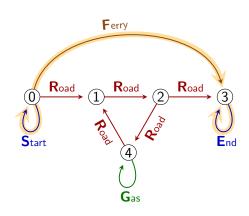


Exercice: evaluating some queries

$$Q_{13} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$
Answer to Q_{13} :
$$\left\{ \begin{array}{c} 0 \rightarrow 0 \rightarrow 3 \rightarrow 3 \end{array} \right\}$$

$$Q_{14} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{G}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

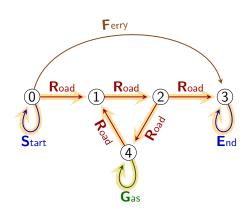
Answer to Q_{14} :



$$Q_{13} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Answer to Q_{13} :
 $\left\{ 0 \rightarrow 0 \rightarrow 3 \rightarrow 3 \right\}$

$$Q_{14} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{G}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$
Answer to Q_{14} :
$$\left\{ \begin{array}{c} 0 \to 0 \to 1 \to 2 \to 4 \\ & \to 4 \to 1 \to 2 \to 3 \to 3 \end{array} \right\}$$



Pros and con

Pros

- Returns walks
- Efficient algorithms (BFS in the product graph×query)
- If there are matches from s to t, at least one of them is in the answer

Pros and con

Pros

- Returns walks
- Efficient algorithms (BFS in the product graph×query)
- If there are matches from s to t, at least one of them is in the answer

Cons

- The shortest walk is not always the "best"
 - "Do we always want to take the ferry over the direct road?"
 - (Real query languages allow to assign costs to edges/atoms)
- No vertical post-processing
 - Vertical = accross the walks with the same endpoints
 - "What is the average time?"
 - "What is the connectedness level?"

Used by Cypher (Neo4j) and GQL with keyword ALL TRAIL

Used by Cypher (Neo4j) and GQL with keyword ALL TRAIL

Principle

- Return a set of walks
- Apply a filter on the set of matching walks
- The filter is: each walk that repeats an edge is filtered out

Examples

Match Decision $1 \rightarrow 0 \rightarrow 2 \rightarrow 2 \rightarrow 3$ No repetition \Rightarrow Kept in the answer $1 \rightarrow 0 \rightarrow 2 \rightarrow 3 \rightarrow 0 \rightarrow 2$ Repeated edges \Rightarrow Filtered out

Evaluating Q_{15}

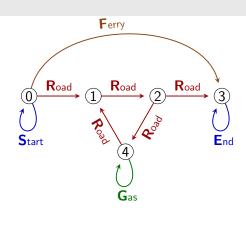
$$Q_{15} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Applying the filter

Matches Keep?

The ferry walk
The straight road
The road with 1 lap
The road with 2 laps

:



Answer of Q_{15} under trail semantics:

```
{
```


Evaluating Q_{15}

$$Q_{15} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Applying the filter

Matches

Keep?

The ferry walk

The straight road

The road with 1 lap

The road with 2 laps

 \vdots

```
Answer of Q_{15} under trail semantics:  \{ \qquad \qquad \}
```


Evaluating Q_{15}

$$Q_{15} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Applying the filter

Matches

Keep?

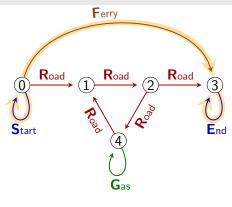
The ferry walk

The straight road

The road with 1 lap

The road with 2 laps

:



Answer of Q_{15} under trail semantics:

{

 $0 \rightarrow 0 \rightarrow 3 \rightarrow 3$

.

Road

Evaluating Q_{15}

$$Q_{15} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Applying the filter

Matches

Keep?

The ferry walk

The straight road

The road with 1 lap

The road with 2 laps

 \vdots

Answer of Q_{15} under trail semantics:

 $0 \to 0 \to 3 \to 3$

Evaluating Q_{15}

$$Q_{15} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Applying the filter

Matches

Keep?

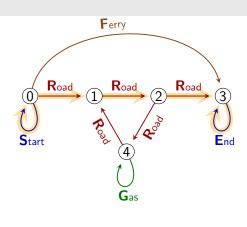
The ferry walk

The straight road

The road with 1 lap

The road with 2 laps

 \vdots



Answer of Q_{15} under trail semantics:

 $\{ 0 \rightarrow 0 \rightarrow 3 \rightarrow 3, 0 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 3$

.

Evaluating Q_{15}

$$Q_{15} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Applying the filter

Matches

Keep?

The ferry walk

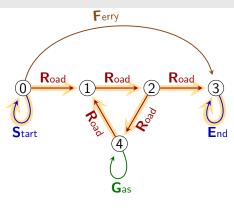
The straight road

Yes

The road with 1 lap

The road with 2 laps

:



Answer of Q_{15} under trail semantics:

 $\{ 0 \rightarrow 0 \rightarrow 3 \rightarrow 3, 0 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 3 \}$

Evaluating Q_{15}

$$Q_{15} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Applying the filter

Matches

Keep?

The ferry walk

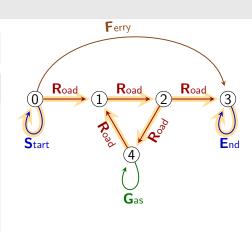
The straight road

Yes

The road with 1 lap

The road with 2 laps

:



Answer of Q_{15} under trail semantics:

 $\{0 \rightarrow 0 \rightarrow 3 \rightarrow 3, 0 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 3\}$

Evaluating Q_{15}

$$Q_{15} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Applying the filter

Matches

Keep?

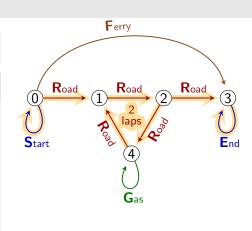
The ferry walk

The straight road

The road with 1 lap

The road with 2 laps

:



Answer of Q_{15} under trail semantics:

 $\{ 0 \rightarrow 0 \rightarrow 3 \rightarrow 3, \quad 0 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 3$

Evaluating Q_{15}

$$Q_{15} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

Applying the filter

Matches

Keep?

The ferry walk

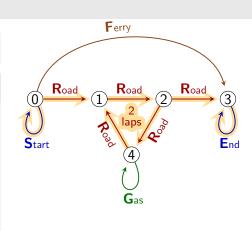
The straight road

The road with 1 lap

No

The road with 2 laps

 \vdots



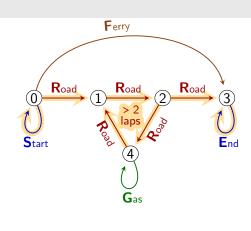
Answer of Q_{15} under trail semantics:

 $\{ 0 \rightarrow 0 \rightarrow 3 \rightarrow 3, 0 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 3 \}$

Evaluating Q_{15}

$$Q_{15} = \mathbf{S(R+F)}^*\mathbf{E}$$

Applying the filter	
Matches	Keep?
The ferry walk	Yes
The straight road	Yes
The road with 1 lap	No
The road with 2 laps	No
:	No



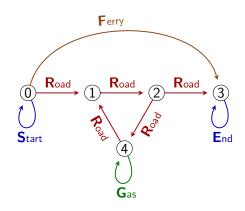
Answer of Q_{15} under trail semantics:

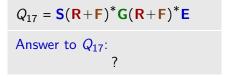
 $\{ 0 \rightarrow 0 \rightarrow 3 \rightarrow 3, 0 \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 3 \}$

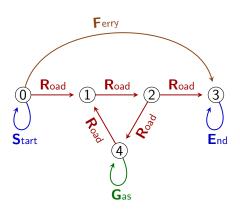
$$Q_{16} = \mathbf{GR}^*$$
Answer to Q_{16} :

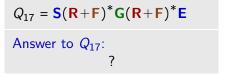
$$Q_{17} = \mathbf{S}(\mathbf{R} + \mathbf{F})^* \mathbf{G}(\mathbf{R} + \mathbf{F})^* \mathbf{E}$$

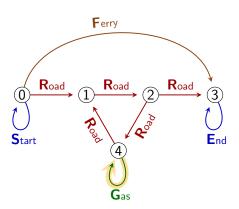
Answer to Q_{17} :

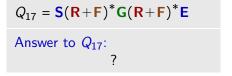


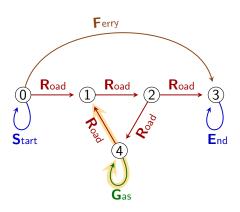


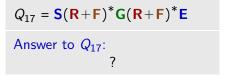


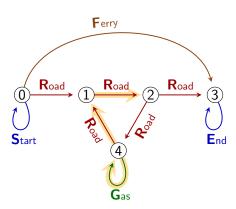


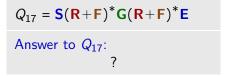


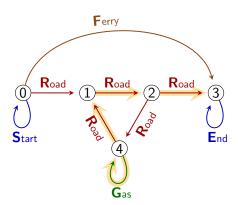


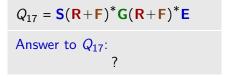


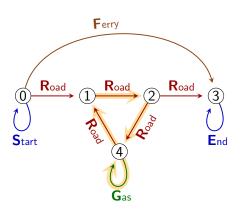


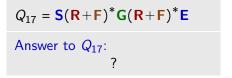


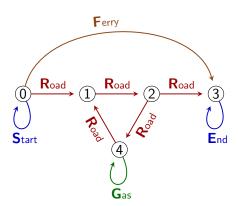


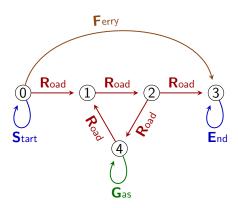












Pros and cons

Pros

- Returns walks
- Easy to explain
- Enable vertical post-processing
 - Vertical = accross the walks with the same endpoints
 - "What is the average time?"
 - "What is the connectedness level?"

Pros and cons

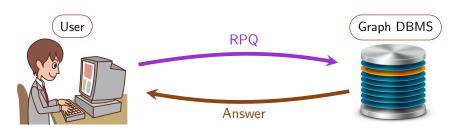
Pros

- Returns walks
- Easy to explain
- Enable vertical post-processing
 - Vertical = accross the walks with the same endpoints
 - "What is the average time?"
 - "What is the connectedness level?"

Cons

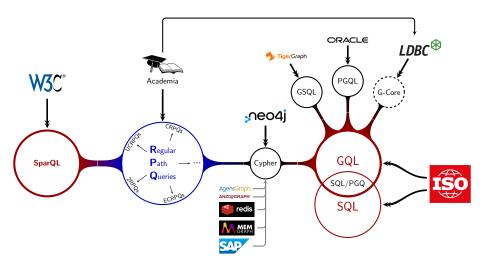
- Inefficient in bad cases.
 - Ex: checking whether R*GR* returns anything is NP-hard
- "No repeated edge" is a filter that is sometimes counterintuitive
 Ex: S(R+F)*G(R+F)*E had matches but the answer is empty

Computing a finite answer



Infinitely many matches but the user expects **finite** answer

- Endpoint → Filters out all navigational information
- Shortest No vertical postprocessing and arbitrary metrics
- Trail → Inefficient and sometimes discard meaningful matches
- → No RPQ semantics is clearly superior



- SPARQL and most academic work on RPQs use endpoint semantics
- Cypher uses trail semantics
- GSQL, PGQL and G-Core uses shortest semantics (and variants)
- GQL and SQL/PGQ allow to switch between many RPQ semantics

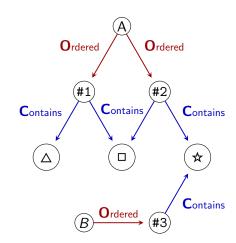
Part I: Theoretical foundations

4. Extensions to RPQs

Two user requests

Consider the graph with

- clients (A,B)
- orders (#1,#2,#3)
- products (△, □, ★)

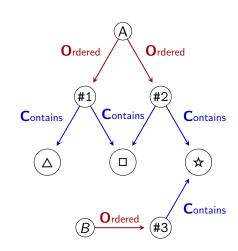


Consider the graph with

- clients (A,B)
- orders (#1,#2,#3)
- products (△, □, ★)

Write two queries to extract

- Products that were ordered twice (that is ☆ and □).
- 2 Triples (x, y, z) such that x ordered y and z in the same order. Ex: (A, \triangle, \square) .

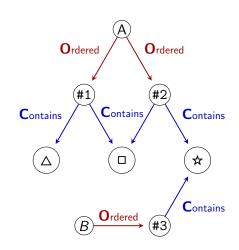


Consider the graph with

- clients (A,B)
- orders (#1,#2,#3)
- products $(\triangle, \square, \star)$

Write two queries to extract

- Products that were ordered twice (that is ☆ and □).
- 2 Triples (x, y, z) such that x ordered y and z in the same order. Ex: (A, \triangle, \square) .



Both are impossible with RPQs

The four ways to build a regexp

Atoms

- Each letter is a regexp
- $\mathbf{\epsilon}$ is a regexp

Ex: ε , **R** and **F** are regexps

Concatenation ·

If Q_1 and Q_2 are regexps Then $Q_1 \cdot Q_2$ is a regexp

Ex: $\mathbf{R} \cdot \mathbf{R}$ and $\mathbf{G} \cdot \mathbf{F}$ are regexps $(\mathbf{R} \cdot \mathbf{R}) \cdot (\mathbf{G} \cdot \mathbf{F})$ is a regexp

Disjunction +

If Q_1 and Q_2 are regexps **Then** $Q_1 + Q_2$ is a regexp

Ex: $\mathbf{R} + \mathbf{R}$ and $\mathbf{G} + \mathbf{F}$ are regexps $(\mathbf{R} \cdot \mathbf{R}) + (\mathbf{G} \cdot \mathbf{F})$ is a regexp

Kleene star *

If Q is a regexp Then Q^* is a regexp

Ex: \mathbf{R}^* and \mathbf{G}^* are regexps $((\mathbf{R}^* \cdot) + \mathbf{F})^*$ is a regexp

The four ways to build a 2-way regexp

Atoms

- Each forward or backward letter is a regexp
- ullet ε is a regexp

Ex: ε , \mathbf{R} , $\overline{\mathbf{G}}$ and \mathbf{F} are regexps

Disjunction +

If Q_1 and Q_2 are regexps Then $Q_1 + Q_2$ is a regexp

Ex: $\mathbf{R} + \mathbf{R}$ and $\mathbf{G} + \mathbf{F}$ are regexps $(\mathbf{R} \cdot \mathbf{R}) + (\mathbf{G} \cdot \mathbf{F})$ is a regexp

Concatenation •

If Q_1 and Q_2 are regexps Then $Q_1 \cdot Q_2$ is a regexp

Ex: $\mathbf{R} \cdot \mathbf{R}$ and $\mathbf{G} \cdot \mathbf{F}$ are regexps $(\mathbf{R} \cdot \mathbf{R}) \cdot (\overline{\mathbf{G}} \cdot \overline{\mathbf{F}})$ is a regexp

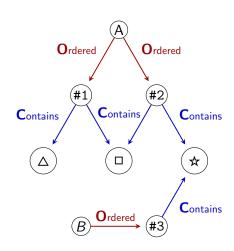
Kleene star *

If Q is a regexp Then Q^* is a regexp

Ex: \mathbf{R}^* and \mathbf{G}^* are regexps $((\mathbf{R}^* \cdot \overline{\mathbf{G}} \mathbf{G} + \mathbf{F})^*)$ is a regexp

Write a 2RPQ to "extract"

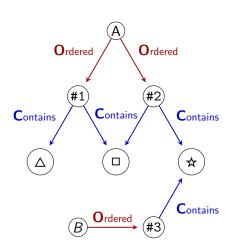
1 Products that were ordered twice (that is \bigstar and \square).



Write a 2RPQ to "extract"

Products that were ordered twice (that is ☆ and □).

