
An efficient algorithm to decide periodicity of
b-recognisable sets using MSDF convention

Victor Marsault

joint work with Bernard Boigelot , Isabelle Mainz
and Michel Rigo

Montefiore Institute and Department of Mathematics,

University of Liège, Belgium

ICALP 2017
Warsaw

Plan 1

1 Introduction

2 Key notions

3 Description of the algorithm in the purely periodic case

Integer base numeration systems 1

b > 1
Alphabet used to represent numbers:

{

0, 1, . . . , b − 1
}

Integer base numeration systems 1

b > 1
Alphabet used to represent numbers:

{

0, 1, . . . , b − 1
}

val :
{

0, 1, . . . , b − 1
}∗
−→ N

xn · · · x1x0 7−→ xnbn
+ · · · + x1b1

+ x0b0

In base b = 2, val(010011) = 0 + 23
+ 0 + 0 + 21

+ 20
= 19 .

Integer base numeration systems 1

b > 1
Alphabet used to represent numbers:

{

0, 1, . . . , b − 1
}

val :
{

0, 1, . . . , b − 1
}∗
−→ N

xn · · · x1x0 7−→ xnbn
+ · · · + x1b1

+ x0b0

In base b = 2, val(010011) = 0 + 23
+ 0 + 0 + 21

+ 20
= 19 .

rep : N −→
{

0, 1, . . . , b − 1
}∗

0 7−→ ε

n > 0 7−→ rep(m) d , where (m, d) is the
Eucl. div of n by b.

In base 2, rep(19) = rep(9) 1 = rep(4) 11 = · · · = 10011 .

b-recognisable sets 2

Definition

X: a set of integers.

X is b-recognisable if rep(X) is a regular language.

b-recognisable sets 2

Definition

X: a set of integers.

X is b-recognisable if 0∗rep(X) is a regular language.

b-recognisable sets 2

Definition

X: a set of integers.

X is b-recognisable if 0∗rep(X) is a regular language.

Ex.: the powers of two form a 2-recognisable set:

Automaton accepting
0∗rep

(

2N
)

Final/Initial

Labelled by 0

Labelled by 1

Legend

b-recognisable sets (2) 3

Theorem (folklore)

Eventually periodic sets are b-recognisable in all base b.

b-recognisable sets (2) 3

Theorem (folklore)

Eventually periodic sets are b-recognisable in all base b.

Example: R + pN

Alph.: {0, . . . , b−1}

State set: Z/pZ

Initial state: 0

Transitions:
∀ state s, ∀ digit x

s
x
−−−→ sb + x

Final-state set: R

0 1 2

Example 1: p = 3 , R = {2}

b-recognisable sets (2) 3

Theorem (folklore)

Eventually periodic sets are b-recognisable in all base b.

Example: R + pN

Alph.: {0, . . . , b−1}

State set: Z/pZ

Initial state: 0

Transitions:
∀ state s, ∀ digit x

s
x
−−−→ sb + x

Final-state set: R

0 1 2

Example 1: p = 3 , R = {2}

0 2 1 3

Example 2: p = 4 , R = {2, 3}

b-recognisable sets (2) 4

Theorem (Cobham, 1969)

b, c : two integer bases, multiplicatively independent†.
X : a set of integers.

X is b-recognisable
X is c-recognisable

}

=⇒ X is eventually periodic

†such that bi
, c j for all i, j > 0.

{

Eventually periodic sets
}

=
{

Sets b-recognisable for all b
}

Periodicity problem 5

Periodicity

Parameter: an integer base b > 1.
Input: a deterministic finite automaton A

(hence the b-recognisable set X accepted by A).

Question: is X eventually periodic ?

Theorem (Honkala, 1986)

Periodicity is decidable.

Restating Periodicity in terms of logic 6

Theorem

X: a set of integers

X is eventually periodic ⇐⇒ X is definable in FO[N,+]

Restating Periodicity in terms of logic 6

Theorem

X: a set of integers

X is eventually periodic ⇐⇒ X is definable in FO[N,+]

Definition

Vb : function N→ N that maps n to the greatest bj that divides n

Ex. V2(2017) = 1 and V2(2016) = V2

(

32 × 63
)

= 32

Restating Periodicity in terms of logic 6

Theorem

X: a set of integers

X is eventually periodic ⇐⇒ X is definable in FO[N,+]

Definition

Vb : function N→ N that maps n to the greatest bj that divides n

Ex. V2(2017) = 1 and V2(2016) = V2

(

32 × 63
)

= 32

Theorem [Büchi 1960] [Bruyère 1985]

X: a set of integers

X is b-recognisable ⇐⇒ X is definable in FO[N,+,Vb]

Restating Periodicity in terms of logic (2) 7

Presbuger-Definable

Parameter: an integer base b > 1.
Input: a formula Φ in FO[N,+,Vb].

Question: is there a formula of FO[N,+] equivalent to Φ ?

Restating Periodicity in terms of logic (2) 7

Presbuger-Definable

Parameter: an integer base b > 1.
Input: a formula Φ in FO[N,+,Vb].

Question: is there a formula of FO[N,+] equivalent to Φ ?

Periodicity is equivalent to 1-Presburger-Definable

(Φ has 1 free variable)

Best algorithms to solve Periodicity 8

Least Significant Digit First (LSDF) convention: the input au-
tomaton reads its entry “from right to left”.

Best algorithms to solve Periodicity 8

Least Significant Digit First (LSDF) convention: the input au-
tomaton reads its entry “from right to left”.

Theorem

With LSDF convention,
Presbuger-Definable is P-TIME [Leroux 2005]
Periodicity is Linear-TIME if the input is minimal

[M-Sakarovitch 2013].

