Run-based semantics for RPQs

Victor MARSAULT"
joint work with Claire DAVID* and Nadime FRANCIS*

* Université Gustave-Eiffel, CNRS, LIGM

Verigraph Meeting, 2024-04-30, Grenoble, France

(mostly Claire slides used for KR'23)

How to extract efficiently meaningful answers ?

Regular Graph
User Query : RPQ = _ Database
Expression 7
—) e
Answer : g

What is a good semantics for RPQ's over graph DB’s ?

m Meaningful answers
= Good complexity

Graph DB - In practice Property graphs 2

" Road length: 2 Road :
: : max_speed: 40 ‘length: 12 :

tag: "Start" :

Road, City
i length:1

RDF is another data model used in practice...

"'

Graph DB - Our abstraction

Ferry

m Finite label alphabet:
¥ ={S,R,F,G,E}

m Vertices

m Edges labelled over X 0 0
2 &
Start ovo, < End

Graph DB - Our abstraction

Ferry

m Finite label alphabet:
¥ ={S,R,F,G,E}

m Vertices

m Edges labelled over X 0 0
2 $
Start %o« <& End

Terminogy: Walk Gas

m Consistent sequence of edges
m Repetitions are allowed

"'

Graph DB - Our abstraction

Ferry

m Finite label alphabet:
¥ ={S,R,F,G,E}

m Vertices

m Edges labelled over X 0 0
2 3
Start %o« <& End

Terminogy: Walk Gas

m Consistent sequence of edges
m Repetitions are allowed

"'

RPQs - Core of most query languages for graph DB

oeal)
‘\PGQL/‘-\

many more ...

.

~

:
O
b
CRPQ UCRPQ / " \
X 2 N
Regular \\\\
CRPQ < Path — 2RPQ —> ------------------------ =
Queries
l

T -
-

\

""

RPQ - in theory

Q:=A Atoms
QQ Concatenation
@ + Q Disjunction
Q* Kleene star
where A is a label in the graph.

Label of a walk

Contenation of labels of edges

Ex : RRRGRRR

Definition: match for @

A walk w such that the label of w
matches Q.

Ex: match for R*GR*

Ferry

Start

Our two running RPQs

“Find a way from s to t”
Q= S(R+F)*E
Which walks match @7

Ferry

s / Road _ Road _ Road t

0 2 & 0
Start %A End
Gas

Our two running RPQs

“Find a way from s to t”
Q= S(R+F)*E

Which walks match @7
m The ferry

Ferry

s / Road _ Road _ Road t

0 2 & O
Start %A End
Gas

Our two running RPQs

“Find a way from s to t”
Q= S(R+F)*E

Which walks match @7
m The ferry
m The straight road

Ferry

s / Road _ Road _ Road t

0 - g O
Start %% End
Gas

Our two running RPQs

“Find a way from s to t”
Q= S(R+F)*E

Which walks match @7

m The ferry

m The straight road

m Walks with some circuit laps

Ferry

s / Road _ Road _ Road t

0 - g O
Start %% End
Gas

Our two running RPQs

“Find a way from s to t”
Q= S(R+F)*E

Which walks match @7

m The ferry

m The straight road

m Walks with some circuit laps

“..with mandatory gas stop”
Q= S(R+F)*G (R+F)*E
Which walks match Q9?

6 %
Ferry
oy Road ~ Road ~ Road t
0 2 S
Start %o« A End

Gas

Our two running RPQs

“Find a way from s to t”
Q= S(R+F)*E

Which walks match @7

m The ferry

m The straight road

m Walks with some circuit laps

“..with mandatory gas stop”
Q= S(R+F)*G (R+F)*E

Which walks match Q9?
m Walks with some circuit laps

6 %
Ferry
oy Road _ Road _ Road t
0 s S
Start %o« A End

Gas

Our two running RPQs

“Find a way from s to t”
Q= S(R+F)*E

Which walks match @7

m The ferry

m The straight road

m Walks with some circuit laps

“..with mandatory gas stop”
Q= S(R+F)*G (R+F)*E

Which walks match Q9?
m Walks with some circuit laps

Ferry

s / Road ~ Road ~ Road t

0 - g 0
Start %% End
Gas

= Infinitely many matches

- . o 4,
How to extract efficiently meaningful answers 7 7%
Graph
Query : RPQ = Regular. Database
Expression
ﬂ e
‘ —
Answer : g

What is a good semantics for RPQ's over graph DB’s ?

m Meaningful answer
= Good complexity

I Infinitely many matches but users expect a finite answer /|

. . %,
Homomorphism semantics 8§

Main theoretical semantics, SPARQL (RDF)

Ferry

Definition s / Road Road Road t

m Returns the endpoints of 0) 0
. ¢ e
matching walks Siart % S End
Gas

Qi= S (R+F)* E

Q= S(R+F)" G (R+F)*E

m Both return one pair: (s, t)