Answer: $Q_{18} = \mathbf{C} \cdot \overline{\mathbf{C}}$



Write a 2RPQ to "extract"

Products that were ordered twice (that is ☆ and □).

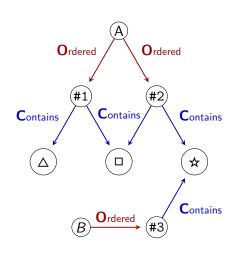
Answer:
$$Q_{18} = \mathbf{C} \cdot \overline{\mathbf{C}}$$

 Walks and matches now may contain backward edges

Matches to Q_{18} :

$$#1 \rightarrow \Box \leftarrow #2, #3 \rightarrow \cancel{x} \leftarrow #2$$

 $#1 \rightarrow \triangle \leftarrow #1, \text{ etc.}$



Write a 2RPQ to "extract"

Products that were ordered twice (that is ☆ and □).

Answer: $Q_{18} = \mathbf{C} \cdot \overline{\mathbf{C}}$

 Walks and matches now may contain backward edges

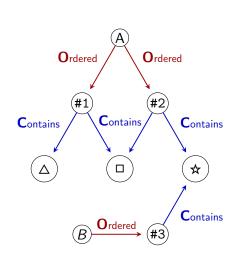
Matches to Q_{18} :

$$#1 \rightarrow \square \leftarrow #2, #3 \rightarrow \cancel{\triangle} \leftarrow #2$$

 $#1 \rightarrow \triangle \leftarrow #1, \text{ etc.}$

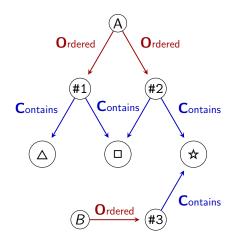
 Trail forbids using the same edge backward and forward

Under trail, Q_{18} returns walks with \Rightarrow and \square as the middle vertex.



Write a 2RPQ to extract

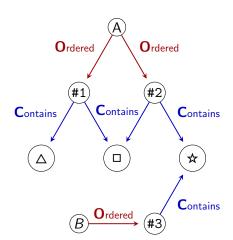
2 Triples (x, y, z) such that x ordered y and z in the same order. Ex: (A, \triangle, \square) .



Write a 2RPQ to extract

2 Triples (x, y, z) such that xordered y and z in the same order. Ex: (A, \triangle, \square) .

Still impossible 1

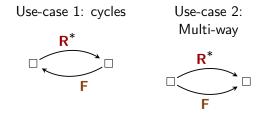


 $\mathsf{CRPQ} = \mathsf{graph}$ pattern matching that is, a graph where each edge bears an RPQ

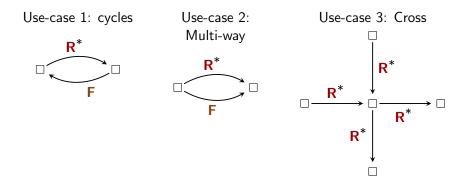
 $\mathsf{CRPQ} = \mathsf{graph}$ pattern matching that is, a graph where each edge bears an RPQ

Use-case 1: cycles

 $\mathsf{CRPQ} = \mathsf{graph}$ pattern matching that is, a graph where each edge bears an RPQ

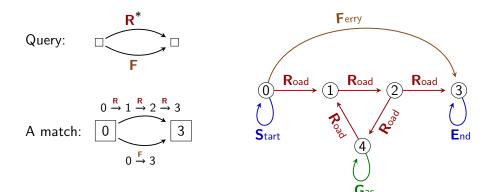


CRPQ = graph pattern matching that is, a graph where each edge bears an RPQ



A match in graph G to a CRPQ Q consists of

- a map: $Vertex(Q) \rightarrow Vertex(G)$
- a map: $Edge(Q) \rightarrow Walks(G)$



Endpoint semantics

Return the vertex map only

Shortest semantics

Two possibilities

- Shortest for each RPQ
 Ex: GQL, Tigergraph, etc.
- Return the global minimum

Ex: None?

Endpoint semantics

Return the vertex map only

Shortest semantics

Two possibilities

- Shortest for each RPQ
 Ex: GQL, Tigergraph, etc.
- Return the global minimum Ex: None?

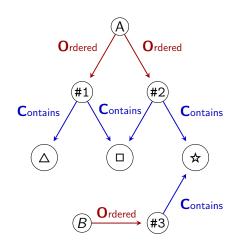
Trail semantics

Two possibilities:

- No edge repetition for each RPQ
 - Ex: GQL
- No edge repetition overall Ex: Cypher, GQL

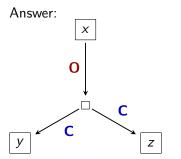
Write a 2RPQ to extract

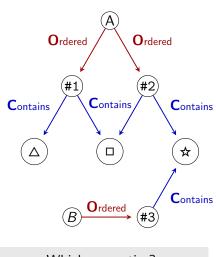
2 Triples (x, y, z) such that x ordered y and z in the same order. Ex: (A, \triangle, \square) .



Write a 2RPQ to extract

2 Triples (x, y, z) such that x ordered y and z in the same order. Ex: (A, \triangle, \square) .





Which semantics?

Part II: Property Graphs

Part II: Property Graphs

1. Data model

Components of a property graph

```
57
```

A **node** (≈**vertex**) encodes a complex values. It bears **labels** for grouping.

Ex: t carries Teacher, Person c carries Course

Components of a property graph

A **node** (≈**vertex**) encodes a complex values. It bears **labels** for grouping.

Ex: t carries Teacher, Person c carries Course

A **Relation** (≈**edge**) connects **nodes**.

It bears one **type** (\approx **label**) provides the nature of the relation.

Ex:
$$e = t \xrightarrow{\text{TEACHES}} c$$

Components of a property graph

A **node** (≈**vertex**) encodes a complex values.
It bears **labels** for grouping.

Ex: t carries Teacher, Person
c carries Course

A **Relation** (≈**edge**) connects **nodes**.

It bears one **type** (\approx **label**) provides the nature of the relation.

Ex:
$$e = t \xrightarrow{\text{TEACHES}} c$$

A **property** describes an aspect of a **node** or an **relation** It maps

- a key (described aspect)
- to a **pure value** (description)

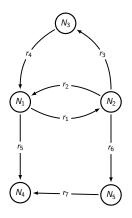
Ex: t has name: "Victor" e has since: 2023

A **pure value** (int, string, ...) contains all the information about itself.

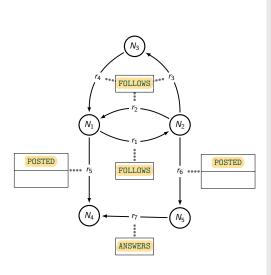
Ex: "Victor" has 6 letters

 (N_3) (N_2)

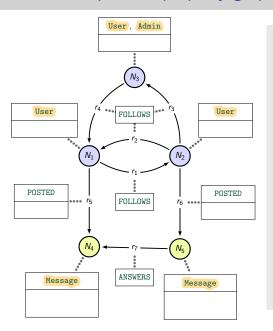
■ Nodes : N_1, N_2, \dots, N_5



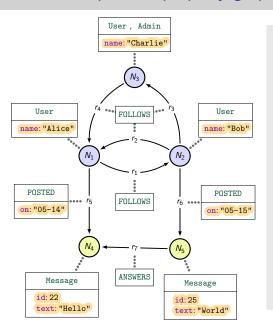
- Nodes : N_1, N_2, \dots, N_5
- Relations : r_1, r_2, \dots, r_7



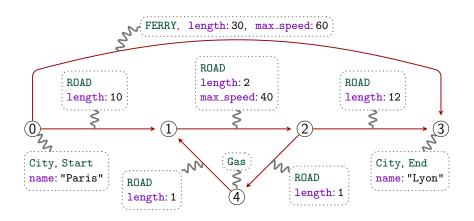
- Nodes: N_1, N_2, \dots, N_5
- Relations : r_1, r_2, \dots, r_7
- Types: FOLLOWS, POSTED, ANSWERS



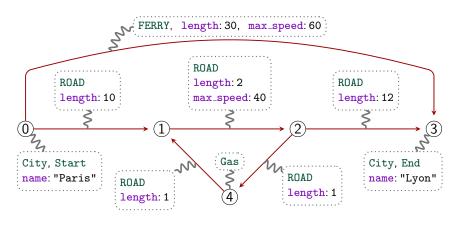
- Nodes: N_1, N_2, \dots, N_5
- Relations : r_1, r_2, \dots, r_7
- Types: FOLLOWS, POSTED, ANSWERS
- Labels: User, Admin, Message



- Nodes: N_1, N_2, \dots, N_5
- Relations : r_1, r_2, \dots, r_7
- Types: FOLLOWS, POSTED, ANSWERS
- Labels: User, Admin, Message
- Properties, that is Key-Value pairs:
 - name: "Alice"
 - id: 22
 - text: "Hello" etc.



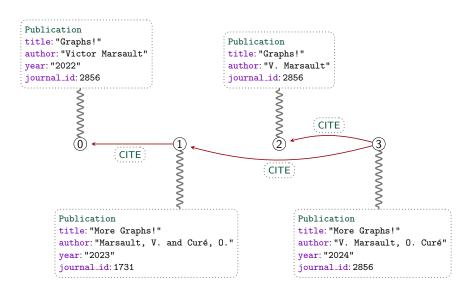
Property graphs are very flexible



- Relations with the same type may have different property keys
- Nodes may have any number of labels and property keys

Third example of a property graph

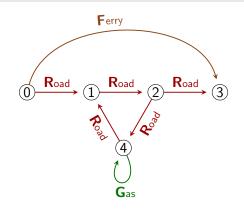
Exercice: What's wrong with this property graph? Fix it!



Part II: Property Graphs

2. Translations: Graphs ↔ Tables

Can a graph be stored in tables?

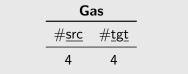


Example - One Vertex table with one row per vertex in the graph

Vertex	Road	
<u>id</u>	# <u>src</u>	# <u>tgt</u>
0	0	1
1	1	2
2	2	3
3	2	4
4	4	1

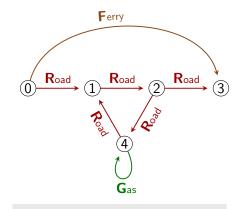
Ferry
$0 \xrightarrow{Road} 1 \xrightarrow{Road} 2 \xrightarrow{Road} 3$
Roll Co.
(4)
\mathbf{G}_{as}

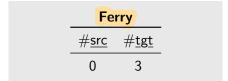
Fe	Ferry		
#src	# <u>tgt</u>		
0	3		

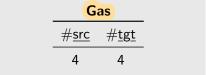


Example - One table for each different label in the graph

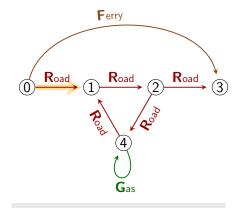
Vertex	Ro	Road	
<u>id</u>	#src	# <u>tgt</u>	
0	0	1	
1	1	2	
2	2	3	
3	2	4	
4	4	1	

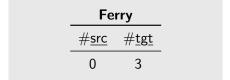


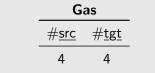




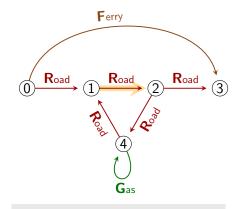
Vertex	Ro	Road	
<u>id</u>	# <u>src</u>	# <u>tgt</u>	
0	0	1	
1	1	2	
2	2	3	
3	2	4	
4	4	1	

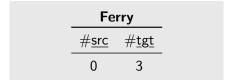


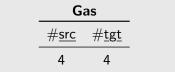




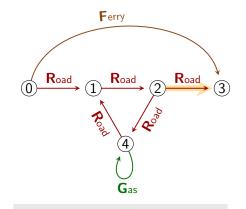
Vertex	Ro	Road	
<u>id</u>	#src	# <u>tgt</u>	
0	0	1	
1	1	2	
2	2	3	
3	2	4	
4	4	1	

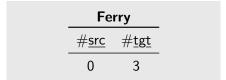


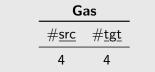




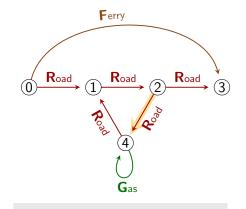
Vertex	Road	
<u>id</u>	# <u>src</u>	# <u>tgt</u>
0	0	1
1	1	2
2	2	3
3	2	4
4	4	1

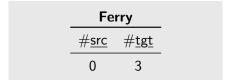


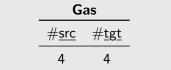




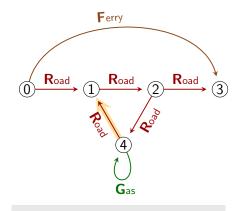
Vertex	Road	
<u>id</u>	#src	# <u>tgt</u>
0	0	1
1	1	2
2	2	3
3	2	4
4	4	1



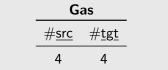




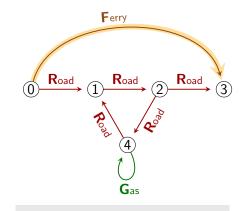
Vertex	Ro	Road	
<u>id</u>	# <u>src</u>	# <u>tgt</u>	
0	0	1	
1	1	2	
2	2	3	
3	2	4	
4	4	1	

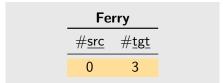


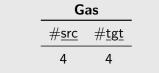
Ferry		
# <u>src</u>	# <u>tgt</u>	
0	3	



Vertex	Ro	Road	
<u>id</u>	#src	# <u>tgt</u>	
0	0	1	
1	1	2	
2	2	3	
3	2	4	
4	4	1	



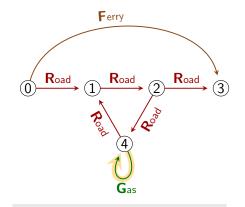


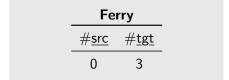


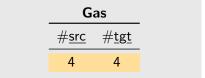
Translation: Graph to Tables (1)

Example – For each edge (i, ℓ, j) in the graph add row (i, j) in table ℓ

Vertex	Ro	ad
<u>id</u>	#src	# <u>tgt</u>
0	0	1
1	1	2
2	2	3
3	2	4
4	4	1







Translation: Graph to Tables (2)

Principles of the translation

We start from a graph (V, L, E)Since V is finite we may enumerate it: $V = \{v_1, \dots, v_n\}$

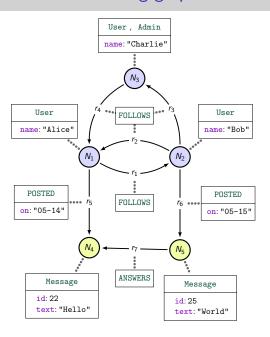
One table for vertices

Vertex
<u>id</u>
0
1
:
n

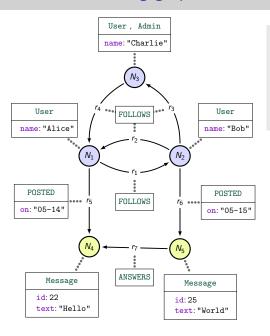
One table per label ℓ in L

Table ℓ contains (i, j) $\iff (v_i, \ell, v_j) \in E$

Exercice: Storing graph 1 in tables

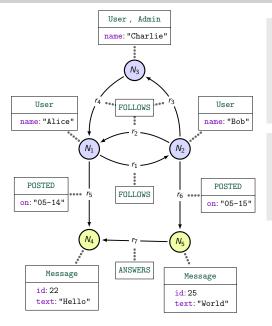


Exercice: Storing graph 1 in tables



Node		Relati	on
<u>id</u>	id	#src	#tgt
1	1	1	2
2	2	2	1
:	÷	:	:

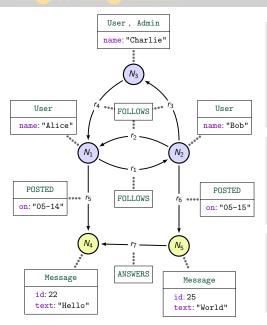
Exercice: Storing graph 1 in tables



Node		Relation		
<u>id</u>	id	#src	#tgt	
1	1	1	2	
2	2	2	1	
÷	:	:	÷	

Posted	Message
# <u>eid</u>	# <u>vid</u>
5	4
6	5

Why so many tables?



Node		Relation		
<u>id</u>	id	#src	#tgt	
1	1	1	2	
2	2	2	1	
:	:	÷	÷	

Posted	Message
# <u>eid</u>	# <u>vid</u>
5	4
6	5

	On	lo	d
# <u>eid</u>	val	# <u>vid</u>	val
5	"05-14"	4	22
6	"05-15"	5	25

A relational database that we want to encode in a graph

Client		
<u>login</u> address		
"Alice"	"Wonderland"	
"Bob"	"124 Conch St."	
"Eve"	null	

Product		
price		
42		
0		
8		
"Broom&Bucket" 4		

__ : part of primary key

A relational database that we want to encode in a graph

Client		
<u>login</u> address		
"Alice" "Wonderland"		
"Bob"	"124 Conch St."	
"Eve"	null	

Order		
id #buyer date		
0	"Alice"	01-11-1865
1	"Bob"	07-07-2022
2 "Bob" 07-11-2023		
→Client.login		

name	price
"Watch"	42
"Rabbit"	0
"Pants"	8
"Broom&Bucket"	4

____ : part of primary key # foreign keys

A relational database that we want to encode in a graph

Client			
<u>login</u>	address		
"Alice"	"Wonderland"		
"Bob"	"124 Conch St."		
"Eve"	null		

Order Order			
<u>id</u>	#buyer	date	
0	"Alice"	01-11-1865	
1	"Bob"	07-07-2022	
2	"Bob"	07-11-2023	

→Client.login

	Product	
_!	<u>name</u>	price
	"Watch"	42
1	"Rabbit"	0
1	"Pants"	8
	"Broom&Bucket"	4

Contains			
# <u>order</u>	#product	quant	
0	"Rabbit"	1	
0	"Watch"	1	
1	"Pants"	7	
2	"Pants"	14	
→Order.id	→Product.name		

___ : part of primary key # : foreign keys

A relational database that we want to encode in a graph

Client		
<u>login</u>	address	
"Alice"	"Wonderland"	
"Bob"	"124 Conch St."	
"Eve"	null	

Duaduat

Order Order			
<u>id</u>	#buyer	date	
0	"Alice"	01-11-1865	
1	"Bob"	07-07-2022	
2	"Bob"	07-11-2023	

→Client.login

)

Contains			
# <u>order</u>	#product	quant	
0	"Rabbit"	1	
0	"Watch"	1	
1	"Pants"	7	
2	"Pants"	14	
→Order.id	→Product.name		

___ : part of primary key # : foreign keys

Exercice: Translate these to a graph!

Condition for the translation to be possible

Relational DB consists of tables T_1, \ldots, T_k .

Each table T_i

- has a primary key, consisting of several columns
- has columns that are foreign keys

• Foreign keys can be part of the primary key.

Condition for the translation to be possible

Relational DB consists of tables T_1, \ldots, T_k .

Each table T_i

- has a primary key, consisting of several columns
- has columns that are foreign keys

• Foreign keys can be part of the primary key.

Conditions for the database to be encodable in a graph

Each table T_i satisfies one of the following.

- O Zero foreign key is part of the primary key of T_i .
 - 1 One foreign key is part of the primary key of T_i .
 - 2 Two foreign keys are part of the primary key of T_i .

A relational database that we want to encode in a graph

Client		
<u>login</u>	address	
"Alice"	"Wonderland"	
"Bob"	"124 Conch St."	
"Eve"	null	

Order Order			
<u>id</u>	#buyer	date	
0	"Alice"	01-11-1865	
1	"Bob"	07-07-2022	
2	"Bob"	07-11-2023	

→Client.login

Product			
name	price		
"Watch"	42		
"Rabbit"	0		
"Pants"	8		
"Broom&Bucket"	4		
•			

_ : part of primary key : foreign keys

	Contains	
# <u>order</u>	#product	quant
0	"Rabbit"	1
0	"Watch"	1
1	"Pants"	7
2	"Pants"	14
→Order.id	→Product.name	

■ Client, Product and Order satisfy 0

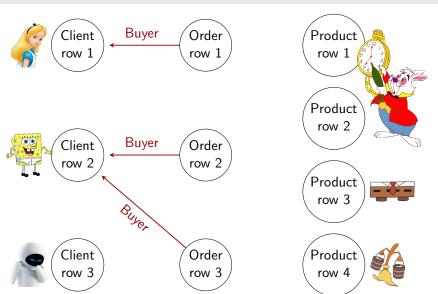
■ Contains satisfies 2

One vertex per row in table satisfying **0** or **1**

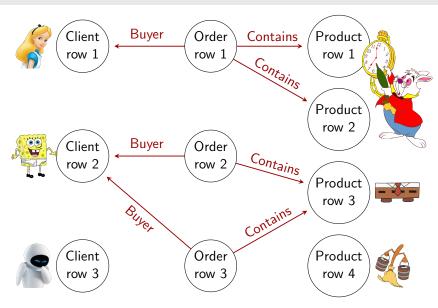
Client row 3

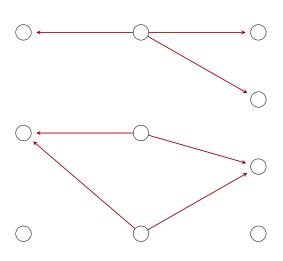
Order row 3

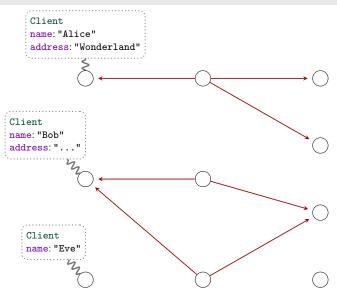
One edge per row and per foreign-key column in each table satisfying **0** or **1**

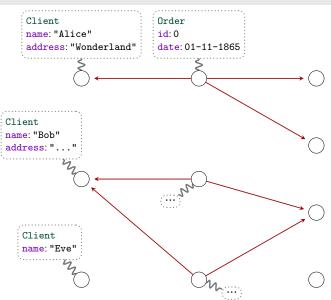


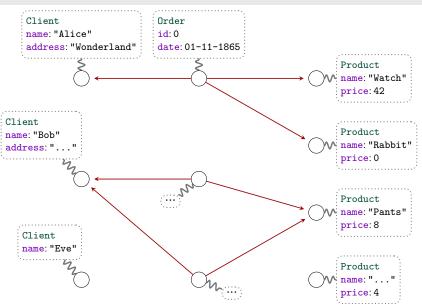
One edge per row of tables satisfying 2



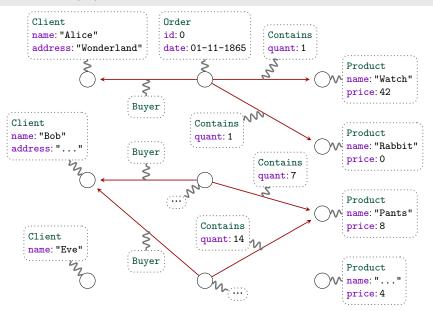












Takeway

Conditions for the database to be encodable in a graph

Each table T_i satisfies one of the following.

- **O** Zero foreign key is part of the primary key of T_i .
- 1 One foreign key is part of the primary key of T_i .
- 2 Two foreign keys are part of the primary key of T_i .

Takeway

Conditions for the database to be encodable in a graph

Each table T_i satisfies one of the following.

- **1** Zero foreign key is part of the primary key of T_i .
- **1** One foreign key is part of the primary key of T_i .
- **2** Two foreign keys are part of the primary key of T_i .
- **3** Three foreign keys are part of the primary key of $T_i \Longrightarrow \text{Trouble}$

	Trouble	
#person1	#person2	#person3
Alice	Bob	Eve
<u>.</u>	:	:

72

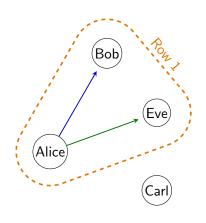
Question: how would you do it?

	Trouble	
#pers1	# <u>pers2</u>	# <u>pers3</u>
Alice	Bob	Eve
Alice	Carl	Dave

The wrong way: adding more edges

	Trouble	
#pers1	#pers2	#pers3
Alice	Bob	Eve
Alice	Carl	Dave

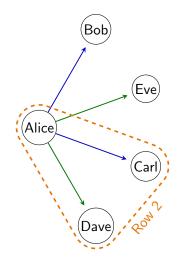
Let us try to add two edges per row of table **Trouble**.



The wrong way: adding more edges

Trouble	
#pers2	#pers3
Bob	Eve
Carl	Dave
	#pers2 Bob

Let us try to add two edges per row of table **Trouble**.

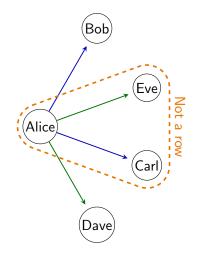


The wrong way: adding more edges

	Trouble	
# <u>pers1</u>	#pers2	#pers3
Alice	Bob	Eve
Alice	Carl	Dave

Let us try to add two edges per row of table **Trouble**.

(Alice, Carl, Eve) is not a row of table **Trouble**



The **right** way: Reification

- Literally, make into an object
- For us, transform into a vertex

74

The **right** way: Reification

Reification

- Literally, make into an object
- For us, transform into a vertex

	Trouble	
# <u>pers1</u>	# <u>pers2</u>	# <u>pers3</u>
Alice	Bob	Eve
Alice	Carl	Dave

Bob

Alico

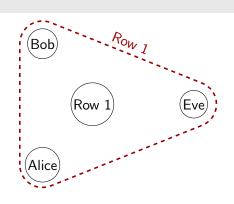
(Carl)

Dave

The right way: Reification

- Literally, make into an object
- For us, transform into a vertex

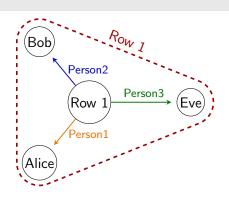
	Trouble	
# <u>pers1</u>	# <u>pers2</u>	# <u>pers3</u>
Alice	Bob	Eve
Alice	Carl	Dave



The right way: Reification

- Literally, make into an object
- For us, transform into a vertex

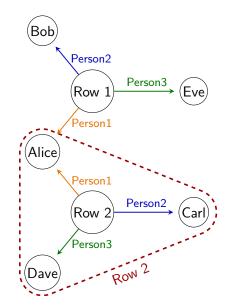
Trouble	
# <u>pers2</u>	# <u>pers3</u>
Bob	Eve
Carl	Dave
	#pers2



The right way: Reification

- Literally, make into an object
- For us, transform into a vertex

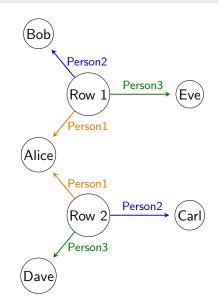
	Trouble	
#pers1	#pers2	# <u>pers3</u>
Alice	Bob	Eve
Alice	Carl	Dave



The right way: Reification

- Literally, make into an object
- For us, transform into a vertex

	Trouble	
#pers1	#pers2	# <u>pers3</u>
Alice	Bob	Eve
Alice	Carl	Dave



Reification is no miracle solution

Reification works...

- Reversible (one may reconstruct the **Trouble** table)
- Easy to generalize to any arity

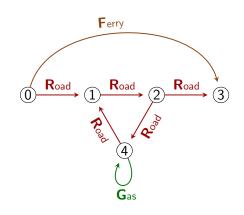
...but, it is contrary to the spirit of graphs:

- The graph requires extra knowledge and maintenance:
 - Special vertices/edges/labels
 - Implicitly linked labels/edges (Person1/Person2/Person3)
 - Integrity constraints
- Query languages for graphs are based on walks, reification is fundamentally branching

Part II: Property Graphs

3. Storage matters

Elementary operations on graphs



Elementary operations on graphs

Edge test

Given s, ℓ, t , does $s \stackrel{\ell}{\rightarrow} t$ exist?

Ex: Is there an edge $0 \xrightarrow{\text{Road}} 4$?

Answer: no

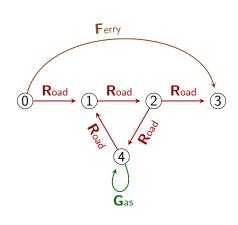
Successor

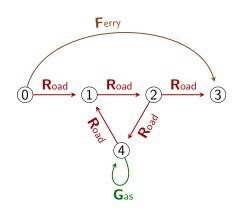
Given s, ℓ , compute all t such that $s \xrightarrow{\ell} t$ exists.

Ex: Which nodes are reachable

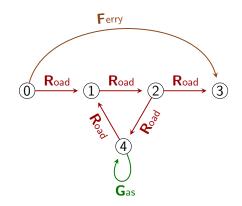
from 2 by a Road edge.

Answer: 3 and 4.



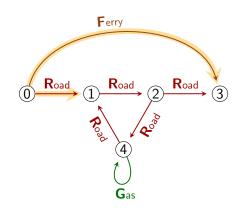


- A memory zone for each vertex and edge
- Each edge stores refs to source, label, target
- Each vertex stores refs to adjacent edges (usually indexed by label)



- A memory zone for each vertex and edge
- Each edge stores refs to source, label, target
- Each vertex stores refs to adjacent edges (usually indexed by label)

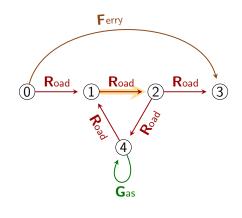
	R_{oad}	F erry	G_{as}
0:	[1]	[3]	[]
1:			
2:			
3:			
4:			



- A memory zone for each vertex and edge
- Each edge stores refs to source, label, target
- Each vertex stores refs to adjacent edges (usually indexed by label)

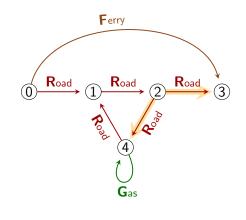
	R_{oad}	\mathbf{F}_{erry}	G_{as}
0:	[1]	[3]	[]
1:	[2]	[]	[]
2:			
3:			

4:



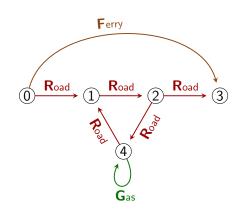
- A memory zone for each vertex and edge
- Each edge stores refs to source, label, target
- Each vertex stores refs to adjacent edges (usually indexed by label)

	R_{oad}	\mathbf{F}_{erry}	G_{as}
0:	[1]	[3]	[]
1:	[2]	[]	[]
2:	[3,4]	[]	[]
3:			



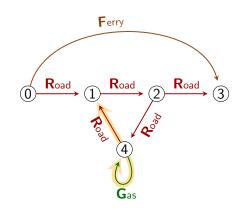
- A memory zone for each vertex and edge
- Each edge stores refs to source, label, target
- Each vertex stores refs to adjacent edges (usually indexed by label)

	R_{oad}	F erry	G_{as}
0:	[1]	[3]	[]
1:	[2]	[]	[]
2:	[3,4]	[]	[]
3:	[]	[]	[]
4.			