Homomorphism semantics 8

Main theoretical semantics, SPARQL (RDF)

Ferry

Definition s / Road ~ Road ~ Road t

m Returns the endpoints of 0 . 0
matching walks P >

< Start %o« & End

Q= S(R+F)*E Gas

Q= S(R+F)" G (R+F)*E

L,

= Well grounded theory =
m Both return one pair: (s, t) = Efficient algorithms ‘&
m Returns little information =X

Shortest-walk semantics 0%

PGQL (Oracle), GSQL (TigerGraph), G-Core [Angles et al. 2018], GQL

Ferry

Definition

m Returns the walk with the
least number of edges

Q= S(R+F)*E

m Returns the ferry
= Walks using roads have more
edges

Shortest-walk semantics

PGQL (Oracle), GSQL (TigerGraph), G-Core [Angles et al. 2018], GQL

Definition

m Returns the walk with the
least number of edges

Q= S(R+F)*E

m Returns the ferry
= Walks using roads have more
edges

Q= S(R+F)*G (R+F)*E

m Returns the walk with one
circuit lap

Ferry

Shortest-walk semantics

PGQL (Oracle), GSQL (TigerGraph), G-Core [Angles et al. 2018], GQL

Definition

m Returns the walk with the
least number of edges

Q1 =

m Returns the ferry
= Walks using roads have more
edges

S (R+F)*E

Q=

m Returns the walk with one
circuit lap

S (R+F)* G (R+F)* E

Ferry

s Road Road _ Road t

0 2 & 0
Start %A End
Gas

m Efficient algorithms ‘&
m Arbitrary choice of witness =X
= No vertical post-processing X

. . 4,
Trail semantics 108

"\
Cypher (Neo4j), GQL
Definition Ferr
m Returns walks
m Fach edge can be used at s / Road Road t

most once

0 2 & 0
Start %A End
Gas

. . 4,
Trail semantics 108
Cypher (Neo4j), GQL

Definition Ferry

m Returns walks

m Each edge can be used at
most once

Q= S(R+F)*E

m (Q; returns
= the ferry
= the straight road

Gas

. . o
Trail semantics

o
Cypher (Neo4j), GQL

Definition

Ferry

m Returns walks

m Each edge can be used at
most once

Q= S(R+F)*E

m (Q; returns
= the ferry
= the straight road
» Walks with circuit laps
= repeat the middle edge

Trail semantics
Cypher (Neo4j), GQL
Definition

m Returns walks

m Each edge can be used at s / Road
most once

Ferry

Road

Road

t

Q= S(R+F)*E

0 2 S
Start £y A
m (Q; returns
= the ferry g
as

= the straight road
» Walks with circuit laps
= repeat the middle edge

Q= S (R+F)*G (R+F)*E

m (y returns no results !!

)

End

Tra

il semantics

Cypher (Neo4j), GQL

Definition

m Each edge can be used at

Q1

Returns walks

most once

= S(R+F)*E

Q@1 returns
= the ferry
= the straight road

» Walks with circuit laps

(2

= repeat the middle edge
= S(R+F)* G (R+F)*E

Q@2 returns no results !!

Ferry

2 S
Start %O, A End

Gas

L,

= Enables post-processing =

m Problems are untractable =X

m Discards meaningful
matching walks =

What is a good semantics for RPQ’s over graph DB's? 1'1':3

Regular Graph
User Query : RPQ = _ Database
Expression
—) .
Answer ; g

Infinitely many matches but the user expects a finite answer

» Homomorphism — Filters out most information
m Shortest-walk — Bad “coverage” of matching walks
m Trail — Problems are computationally hard

May discard meaningful matching walks

No solution is clearly superior

Our proposal: binding-trail semantics (1) 12§

Definition

Ferry

m Returns walks
m Each edge can match each
atom of @ at most once

Our proposal: binding-trail semantics (1) 12§
an®
Definition Ferry

m Returns walks
m Each edge can match each
atom of @ at most once

Q = S(R+F)E

m Returns
= the ferry
= the straight road

Our proposal: binding-trail semantics (1) 12§
an®
Definition Ferry

m Returns walks
m Each edge can match each
atom of @ at most once

Q= S(R+F)*E

= Returns
= the ferry
= the straight road
m In walks with circuit laps
—> the middle edge reuses R

Our proposal: binding-trail semantics (2) 13§
Definition
m Returns walks Ferry
m Each edge may use once each
atom in Q

Q= S(R+F)" G (R+F)*E

m Returns the walk with one
circuit lap

Our proposal: binding-trail semantics (2) 13§
Definition
m Returns walks Ferry
m Each edge may use once each
atom in Q