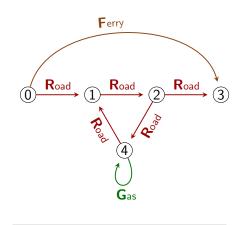
- A memory zone for each vertex and edge
- Each edge stores refs to source, label, target
- Each vertex stores refs to adjacent edges (usually indexed by label)

	R_{oad}	\mathbf{F}_{erry}	G_{as}
0:	[1]	[3]	[]
1:	[2]	[]	[]
2:	[3,4]	[]	[]
3:	[]	[]	[]
4:	[2]	П	[4]



- A memory zone for each vertex and edge
- Each edge stores refs to source, label, target
- Each vertex stores refs to adjacent edges (usually indexed by label)

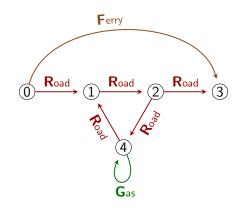
	R_{oad}	\mathbf{F}_{erry}	G_{as}
0:	[1]	[3]	[]
1:	[2]	[]	[]
2:	[3,4]	[]	[]
3:	[]	[]	[]
4:	[2]	[]	[4]



- Edge test:
- Successors:

- A memory zone for each vertex and edge
- Each edge stores refs to source, label, target
- Each vertex stores refs to adjacent edges (usually indexed by label)

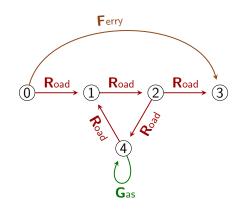
	R_{oad}	\mathbf{F}_{erry}	G_{as}
0:	[1]	[3]	[]
1:	[2]	[]	[]
2:	[3,4]	[]	[]
3:	[]	[]	[]
4:	[2]	[]	[4]



- Edge test: O(#Successors)
- Successors:

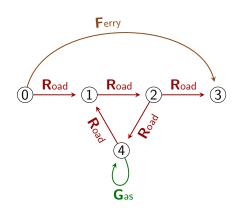
- A memory zone for each vertex and edge
- Each edge stores refs to source, label, target
- Each vertex stores refs to adjacent edges (usually indexed by label)

	R_{oad}	\mathbf{F}_{erry}	G_{as}
0:	[1]	[3]	[]
1:	[2]	[]	[]
2:	[3,4]	[]	[]
3:	[]	[]	[]
4:	[2]	[]	[4]



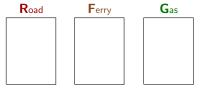
- Edge test: O(#Successors)
- Successors: O(#Successors)

Storing adjacency matrices (ex: RedisGraph)



Storing adjacency matrices (ex: RedisGraph)

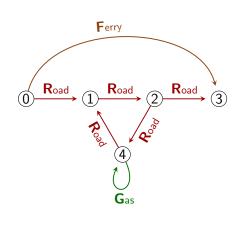
One matrix per label



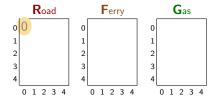


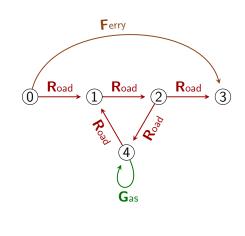
- One matrix per label
- One line per vertex
- One column per vertex





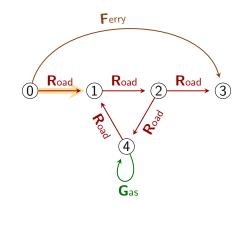
- One matrix per label
- One line per vertex
- One column per vertex
- Cell (i,j) in $L \iff i \xrightarrow{L} j$





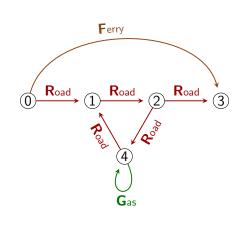
No edge $0 \xrightarrow{\text{Road}} 0$

- One matrix per label
- One line per vertex
- One column per vertex
- Cell (i,j) in $L \iff i \xrightarrow{L} j$



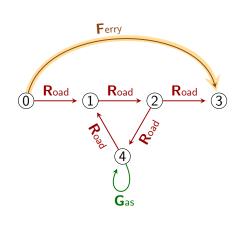
There is an edge $0 \xrightarrow{\text{Road}} 1$

- One matrix per label
- One line per vertex
- One column per vertex
- Cell (i,j) in $L \iff i \xrightarrow{L} j$



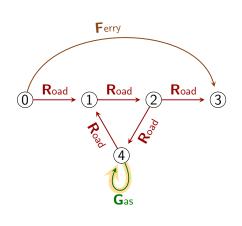
- One matrix per label
- One line per vertex
- One column per vertex
- Cell (i,j) in $L \iff i \stackrel{L}{\to} j$

R_{oad}	F erry	G_{as}
001000	000010	0
1 0 0 1 0 0	1 0 0 0 0 0	1
2 0 0 0 1 1	2 0 0 0 0 0	2
з 0 0 0 0 0	3 0 0 0 0 0	3
4 0 1 0 0 0	4 0 0 0 0 0	4
0 1 2 3 4	0 1 2 3 4	0 1 2 3 4



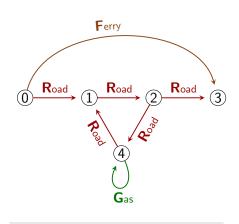
- One matrix per label
- One line per vertex
- One column per vertex
- Cell (i,j) in $L \iff i \stackrel{L}{\rightarrow} j$

R_{oad}	F erry	G_{as}
0 0 1 0 0 0	o 0 0 0 1 0	00000
1 0 0 1 0 0	1 0 0 0 0 0	1 0 0 0 0 0
2 0 0 0 1 1	2 0 0 0 0 0	2 0 0 0 0 0
з 0 0 0 0 0	3 0 0 0 0 0	3 0 0 0 0 0
4 0 1 0 0 0	4 0 0 0 0 0	4 0 0 0 0 1
0 1 2 3 4	0 1 2 3 4	0 1 2 3 4



- One matrix per label
- One line per vertex
- One column per vertex
- Cell (i,j) in $L \iff i \xrightarrow{L} j$

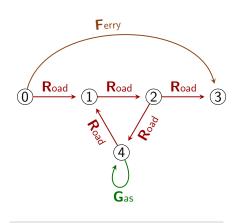
R_{oad}	Ferry	Gas
o 0 1 0 0 0	o 0 0 0 1 0	00000
1 0 0 1 0 0	1 0 0 0 0 0	1 0 0 0 0 0
2 0 0 0 1 1	2 0 0 0 0 0	2 0 0 0 0 0
3 0 0 0 0 0	з 0 0 0 0 0	з 0 0 0 0 0
4 0 1 0 0 0	4 0 0 0 0 0	4 0 0 0 0 1
0 1 2 3 4	0 1 2 3 4	0 1 2 3 4



- Edge test:
- Successors:

- One matrix per label
- One line per vertex
- One column per vertex
- Cell (i,j) in $L \iff i \xrightarrow{L} j$

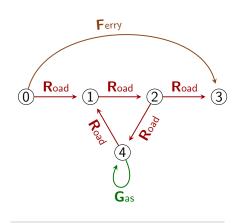
	R_{oad}	Ferry	G_{as}
0	01000	00010	00000
1	00100	1 0 0 0 0 0	1 0 0 0 0 0
2	00011	2 0 0 0 0 0	2 0 0 0 0 0
3	00000	3 0 0 0 0 0	3 0 0 0 0 0
4	01000	4 0 0 0 0 0	4 0 0 0 0 1
	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4



- Edge test: O(1)
- Successors:

- One matrix per label
- One line per vertex
- One column per vertex
- Cell (i,j) in $L \iff i \xrightarrow{L} j$

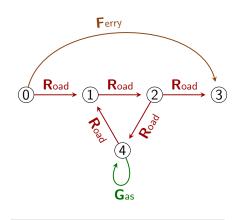
	R_{oad}	F erry	G_{as}
0	01000	o 0 0 0 1 0	00000
1	00100	1 0 0 0 0 0	1 0 0 0 0 0
2	00011	2 0 0 0 0 0	2 0 0 0 0 0
3	00000	з 0 0 0 0 0	з 0 0 0 0 0
4	01000	4 0 0 0 0 0	4 0 0 0 0 1
	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4



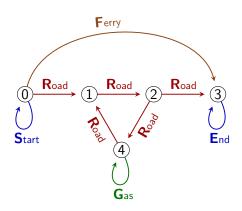
- Edge test: O(1)
- Successors: (#Vertices)

- One matrix per label
- One line per vertex
- One column per vertex
- Cell (i,j) in $L \iff i \xrightarrow{L} j$

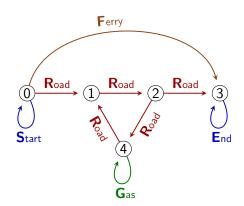
	R_{oad}	F erry	G_{as}
0	01000	o 0 0 0 1 0	00000
1	00100	1 0 0 0 0 0	1 0 0 0 0 0
2	$0\ 0\ 0\ 1\ 1$	2 0 0 0 0 0	2 0 0 0 0 0
3	00000	з 0 0 0 0 0	3 0 0 0 0 0
4	01000	4 0 0 0 0 0	4 0 0 0 0 1
	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4



- Edge test: O(1)
- Successors: (#Vertices)
- Memory: O((#Vertices)²)



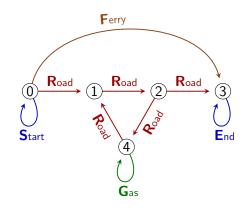
One tree-set (table) for each edge type



One tree-set (table) for each edge type

Road:
$$\{(0,1); (1,2); (2,3); (2,4); (4,1)\}$$

Ferry: $\{(0,3)\}$

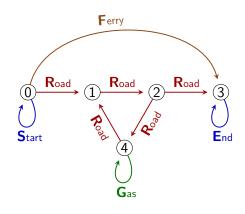


- Edge test:
- Successors:

One tree-set (table) for each edge type

Road:
$$\{(0,1); (1,2); (2,3); (2,4); (4,1)\}$$

Ferry: $\{(0,3)\}$

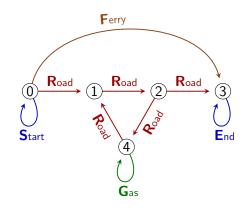


- Edge test: $O(\log(\#Edges))$
- Successors:

One tree-set (table) for each edge type

Road:
$$\{(0,1); (1,2); (2,3); (2,4); (4,1)\}$$

Ferry: $\{(0,3)\}$

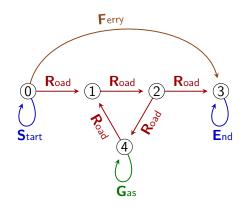


- Edge test: $O(\log(\#Edges))$
- Successors: #Edges

One tree-set (table) for each edge type

Road:
$$\{(0,1); (1,2); (2,3); (2,4); (4,1)\}$$

Ferry: $\{(0,3)\}$



- Edge test: $O(\log(\#Edges))$
- Successors: #Edges or O(#log(Edges)) if index

Finding walks

Recap of different storage options

	Edge test	Successors
Adjacency list	O(#Succ)	O(#Succ)
Adjacency matrix	O(1)	O(#Vert)
Edge tree set ^(†)	O(log(#Edge))	O(log(#Edge))

(†) with proper indexing

Goal

Finding walks (e.g. matching an RPQ)

Which one seems better?

Storing properties

Adjacency list

Memory zones contains property maps

Storing properties

Adjacency list

Memory zones contains property maps

Adjacency matrix

- Cells in the matrix contains reference to edge content
- Property maps for edges and nodes

Storing properties

Adjacency list

Memory zones contains property maps

Adjacency matrix

- Cells in the matrix contains reference to edge content
- Property maps for edges and nodes

Tree sets

Properties are stored in other tables (see translation)

Part II: Property Graphs

4. Strength and Weaknessess

Native storage

- Elementary graph operations are efficient
- Access to property is efficient
- Query answering is based on graph algorithms and not on joins Ex: $S(R+F)^2$, $S(R+F)^3$, $S(R+F)^*$
- Allows flexible schemas or a schema-less approach

Native storage

- Elementary graph operations are efficient
- Access to property is efficient
- Query answering is based on graph algorithms and not on joins Ex: $S(R+F)^2$, $S(R+F)^3$, $S(R+F)^*$
- Allows flexible schemas or a schema-less approach

⚠ Some PG DBMS's do not use native storage ⚠

Specialized algorithms and languages

Restriction on the DM increases the liberty in the query language.

"We never have to treat the case of non-binary relations"

- Graph notions in the core of the language (path as values)
- Graph algorithms directly available

Strength of property graph DBMS (3)

Easier to grasp for humans

- Easier modeling "The data looks like the ER diagram"
- Direct data visualization"One may navigate in the data"

Easier to grasp for humans

- Easier modeling "The data looks like the ER diagram"
- Direct data visualization"One may navigate in the data"
- Visualization of query result^(†)
 (†) Arguable, see part III.

Easier to grasp for humans

- Easier modeling "The data looks like the ER diagram"
- Direct data visualization"One may navigate in the data"
- Visualization of query result^(†)
 (†) Arguable, see part III.
- Query languages can be made user-friendly "What you write looks like what you search for"

Strength of property graph DBMS (3)

Easier to grasp for humans

- Easier modeling "The data looks like the ER diagram"
- Direct data visualization"One may navigate in the data"
- Visualization of query result^(†)
 (†) Arguable, see part III.
- Query languages can be made user-friendly "What you write looks like what you search for"

→ Property graphs are usable by non-experts

Ex: Panama papers

Weaknesses of property graph DBMS (1)

Efficiency

- Efficiency gain from native graph storage can be mitigated
 - Proper indexing
 - Worst-case optimal join
 - Highly structured data cannot be leveraged

- Efficiency gain from native graph storage can be mitigated
 - Proper indexing
 - Worst-case optimal join
 - Highly structured data cannot be leveraged

Ex: RDF engines usually do not use native graph storage

Efficiency falls off if the need is outside the scope

- Efficiency gain from native graph storage can be mitigated
 - Proper indexing
 - Worst-case optimal join
 - Highly structured data cannot be leveraged

- Efficiency falls off if the need is outside the scope
 - Non-navigational queries

- Efficiency gain from native graph storage can be mitigated
 - Proper indexing
 - Worst-case optimal join
 - Highly structured data cannot be leveraged

- Efficiency falls off if the need is outside the scope
 - Non-navigational queries
 - When walks are not needed

- Efficiency gain from native graph storage can be mitigated
 - Proper indexing
 - Worst-case optimal join
 - Highly structured data cannot be leveraged

- Efficiency falls off if the need is outside the scope
 - Non-navigational queries
 - When walks are not needed
 - Analytics (even graph analytics)

Weaknesses of property graph DBMS (2)

Too specialized?

PG does not handle well some data
 Ex: ternary relations, extremely large values, disconnected data

- PG does not handle well some data
 Ex: ternary relations, extremely large values, disconnected data
- Way less PG DBMS experts than Rel DBMS experts

- PG does not handle well some data
 Ex: ternary relations, extremely large values, disconnected data
- Way less PG DBMS experts than Rel DBMS experts
- Relational databases may simulate property graphs

- PG does not handle well some data
 Ex: ternary relations, extremely large values, disconnected data
- Way less PG DBMS experts than Rel DBMS experts
- Relational databases may simulate property graphs
 - User-friendly visualization and modeling tools can be made

- PG does not handle well some data
 Ex: ternary relations, extremely large values, disconnected data
- Way less PG DBMS experts than Rel DBMS experts
- Relational databases may simulate property graphs
 - User-friendly visualization and modeling tools can be made
 - Graph-views can be made on top of Relational DBMS

- PG does not handle well some data
 Ex: ternary relations, extremely large values, disconnected data
- Way less PG DBMS experts than Rel DBMS experts
- Relational databases may simulate property graphs
 - User-friendly visualization and modeling tools can be made
 - Graph-views can be made on top of Relational DBMS
 - Cypher is hard to translate in SQL...

- PG does not handle well some data
 Ex: ternary relations, extremely large values, disconnected data
- Way less PG DBMS experts than Rel DBMS experts
- Relational databases may simulate property graphs
 - User-friendly visualization and modeling tools can be made
 - Graph-views can be made on top of Relational DBMS
 - Cypher is hard to translate in SQL...

...but SQL/PGQ brings it into SQL

Part III: Cypher

Part III: Cypher

1. General presentation

Generalities

A Cypher query

- queries a property graph
- returns a table

Example of Cypher query:

```
MATCH (u1)-[p1:POSTED]->(m1)
WHERE p1.id = 22
RETURN u1.name AS uname,
    p1.on AS date,
    m1.text AS msg
```

Example Returned table

uname	date	msg
"Alice"	"05-14"	"Hello"

A Cypher query

- queries a property graph
- returns a table
- Is a sequence of clauses(3 clauses on the right)
- Last clause is always RETURN

Example of Cypher query:

```
MATCH (u1)-[p1:POSTED]->(m1)
WHERE p1.id = 22
RETURN u1.name AS uname,
p1.on AS date,
m1.text AS msg
```

Example Returned table

uname	date	msg
"Alice"	"05-14"	"Hello"

A Cypher query

- queries a property graph
- returns a table
- Is a sequence of clauses(3 clauses on the right)
- Last clause is always RETURN
- manipulates a working table
- uses variables, which refer to column names

Example of Cypher query:

```
MATCH (u1)-[p1:POSTED]->(m1)
WHERE p1.id = 22
RETURN u1.name AS uname,
p1.on AS date,
m1.text AS msg
```

Example Returned table

uname	date	msg
"Alice"	"05-14"	"Hello"

- Values are the elements that may appear in tables
- Pure values are the values with no reference to the graph
- Property is a key to pure values

Values are

- Base values Ex: true, 42, "NoSQL"
- Graph elements Ex: nodes, relations
- Paths (alternate lists of nodes and relations)
- List of values Ex: [1, "Hello", true, "World, n₁]
- Property dictionary Ex: {name:"Victor", age:35}

How evaluation works

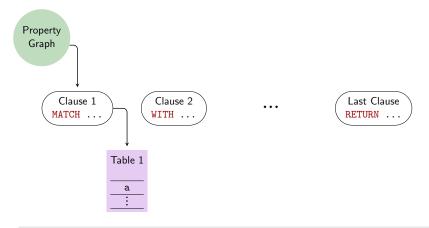
Clause 1
MATCH ...

Clause 2

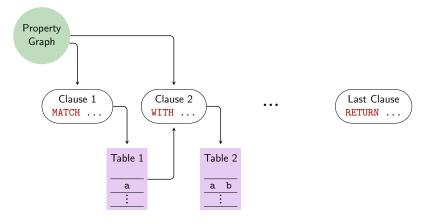
• • •

Last Clause
RETURN ...

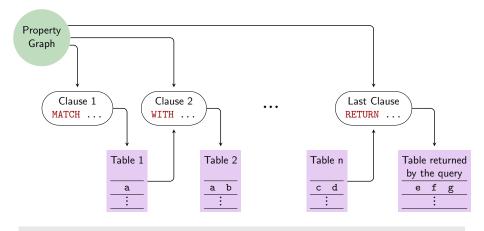
How evaluation works



■ The first clause produces a table from the property graph



- The first clause produces a table from the property graph
- Subsequent clauses produces a new table from the property graph and the prior table



- The first clause produces a table from the property graph
- Subsequent clauses produces a new table from the property graph and the prior table
- Until we reach the last clause, which produces the table to return

Overview of read-only Cypher

MATCH is for pattern matching

- RPQ-like (in fact C2RPQ)
- Trail semantics
- Projects paths into a table
- Inner join with the input table
- The variant OPTIONAL MATCH does an outer join instead

MATCH is for pattern matching

- RPQ-like (in fact C2RPQ)
- Trail semantics
- Projects paths into a table
- Inner join with the input table
- The variant OPTIONAL MATCH does an outer join instead

WITH is for:

- Column manipulation (add, remove, rename, etc.)
- Aggregation
 - Vertical
 - Horizontal (reduce)
- Order and limit output size (ORDER BY, SKIP and LIMIT)

Overview of read-only Cypher

MATCH is for pattern matching

- RPQ-like (in fact C2RPQ)
- Trail semantics
- Projects paths into a table
- Inner join with the input table
- The variant OPTIONAL MATCH does an outer join instead

WHERE filters rows

Subclause of WITH and MATCH

WITH is for:

- Column manipulation (add, remove, rename, etc.)
- Aggregation
 - Vertical
 - Horizontal (reduce)
- Order and limit output size (ORDER BY, SKIP and LIMIT)

MATCH is for pattern matching

- RPQ-like (in fact C2RPQ)
- Trail semantics
- Projects paths into a table
- Inner join with the input table
- The variant OPTIONAL MATCH does an outer join instead

WHERE filters rows

Subclause of WITH and MATCH

WITH is for:

- Column manipulation (add, remove, rename, etc.)
- Aggregation
 - Vertical
 - Horizontal (reduce)
- Order and limit output size (ORDER BY, SKIP and LIMIT)

RETURN is a mandatory WITH at the end of the query

MATCH is for pattern matching

- RPQ-like (in fact C2RPQ)
- Trail semantics
- Projects paths into a table
- Inner join with the input table
- The variant OPTIONAL MATCH does an outer join instead

WHERE filters rows

Subclause of WITH and MATCH

UNWIND splits rows for each element in a list

WITH is for:

- Column manipulation (add, remove, rename, etc.)
- Aggregation
 - Vertical
 - Horizontal (reduce)
- Order and limit output size (ORDER BY, SKIP and LIMIT)

RETURN is a mandatory WITH at the end of the query

Overview of read-only Cypher

MATCH is for pattern matching

- RPQ-like (in fact C2RPQ)
- Trail semantics
- Projects paths into a table
- Inner join with the input table
- The variant OPTIONAL MATCH does an outer join instead

WHERE filters rows

Subclause of WITH and MATCH

UNWIND splits rows for each element in a list

WITH is for:

- Column manipulation (add, remove, rename, etc.)
- Aggregation
 - Vertical
 - Horizontal (reduce)
- Order and limit output size (ORDER BY, SKIP and LIMIT)

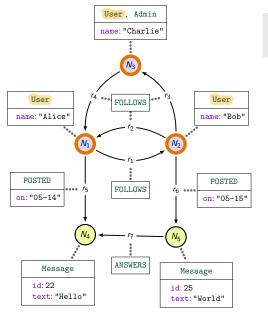
RETURN is a mandatory **WITH** at the end of the query

UNION and UNION ALL are for set and bag union.

Part III: Cypher

2. Pattern matching with MATCH

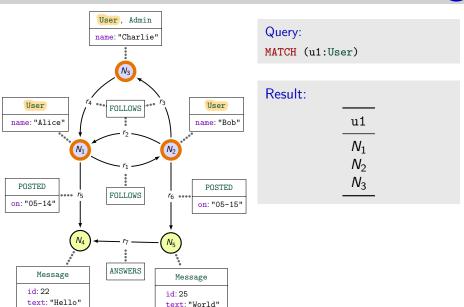
Matching nodes (1)



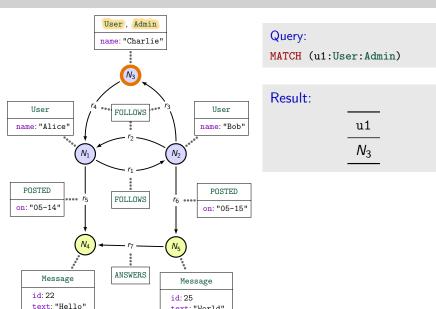
Query:

MATCH (u1:User)

Matching nodes (1)



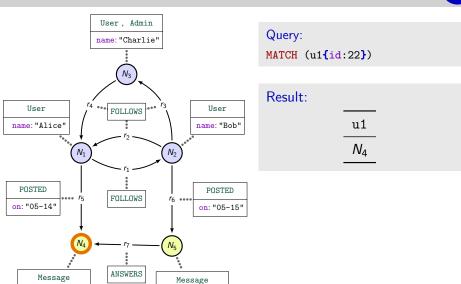
Matching nodes (2)



Matching nodes (3)

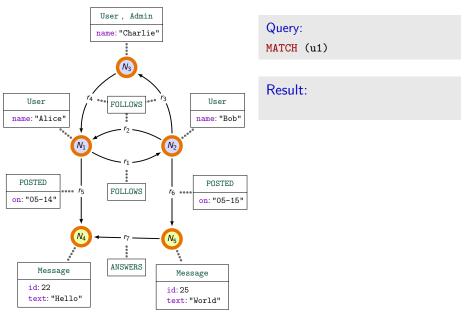
id: 22

text: "Hello"

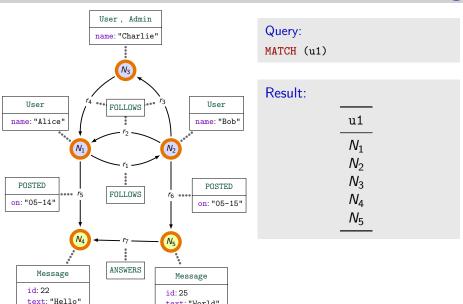


id: 25

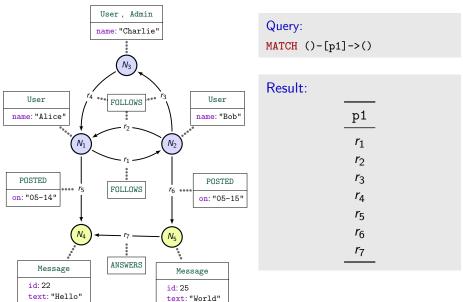
Matching nodes (4)



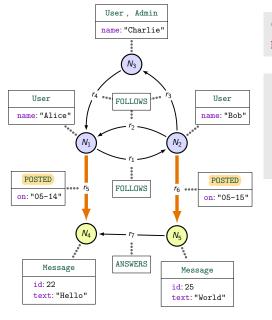
Matching nodes (4)



Matching relations (1)



Matching relations (2)



Query:

MATCH (u1)-[p1:POSTED]->(m1)

Result:

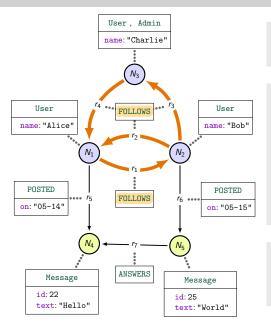
	-	
N_1 N_2	r ₅ r ₆	N ₄ N ₅

p1

m1

u1

Matching relations (3)



Query:

MATCH (u1)-[:FOLLOWS]->()

Result:

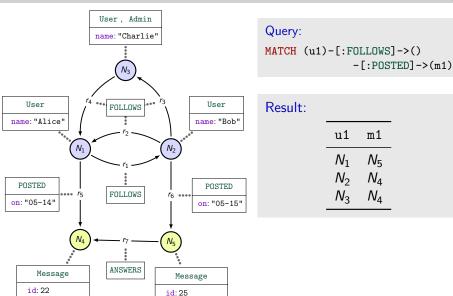
N₁ N₂ N₂ N₃

u1

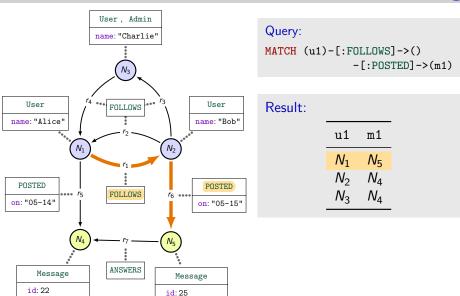
Cypher has bag semantics:

 N_2 has two outgoing follows relations \Rightarrow two lines N_2

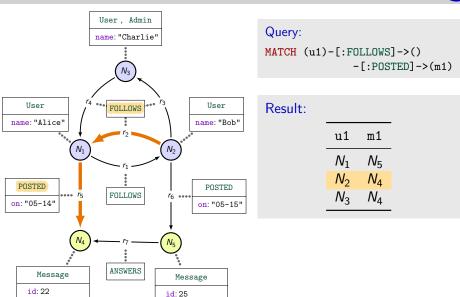
text: "Hello"

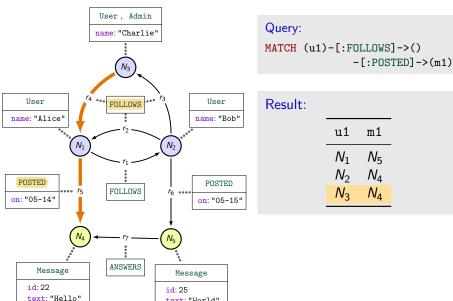


text: "Hello"

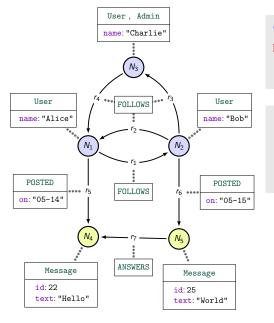


text: "Hello"





Matching relations backward



Query:

MATCH (u1)-[:POSTED]->()

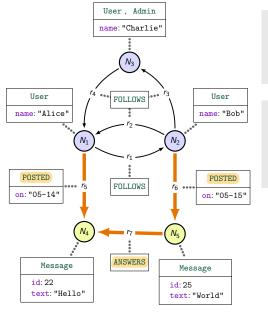
<-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)

Result:

u1	m2	u2
N_1	N_5	N_2

Matching relations backward



Query:

MATCH (u1)-[:POSTED]->()

<-[:ANSWERS]-(m2)

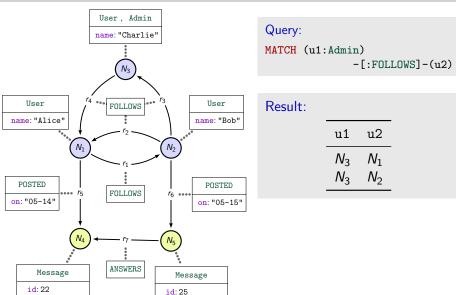
<-[:POSTED]-(u2)

Result:

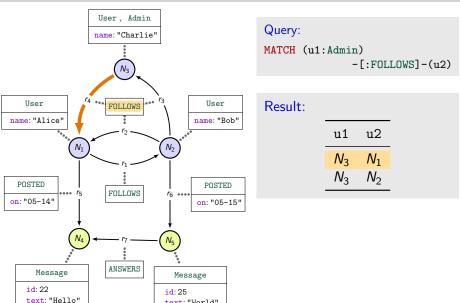
 $\frac{\text{u1}}{N_1} = \frac{\text{m2}}{N_5} = \frac{\text{u2}}{N_2}$

Any-directed relation pattern

text: "Hello"

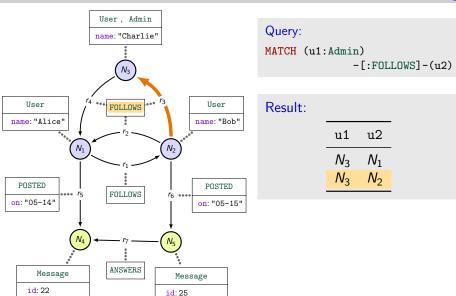


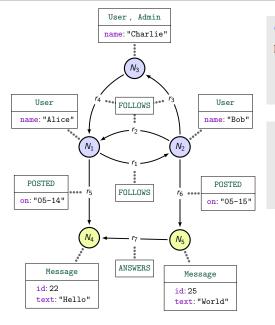
Any-directed relation pattern



Any-directed relation pattern

text: "Hello"





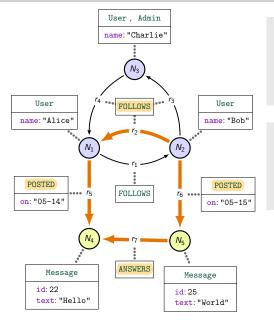
Query:

MATCH (u1)-[:POSTED]->()
<-[:ANSWERS]-(m2)
<-[:POSTED]-(u2)

-[:FOLLOWS]->(u1)

Result:

N_1	N ₅	N
u1	m2	u2



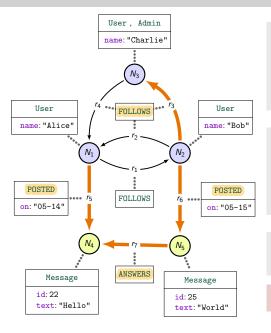
Query:

MATCH (u1)-[:POSTED]->() <-[:ANSWERS]-(m2)

<-[:POSTED]-(u2)
-[:FOLLOWS]->(u1)

Result:

u1 m2 u2 $N_1 N_5 N_2$



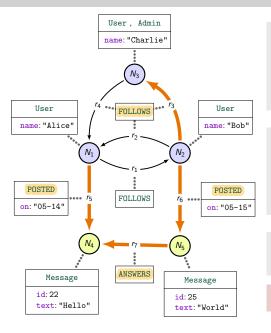
Query:

Result:

u1	m2	u2
N_1	N_5	N_2

The orange path is invalid: two different nodes for u1.