Q= S(R+F)" G (R+F)*E

m Returns the walk with one
circuit lap
= Before G — use the left R

Our proposal: binding-trail semantics (2) 13§
Definition
m Returns walks Ferry
m Each edge may use once each
atom in Q

s / Road Road Road t

. 0 2 S 0
= S(R+F)"G(R+F"E " oo, 2\ /& End

m Returns the walk with one
circuit lap
= Before G — use the left R Gas
= After G — use the right R

Our proposal: binding-trail semantics (2)

Definition
m Returns walks

m Each edge may use once each
atom in Q

Q= S(R+F)" G (R+F)*E

m Returns the walk with one
circuit lap
= Before G — use the left R
= After G — use the right R

m In walks with 2+ circuit laps
—> the middle edge reuses
the left R or the right R

Ferry

[/
%
148
Yoans®

Lo,

S (R+F)*E
Road _ Road Ot

Q=
m The ferry
s/ Road
0 2 S
Start (&A End

Binding-trail semantics provides “better coverage” -~
Ferry

m The straight road
S (R+F)" G (R+F)*E

Q=
m The walk with one circuit lap
Gas

[/
%
148
Yoans®

s

Binding-trail semantics provides “better coverage” -~
Ferry

S (R+F)*E
_ Road Ot

Q=
Road Road

m The ferry
m The straight road s
0 2 S
Start (&A End

Q= S (R+F)*G (R+F)*E

m The walk with one circuit lap
Gas

Lemma

YV match w of @
— some subwalk sw returned

[/
%
148
Yoans®

s

Binding-trail semantics provides “better coverage” -~
Ferry

t

Q= S(R+F)*E
m The ferry
m The straight road s/ Road ~ Road Road
Q= S (R+F)* G (R+F)*E (} ;\\//g (}
m The walk with one circuit lap Start O%’ . N End
0
Lemma Gas

Open questions *9

m Define “coverage”
= Define “good” coverage

YV match w of @
— some subwalk sw returned

Retro-compatibilities

Binding-trail is compatible with Homomorphism

Homomorphism semantics returns (s, t)
<= Binding-trail semantics returns some walk w from s to t.

= If users need endpoints only, use algorithm for homomorphism

Binding-trail is compatible with Shortest-walk
Shortest matching walks C Binding-trail matching walks.

= If users need only one walk, use algorithm for shortest-walk

Binding-trail is compatible with Trail

Matching trails C Binding-trail matching walks.

Computational properties of binding-trail semantics %162

Tractable problems &

Emptiness is NL-complete.
Enumerating the bag of answers is Poly-delay.

Untractable problems =

Counting the number of matched walk is #P complete.
Membership of a given walk is NP-complete.

About B : Counting is #P complete for any reasonable semantics.
About B : Mostly a theoretical concern.

Open problem 9

Enumerating the set of answers.

The & in the room 7%

The output depends on the syntax of the query =

R* Ferry

= allows no lap in the circuit

R*R* s/ Road ~ Road Road t
m allows 1 lap in the circuit 0 2 ézz; 0
Start O@o, <& End
(R+R)*
= allows 1 lap in the circuit
Gas

= In general, # R*R*

Unusual from theoretical point of view *#
The user has finer control on the output
This kind of syntax quirks exists in practice 22

. o &
Run-based semantics, a reasonable compromise? %18§=
1\
Graph
Regul
Query : RPQ = cgu ar. Database

Expression
ﬂ -
Answer : g

» 5 Coverage of matches Perspectives *9

= % Tractable emptiness and
enumeration
= = Syntax-dependent

m Deduplicated enumeration

= Containment

» How to deal with data values?
» Get binding-trail into GQL &

How to decide if a semantics is good? £10%

= Theoreticians mostly worry about complexity &
= But complexity is not the only relevant criterion
Why? Trail semantics is the most popular in industry =

Ideas for a comparison framework |z

= Coverage (horizontal aggregation)

= Monotonicity (distributed databases)

= Compatibility with operators (result predictability)
» Kinds of definition (selector/restrictor in GQL)

Promising semantics

= Undominated semantics (minimal for the subwalk order)
= Shortest coverage semantics

Appendix

Comparison of semantics

Semantics Shortest-walk Trail Run-based
Existence = Tractable = Untractable m Tractable
Enumeration = Tractable m Untractable m Tractable
Distinct Enum | = Tractable = Untractable Open

Counting m Meaningless = Untractable = Untractable
Walk Memb. m Tractable m Tractable m Untractable
Coverage = None = No guarantee = “Subwalk”

guarantee

Tools and technics

Simple run

= Query given as an automaton

m QOutputs simple walks in the
product D x Aq

m Good formal setting for theory

Theorem

Binding trail

= Query given as a RegExp

m Outputs matching walks that
do not reuse edge on a same
atom

m Closer to practice

The two semantics are computationally equivalent.

Key idea for —

From an automaton A, we build a regular expression E such that
runs of A are encoded into runs of the Glushkov automaton of E.

	Appendix