Variable reuse \implies equality



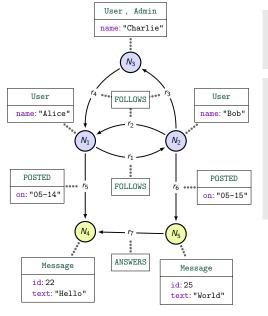
Query:

Result:

u1	m2	u2
N_1	N_5	N_2

The orange path is invalid: two different nodes for u1.

Variable reuse \implies equality



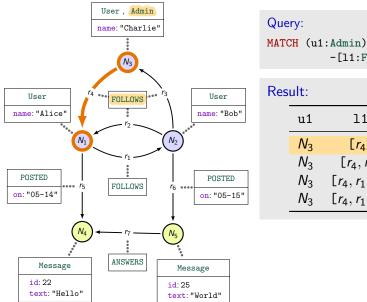
Query:

MATCH (u1:Admin)

-[11:FOLLOWS*]->(m1)

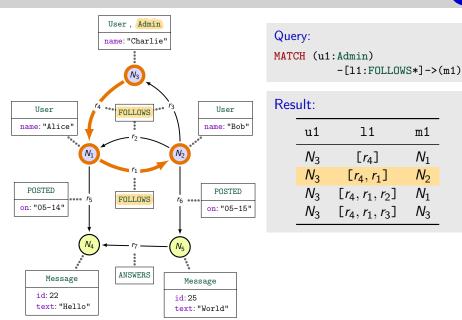
Result:

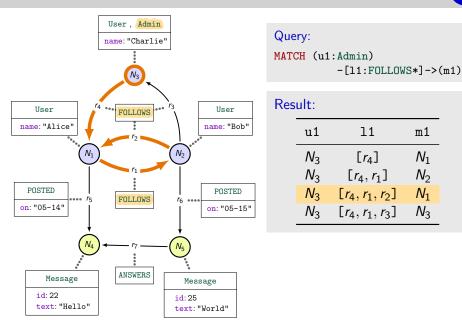
u1	11	m1
N_3	[<i>r</i> ₄]	N_1
N_3	$[r_4, r_1]$	N_2
N_3	$[r_4, r_1, r_2]$	N_1
N_3	$[r_4,r_1,r_3]$	N_3

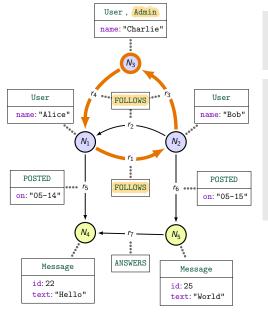


-[11:FOLLOWS*]->(m1)

l _	11	11	m1
1	V_3	[<i>r</i> ₄]	N_1
I	V_3	$[r_4, r_1]$	N_2
1	V ₃ [$[r_4, r_1, r_2]$	N_1
I	V ₃ [$[r_4, r_1, r_3]$	N_3







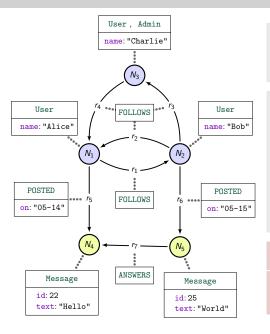
Query:

MATCH (u1:Admin)

-[11:FOLLOWS*]->(m1)

Result:

	u1	11	m1
•	N_3	$[r_4]$	N_1
	N_3	$[r_4, r_1]$	N_2
	N_3	$[r_4, r_1, r_2]$	N_1
	N_3	$[r_4,r_1,r_3]$	N_3



Query:

MATCH (u1:Admin)

-[11:FOLLOWS*]->(m1)

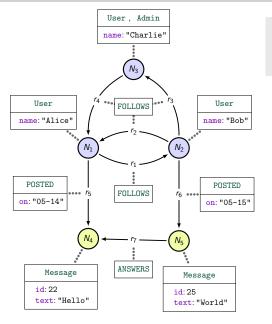
Result:

u1	11	m1
N_3	[<i>r</i> ₄]	N_1
N_3	$[r_4, r_1]$	N_2
N_3	$[r_4, r_1, r_2]$	N_1
N_3	$[r_4,r_1,r_3]$	N_3

Cypher uses **trail semantics**.

In Cypher the star means **one or more**.

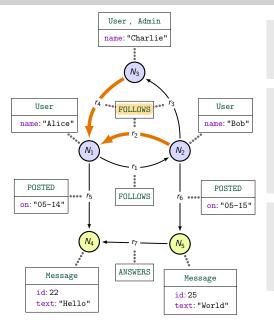
An interesting query



Query:

MATCH (u2)-[:FOLLOWS]-> (u1)<-[:FOLLOWS]-(u3)

An interesting query



Query:

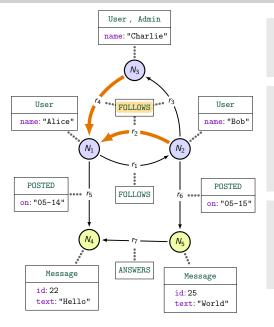
MATCH (u2)-[:FOLLOWS]-> (u1)<-[:FOLLOWS]-(u3)

Result:

uz	uı	uS
N_3	N_1	N_2
N_2	N_1	N_3

- Line 1: $N_3 \xrightarrow{r_4} N_1 \xleftarrow{r_2} N_2$
- Line 2: $N_2 \xrightarrow{r_2} N_1 \xleftarrow{r_4} N_3$
- No (N_3, N_1, N_3) due to trail semantics

An interesting query



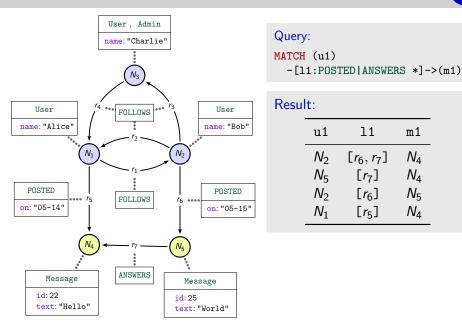
Query:

MATCH (u2)-[:FOLLOWS]-> (u1)<-[:FOLLOWS]-(u3)

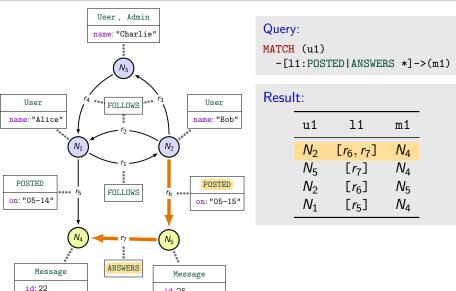
Result:

u2	u1	u3
N_3	N_1	N_2
N_2	N_1	N_3

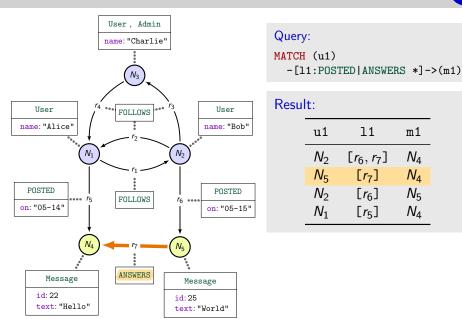
- Line 1: $N_3 \xrightarrow{r_4} N_1 \xleftarrow{r_2} N_2$
- Line 2: $N_2 \xrightarrow{r_2} N_1 \xleftarrow{r_4} N_3$
- No (N_3, N_1, N_3) due to trail semantics

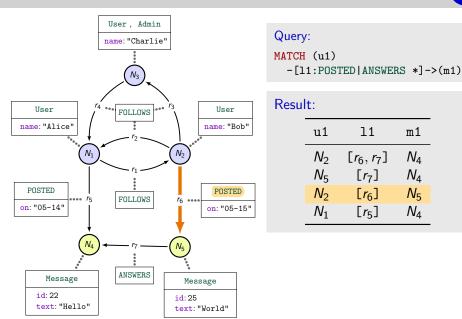


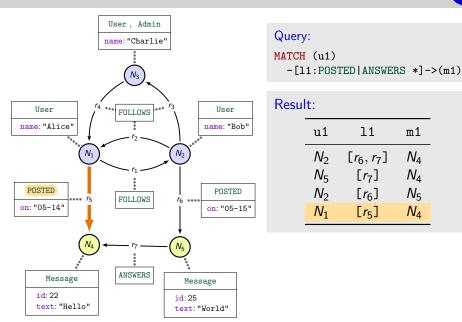
text: "Hello"



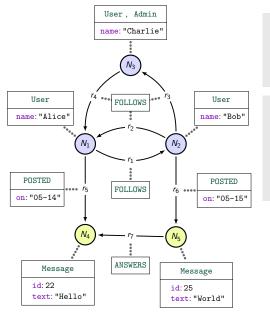
id: 25







Matching subgraphs

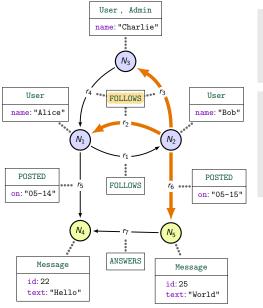


Query:

MATCH (u1)-[:FOLLOWS]->(u2), (u1)-[:FOLLOWS]->(u3), (u1)-[:POSTED]->(m1)

Result:

u1	u2	u3	m1
N_2	N_1	N_3	N_5
N_2	N_3	N_1	N_5



Query:

MATCH (u1)-[:FOLLOWS]->(u2), (u1)-[:FOLLOWS]->(u3), (u1)-[:POSTED]->(m1)

Result:

u1	u2	u3	m1
N_2	N_1	N_3	N_5
N_2	N_3	N_1	N_5

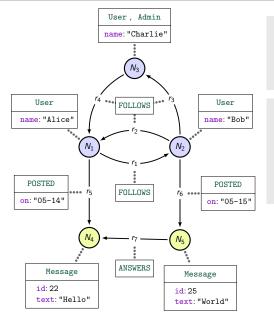


Query:

MATCH (u1)-[:FOLLOWS]->(u2), (u1)-[:FOLLOWS]->(u3), (u1)-[:POSTED]->(m1)

Result:

u1	u2	u3	m1
N_2	N_1	N_3	N_5
N_2	N_3	N_1	N_5



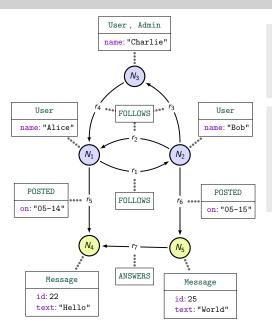
Query:

MATCH (u1)-[:FOLLOWS]->(u2), (u1)-[:FOLLOWS]->(u3), (u1)-[:POSTED]->(m1)

Result:

u1	u2	u3	m1
N ₂		N ₃	
N_2	N_3	N_1	N_5

 CRPQ



Query:

MATCH (u1)-[:FOLLOWS]->(u2), (u1) - [:FOLLOWS] -> (u3),(u1)-[:POSTED]->(m1)

Result:

u1	u2	u3	m1
N_2 N_2	N ₁ N ₃	N ₃ N ₁	N ₅

CRPQ

Cartesian product

Recap of MATCH

- C2RPQ-like pattern-matching
- Trail semantics (no repeated edge, globally)
- Result computation:
 - C2RPQ evaluations → tuples of walks
 - project on variables
 - return a table: variable as column names, one line per tuple of walks

Letters are put between brackets

$$A \rightarrow ()-[:A]->()$$
 $B \rightarrow ()<-[:B]-()$

$$\mathsf{B} \ \rightsquigarrow \ () < -[:\mathsf{B}] - ()$$

Letters are put between brackets

$$\overline{B} \rightsquigarrow () < -[:B] - ()$$

■ Repetitions follows a * in brackets

$$A^+ \sim ()-[:A *]->()$$

$$A^* \sim ()-[:A *0..]->()$$

Letters are put between brackets

$$\overset{\mathbf{A}}{=} \quad \rightsquigarrow \quad ()-[:A]->()$$

$$\overline{B} \rightarrow () < -[:B] - ()$$

Repetitions follows a * in brackets

$$A^+ \rightarrow ()-[:A *]->()$$
 $A^* \rightarrow ()-[:A *0..]->()$

$$\mathbf{A} \cdot \mathbf{B}^+ \cdot \mathbf{C} \Rightarrow () \rightarrow [:A] \rightarrow () - [:B*] \rightarrow () - [:C] \rightarrow ()$$

Letters are put between brackets

$$\frac{A}{B} \sim ()-[:A]->()$$

$$\frac{B}{B} \sim ()<-[:B]-()$$

■ Repetitions follows a * in brackets

$$A^+ \rightarrow ()-[:A *]->()$$
 $A^* \rightarrow ()-[:A *0..]->()$

Concatenation is done by direct chaining

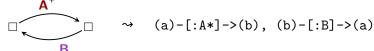
$$A \cdot B^{+} \cdot C \rightarrow () -> [:A] -> () - [:B*] -> () - [:C] -> ()$$

Union is simulated by | in bracket or any-directed edge patterns

$$A + B \rightarrow ()-[:A|B]->()$$

 $C + \overline{C} \rightarrow ()-[:C]-()$

- Letters are put between brackets
 - $A \sim ()-[:A]->()$
 - $\bar{B} \sim () < -[:B] ()$
- Repetitions follows a * in brackets
 - $A^+ \rightarrow ()-[:A *]->()$
 - $\mathbf{A}^* \quad \rightsquigarrow \quad ()-[:A *0..]->()$
- Concatenation is done by direct chaining
 - $A \cdot B^{+} \cdot C \rightarrow () -> [:A] -> () [:B*] -> () [:C] -> ()$
- Union is simulated by | in bracket or any-directed edge patterns
 - $A + \underline{B} \quad \rightsquigarrow \quad () [:A|B] -> ()$
 - $\mathbf{C} + \overline{\mathbf{C}} \quad \rightsquigarrow \quad () [:\mathbb{C}] ()$
- CRPQs are simulated with commas



Letters are put between brackets

$$\begin{array}{c} \mathbf{A} & \rightsquigarrow & ()-[:A]->() \\ \overline{\mathbf{B}} & \rightsquigarrow & ()<-[:B]-() \end{array}$$

Repetitions follows a * in brackets

$$A^+ \rightarrow ()-[:A *]->()$$
 $A^* \rightarrow ()-[:A *0..]->()$

• Repetitions follows a * III brackets

Concatenation is done by direct chaining

$$A \cdot B^+ \cdot C \implies () -> [:A] -> () - [:B*] -> () - [:C] -> ()$$

Union is simulated by | in bracket or any-directed edge patterns

$$A + B \rightarrow ()-[:A|B]->()$$

 $C + \overline{C} \rightarrow ()-[:C]-()$

CRPQs are simulated with commas

$$\square \xrightarrow{A} \square \qquad \rightsquigarrow \qquad (a)-[:A*]->(b), \quad (b)-[:B]->(a)$$

Exercice: find RPQs, 2RPQs and 2CRPQs that are not expressible with MATCH

RPQs

- Only atoms can be unionized
- No nested stars
- No concatenation under star

AA + BB

 $(A^*B)^*$ $(A \cdot B)^*$

RPQs

- Only atoms can be unionized
- No nested stars
- No concatenation under star

$$AA + BB$$

 $(A^*B)^*$ $(A \cdot B)^*$

2RPQs

Unions of atoms with inconsistent directions

$$A + \overline{B}$$

NB: $\mathbf{A} + \overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{B}}$ is expressible with ()-[:A|B]-()

RPQs

- Only atoms can be unionized
- No nested stars
- No concatenation under star

$$AA + BB$$

 $(A^*B)^*$ $(A \cdot B)^*$

2RPQs

Unions of atoms with inconsistent directions NB: $\mathbf{A} + \overline{\mathbf{A}} + \mathbf{B} + \overline{\mathbf{B}}$ is expressible with ()-[:A|B]-()

$$A + \overline{B}$$

No further restrictions

MATCH goes beyond C2RPQs

Testing properties
MATCH ()-[{date:"22-12"}]->()

MATCH goes beyond C2RPQs

- Testing properties
 MATCH ()-[{date:"22-12"}]->()
- Testing labels and properties on nodes MATCH (:Admin) MATCH ({id:21})

MATCH goes beyond C2RPQs

Testing properties
MATCH ()-[{date:"22-12"}]->()

Testing labels and properties on nodes

```
MATCH (:Admin)
MATCH ({id:21})
```

Returning part of the matched walks thanks to variable

```
MATCH (a)-[:Road*]->() → source nodes MATCH ()-[b:Road*]->() → edge lists
```

```
MATCH ()-[:Road*]->(c:Gas)-[:Road*]->() \rightarrow middle nodes
```


Testing properties

```
MATCH ()-[{date:"22-12"}]->()
```

Testing labels and properties on nodes

```
MATCH (:Admin)
MATCH ({id:21})
```

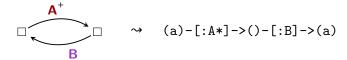
Returning part of the matched walks thanks to variable

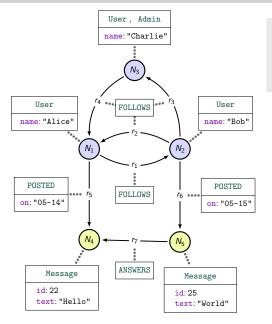
```
MATCH (a)-[:Road*]->() → source nodes

MATCH ()-[b:Road*]->() → edge lists

MATCH ()-[:Road*]->(c:Gas)-[:Road*]->() → middle nodes
```

■ Variable reuse allows lightweitht C2RPQ without commas



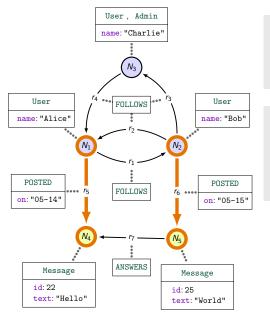


Query:

MATCH (u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1)

-[:FOLLOWS]->(u3)



Query:

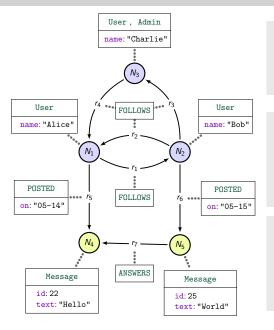
MATCH (u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

u1	m1
N_1 N_2	N_4 N_5



Query:

MATCH (u1)-[:POSTED]->(m1)

MATCH (u2)<-[:FOLLOWS]-(u1)

-[:FOLLOWS]->(u3)

Table after first MATCH:

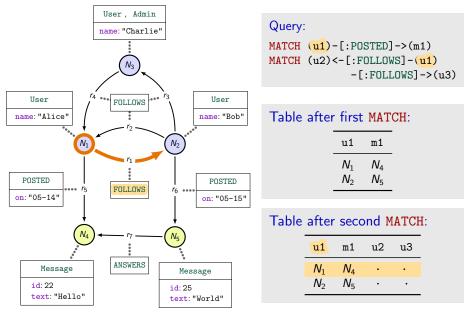
 u1
 m1

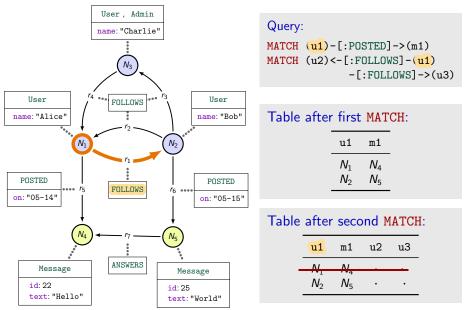
 N1
 N4

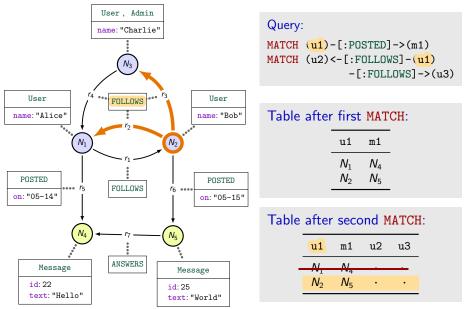
 N2
 N5

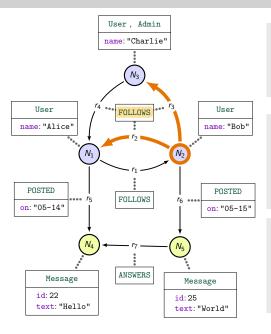
Table after second MATCH:

N_1 N_4 · ·	u1	m1	u2	u3
	N_1	N_4		•
N_2 N_5 · ·	N_2	N_5	•	•









Query:

MATCH (u1)-[:POSTED]->(m1)
MATCH (u2)<-[:FOLLOWS]-(u1)
-[:FOLLOWS]->(u3)

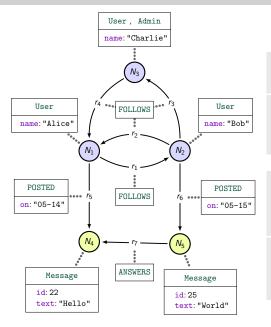
Table after first MATCH:

u1	m1
N_1 N_2	N ₄ N ₅

Table after second MATCH:

u1	m1	u2	u3
N ₂ N ₂	N_5 N_5	N_1 N_3	N_3 N_1

Exercice



The two following queries compute similar thing:

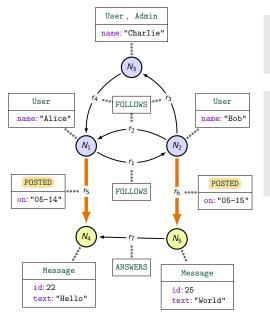
MATCH (a) $\langle pat_1 \rangle$ (b) $\langle pat_2 \rangle$ (c)

MATCH (a) $\langle pat_1 \rangle$ (b) MATCH (b) $\langle pat_2 \rangle$ (c)

- Compute their answer for $\langle pat_1 \rangle = -[:FOLLOWS] -> \langle pat_2 \rangle = -[:POSTED] ->$
- 2 Can you find patterns $\langle pat_1 \rangle$ and $\langle pat_2 \rangle$ for which their answer is different?

Part III: Cypher

3. Usage of WITH (or RETURN)

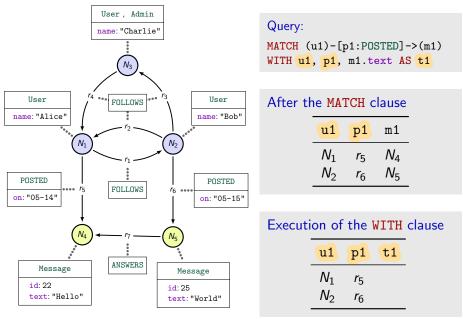


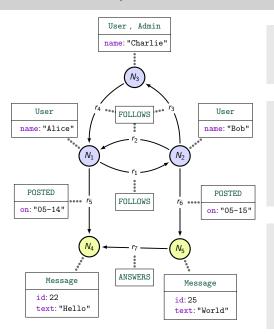
Query:

MATCH (u1)-[p1:POSTED]->(m1) WITH u1, p1, m1.text AS t1

After the MATCH clause

u1	p1	m1
N_1 N_2	r ₅ r ₆	N ₄ N ₅





Query:

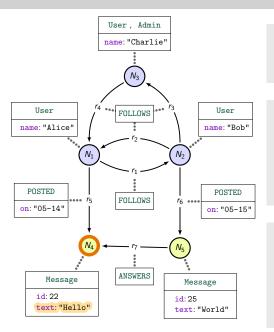
MATCH (u1)-[p1:POSTED]->(m1)
WITH u1, p1, m1.text AS t1

After the MATCH clause

u1	p1	m1
N_1 N_2	r ₅ r ₆	N_4 N_5

Execution of the WITH clause

u1	p1	t1
N_1 N_2	r ₅ r ₆	



Query:

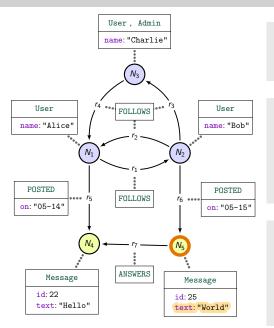
MATCH (u1)-[p1:POSTED]->(m1)
WITH u1, p1, m1.text AS t1

After the MATCH clause

$ \begin{array}{cccc} N_1 & r_5 & N_4 \\ N_2 & r_6 & N_5 \end{array} $	u1	p1	m1
	-	Ŭ	

Execution of the WITH clause

_	u1	p1	t1
	N_1 N_2	r ₅ r ₆	"Hello"



Query:

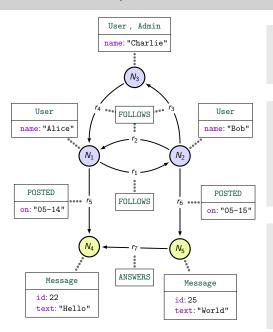
MATCH (u1)-[p1:POSTED]->(m1)
WITH u1, p1, m1.text AS t1

After the MATCH clause

u1	p1	m1
N_1 N_2	r ₅ r ₆	N_4 N_5
		-

Execution of the WITH clause

u1	p1	t1
N_1	<i>r</i> ₅	"Hello"
N_2	<i>r</i> ₆	"World"



Query:

MATCH (u1)-[p1:POSTED]->(m1)
WITH u1, p1, m1.text AS t1

After the MATCH clause

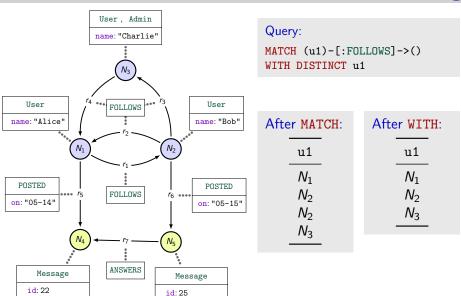
u1	p1	m1
N_1 N_2	r ₅ r ₆	N ₄ N ₅

After WITH:

u1	p1	t1
N_1	<i>r</i> ₅	"Hello"
N_2	<i>r</i> ₆	"World"

Elimination of duplicate rows

text: "Hello"



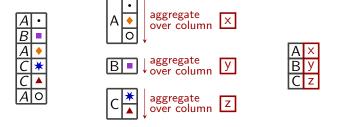
text: "World"

Aggregation: horizontal versus vertical

Aggregation = Compute one value from a list/set of value
 Ex: sum, count, max, collect

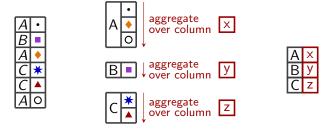
Aggregation: horizontal versus vertical

- Aggregation = Compute one value from a list/set of value
 Ex: sum, count, max, collect
- Vertical aggregation = usual aggregation (GROUP BY in SQL)



Aggregation: horizontal versus vertical

- Aggregation = Compute one value from a list/set of value
 Ex: sum, count, max, collect
- Vertical aggregation = usual aggregation (GROUP BY in SQL)



■ Horizontal aggregation = aggregate over each matched paths

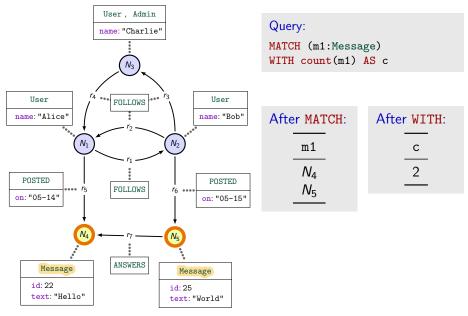

```
WITH \langle columns \rangle, \langle aggr \rangle (\langle expr \rangle)
```

Grouping is implicit: every variable used in $\langle columns \rangle$ is used for grouping

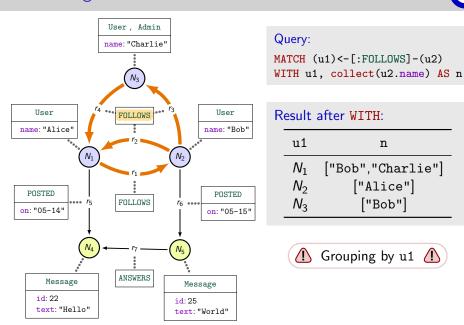
 $\langle aggr \rangle$ is a built-in **aggregation function**, that is, a function from list to a single value.

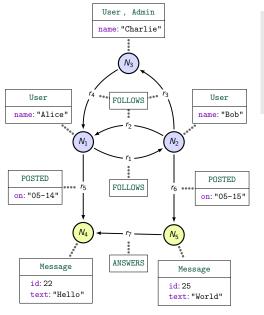
Example: count, sum, min, collect, etc.

Counting the Message nodes



Collecting names of followers



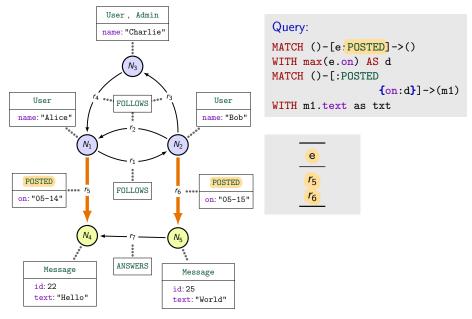


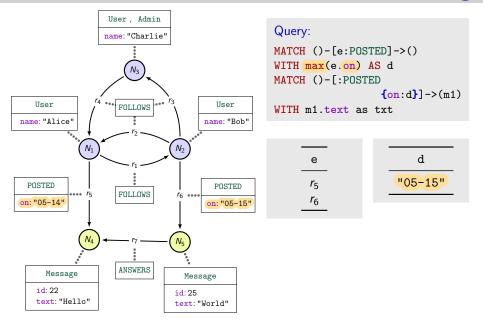
Query:

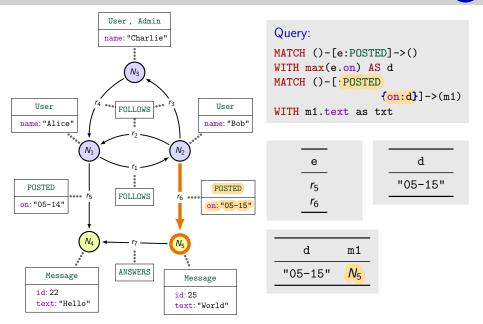
MATCH ()-[e:POSTED]->()
WITH max(e.on) AS d
MATCH ()-[:POSTED

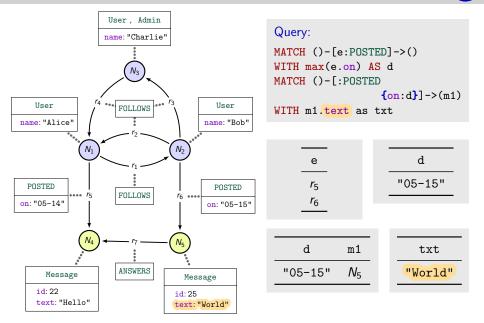
{on:d}]->(m1)
WITH m1.text as txt

Exercice: what does this compute?







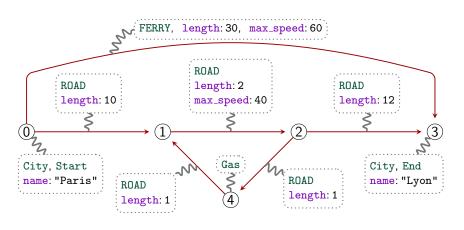


Syntax

```
reduce(\langle acc \rangle = \langle init \rangle, \langle var \rangle IN \langle list \rangle | \langle update \rangle)
```

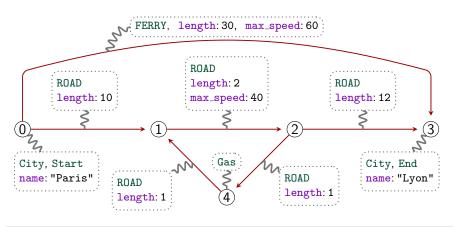
```
Equivalent to the following pseudo code \langle acc \rangle := \langle init \rangle for \langle var \rangle in \langle list \rangle: \langle acc \rangle := \langle update \rangle
```

Computing the length of a path



```
MATCH (:Start)-[e:ROAD|FERRY*]->(:End)
WITH reduce(acc=0, x IN e | acc+x.length) AS 1
```

Computing the duration of a path



Part III: Cypher

4. Subclauses of MATCH and/or WITH

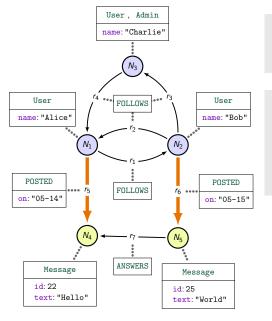
Filtering rows with WHERE (1)

Syntax

MATCH ... WHERE \(\langle condition \rangle \)
or
WITH ... WHERE \(\langle condition \rangle \)

Remove from the table computed by MATCH or WHERE the row that make $\langle \mathit{condition} \rangle$ false

Filtering rows with WHERE (2)



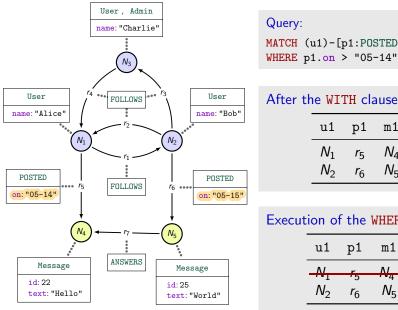
Query:

MATCH (u1)-[p1:POSTED]->(m1) WHERE p1.on > "05-14"

After the WITH clause

u1	p1	m1
N_1 N_2	r ₅ r ₆	N ₄ N ₅

Filtering rows with WHERE (2)



MATCH (u1)-[p1:POSTED]->(m1)

After the WITH clause

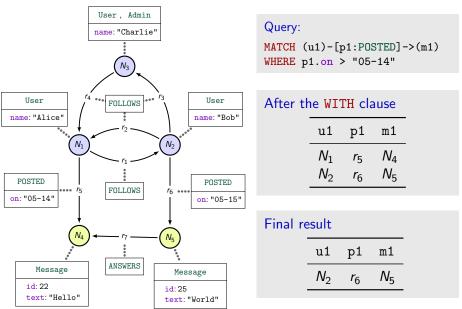
u1	p1	m1
N_1	<i>r</i> ₅	N ₄
N_2	r_6	N_5

Execution of the WHERE clause n1

m 1

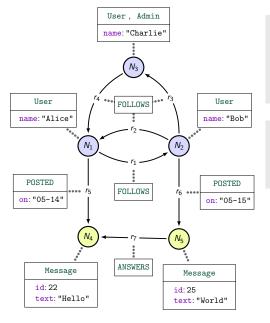
	Pi	шт
-N ₁	r	N ₄
7.1	ر 2	7 4
N_2	<i>r</i> ₆	N_5

Filtering rows with WHERE (2)



- Order the table by ⟨oexpr₁⟩
 - Ties are broken by the value of $\langle oexpr_2 \rangle$, remaining ties are broken by $\langle oexpr_3 \rangle$, etc
 - DESC means the order is descending.
 - We might end up with ties → Nondeterminism
- Then, remove the first ⟨sexpr⟩ rows
- Then, keep the first $\langle lexpr \rangle$ rows, at most

Compute the User with the most followers

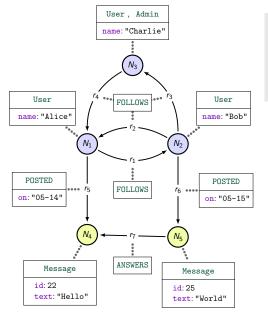


Query:

MATCH (u1)<-[:FOLLOWS]-(u2)
WITH u1, count(u2) AS c
ORDER BY c
LIMIT 1 DESC

 $\frac{\text{u1}}{N_1}$ c

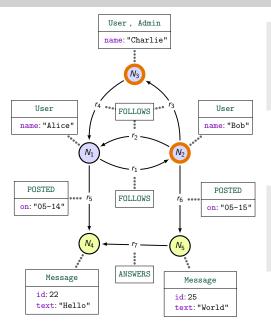
Compute the two User with the most followers



Query:

MATCH (u1)<-[:FOLLOWS]-(u2)
WITH u1, count(u2) AS c
ORDER BY c DESC
LIMIT 2

Compute the two User with the most followers

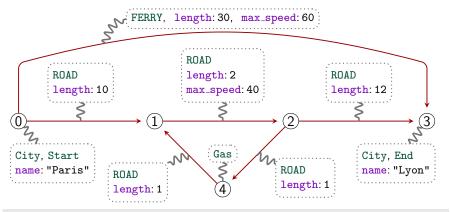


Query:

MATCH (u1)<-[:FOLLOWS]-(u2)
WITH u1, count(u2) AS c
ORDER BY c DESC
LIMIT 2

Since Charlie and Bob both have 1 follower, the final table is either:

Exercice: what does this compute?



```
MATCH (:Start)-[e:ROAD*]->(:Gas)-[f:ROAD*]->(:End)
WITH reduce(acc=0, x IN e | acc+x.length) AS 1,
    reduce(acc=0, x IN f | acc+x.length) AS m
ORDER BY 1+m ASC
LIMIT 1
```

Part III: Cypher

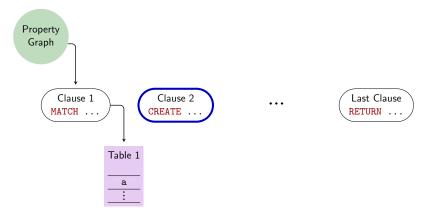
5. Updates

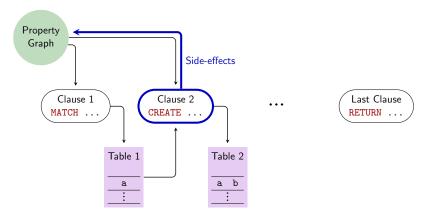
Clause 1
MATCH ...

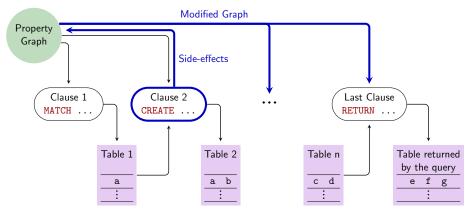
Clause 2
CREATE ...

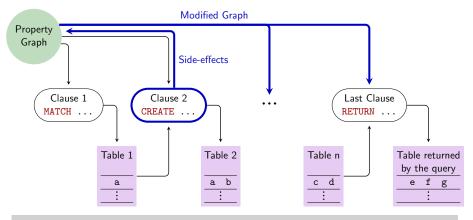
• • •

Last Clause RETURN ...









Neo4j complies to ACID

A \implies Modifications are **undone** if evaluation fails

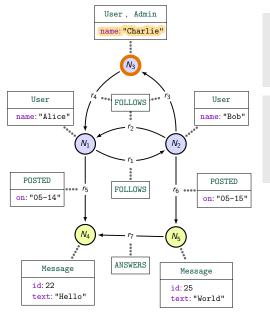
 $C \implies The PG$ must complies to IC at the end of evaluation only

I ⇒ Modifications are **invisible** to concurrent queries

Create nodes and relations (1)

- CREATE (a:User {name:"Alice"})
 - Creates a new node
 - Stores it in column a
- CREATE (a)-[e:POSTED {on:"12-07"}]->(b)
 - Creates a new relation from a to b
 - If a the input table has no column named a, creates a new node
 - Idem for b
 - Stores the new relation in column e

Create nodes and relations (2)

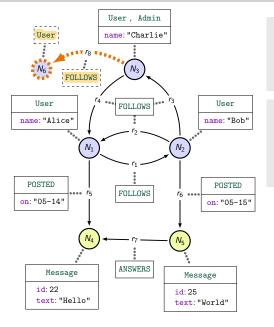


```
Query:
```

Table after MATCH clause:

N₃

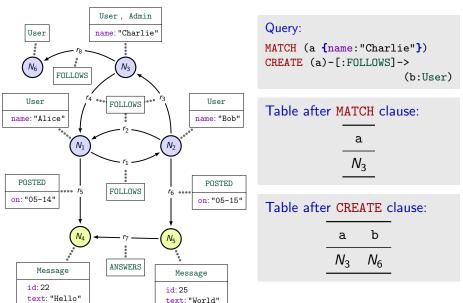
Create nodes and relations (2)

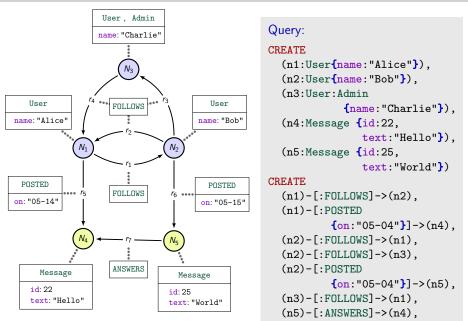


```
Query:
```

Table after MATCH clause:

Create nodes and relations (2)





Delete nodes and relations

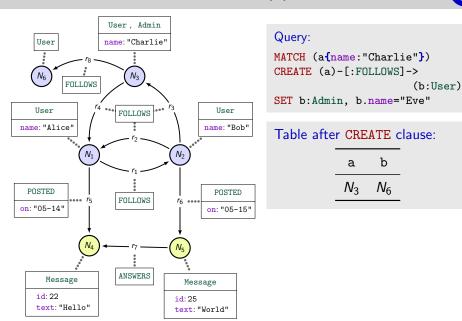
■ DELETE a

- If column a contains relations, delete them
- If column a contains node:
 - if none of them has adjacent relation, delete them
 - otherwise the query fails.

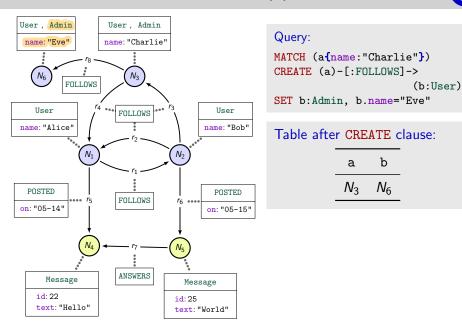
■ DETACH DELETE a

- If column a contains relations, delete them
- If column a contains nodes, delete them as well as every adjacent relations.

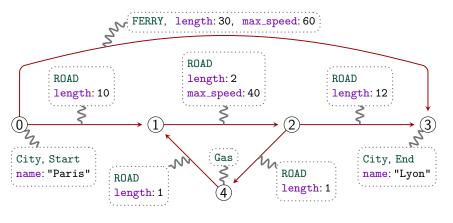
Modifying labels and properties (1)



Modifying labels and properties (1)



Bulk updates



MATCH ()-[e:ROAD]->()
WHERE e.max_speed IS NULL
SET e.max_speed=80

⇒ Adds the property max_speed:80 to all ROAD that do not have one.

Appendix

- Graph data model.
- Definition and language denoted by a regexp (and a 2-way regexp).
- Writing abstract and concrete RPQs, 2RPQ, CRPQs.
- Computing matches for RPQs, 2RPQ, CRPQs.
- Concept of product graph.
- What is an RPQ semantics and why we need one.
- The three common RPQ semantics: definition, differences between them and usage.
- Evaluating RPQs, 2RPQs under the RPQ semantics.

- Property graph data model:
 - Definition
 - Bad modeling
 - Different storage options
 - Strenth and Weaknesses
- Translations: Tables → Property Graphs

- General scheme of evaluating a Cypher query.
- Writing Cypher queries with MATCH, WITH, WHERE, RETURN clauses.
- Writing Cypher with several clauses.
- The two kinds of aggregation and how to use them with Cypher.
- Writing Cypher queries to update the database (CREATE, DELETE, etc.)

Navigable outline (1)

Introduction

- About this PDF
- Overview of query answering
- Property graphs vs Relational
- History of query languages for PG's
- Outline

Part I: Theoretical foundations

- Data model: labeled graphs
- Definition
- · Limits to our data model
- 2 Regular Path Queries
- Reminders about regular expressions

- RPQs matching
- Matching RPQs
- Computing matches
- 3 RPQ semantics
- Endpoint semantics
- Shortest semantics
- Trail semantics
- Extensions to RPQs
- Motivating examples
- 2RPQs
- CRPQs

Navigable outline (2)

Part II: Property Graphs

- Data model
- Components of a property graph
- Examples
- 2 Translations: Graphs ↔ Tables
- Translation: Graph to Tables
- Translation: Property Graph to table
- Translation: Tables to Graph
- Encoding non-binary relations in graphs

- 3 Storage matters
- Adjacency list
- Adjacency matrix
- Tree sets
- Storing properties
- 4 Strength and Weaknessess
- Strenghts
- Weaknesses

Navigable outline (3)

Part III: Cypher

- General presentation
- Generalities
- Values in Cypher
- How evaluation works
- Overview of read-only Cypher
- Pattern matching with MATCH
- Matching nodes
- Matching relations
- Matching chained relations
- Implicit equijoin on variables
- Matching paths
- Matching subgraphs
- Recap of pattern matching
- Sequence of MATCH clauses

- 3 Usage of WITH (or RETURN)
- Column manipulation
- Elimination of duplicate rows
- Horizontal and vertical aggregation
- 4 Subclauses of MATCH and/or WITH
 - Filtering rows with WHERE
- Controling order and size of the output
- 5 Updates
- Create nodes and relations
- Delete nodes and relations
- Modifying labels and properties
- Cypher allows flexible bulk updates

English-French translation I

English	French
Acyclic	Acyclique, Acircuitique
Bag, multiset	Multi-ensemble
Data model (DM)	Modèle de données
Edge	Arête, Arc
Endpoints	Extrémités
Endpoint semantics	Sémantique d'extrémité
Key	Clef
Label	Etiquette
Match	
Pattern matching	Recherche de motif
Property, Attribute	Propriété, Attribut
Property Graph (PG)	Graphe à propriétés, Graphe de pro- priété, Graphe attribué

English-French translation II

Regular Path Query (RPQ)

Vertex, Node

Walk, Path

Semantics	Semantique
Set	Ensemble
Shortest semantics	Sémantique de plus-court-chemin
Source	Source
Target	Destination
Trail	
Trail semantics	Sémantique sans-répétition-d'arête
Type	Туре
Value	Valeur

Sommet, Noeud

Chemin, Marche