Best algorithms to solve Periodicity 8

Least Significant Digit First (LSDF) convention: the input au-
tomaton reads its entry “from right to left”.

Theorem

With LSDF convention,
Presbuger-Definable is P-TIME [Leroux 2005]
Periodicity is Linear-TIME if the input is minimal

[M-Sakarovitch 2013].

Remark

Making an automaton reads from right to left
requires a transposition and a determinisation

⇒ Exponential blow-up

Our contribution 9

Theorem

Periodicity is decidable in O(b n log(n)) time
(where n is the state-set cardinal.)

Plan 10

1 Introduction

2 Key notions

3 Description of the algorithm in the purely periodic case

Pseudo-morphisms (1) 10

Definition

A,M: two complete DFA
ϕ: a function {states of A} → {states of M}

ϕ is a pseudo-morphism A →M if
ϕ maps the initial state of A to the initial state of M

s
a
−−−→ s ′ in A ⇐⇒ ϕ(s)

a
−−−→ ϕ(s ′) in M

(A pseudo-morphism is a morphism with no condition on final states.)

A M

Pseudo-morphisms (1) 10

Definition

A,M: two complete DFA
ϕ: a function {states of A} → {states of M}

ϕ is a pseudo-morphism A →M if
ϕ maps the initial state of A to the initial state of M

s
a
−−−→ s ′ in A ⇐⇒ ϕ(s)

a
−−−→ ϕ(s ′) in M

(A pseudo-morphism is a morphism with no condition on final states.)

A M

Pseudo-morphisms (1) 10

Definition

A,M: two complete DFA
ϕ: a function {states of A} → {states of M}

ϕ is a pseudo-morphism A →M if
ϕ maps the initial state of A to the initial state of M

s
a
−−−→ s ′ in A ⇐⇒ ϕ(s)

a
−−−→ ϕ(s ′) in M

(A pseudo-morphism is a morphism with no condition on final states.)

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Pseudo-morphisms (2) 11

Lemma

Computing the pseudo-morphism ϕ : A → M, if it exists, may be
done in O(b n) time.

A M

Ultimate Equivalence (1) 12

Definition

A: a complete DFA.
s, s ′: states of A.
m: an integer.

s and s ′ are m-ultimately-equivalent (w.r.t. A),

if ∀word u of length m, [s
u
−−−→ t and s ′

u
−−−→ t ′ implies t = t ′].

C

B1

B2

B1 and B2 are 1-ult.-equiv.

All others pairs are not ult.-equiv.,
as witnessed by the family 0∗.

Ultimate Equivalence (1) 12

Definition

A: a complete DFA.
s, s ′: states of A.
m: an integer.

s and s ′ are m-ultimately-equivalent (w.r.t. A),

if ∀word u of length m, [s
u
−−−→ t and s ′

u
−−−→ t ′ implies t = t ′].

C

B1

B2

B3

B1 and B2 are 1-ult.-equiv.

B2 and B3 are 2-ult.-equiv.

B3 and B1 are 2-ult.-equiv.

All others pairs are not ult.-equiv.,
as witnessed by the family 0∗.

Ultimate Equivalence (1) 12

Definition

A: a complete DFA.
s, s ′: states of A.
m: an integer.

s and s ′ are m-ultimately-equivalent (w.r.t. A),

if ∀word u of length m, [s
u
−−−→ t and s ′

u
−−−→ t ′ implies t = t ′].

C

B1

B2

B3

A1

A2

B1 and B2 are 1-ult.-equiv.

B2 and B3 are 2-ult.-equiv.

B3 and B1 are 2-ult.-equiv.

A1 and A2 are 3-ult.-equiv.

All others pairs are not ult.-equiv.,
as witnessed by the family 0∗.

Ultimate Equivalence (2) 13

A: a DFA.
n: the number of states in A.
b: the size of the alphabet.

By using the automaton product A ×A, it is known that:

Lemma (folklore)

Ultimate-equivalence relation ofA can be computed in O(bn2) time.

There exists a better algorithm:

Theorem (Béal-Crochemore, 2007)

Ultimate-equivalence relation ofA can be computed in O(b n log(n))

time.

Plan 14

1 Introduction

2 Key notions

3 Description of the algorithm in the purely periodic case

Characterisation theorem 14

Ap denotes the naïve automaton accepting pN.

Theorem

A: a minimal DFA.
X: the b-recognisable set accepted by A.
ℓ: the total number of states in 0-circuits.

X is purely periodic if and only if

∃ a pseudo-morphism ϕ : A → A(ℓ,∅);

states s, s ′ such that ϕ(s) = ϕ(s ′), are ultimately equivalent;

the initial state of A bears a 0-loop.

Execution on an example 15

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits.

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 16

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits.

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 17

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 18

0

1

3

2

4

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 19

0

1

3

2

4

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 19

0

1

3

2

4

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 20

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 20

0-ult.-equiv.

0-ult.-equiv.

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 20

0-ult.-equiv.

0-ult.-equiv.

1-ult.-equiv.

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 20

0-ult.-equiv.

0-ult.-equiv.

1-ult.-equiv.

2-ult.-equiv.

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 20

0-ult.-equiv.

0-ult.-equiv.

1-ult.-equiv.

2-ult.-equiv.

3-ult.-equiv.

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Execution on an example 20

0-ult.-equiv.

0-ult.-equiv.

1-ult.-equiv.

2-ult.-equiv.

3-ult.-equiv.

(

Then, the period is
bm × ℓ = 23 × 5 = 40

)

0 Start from a minimal
complete DFA A.

1 Count the number ℓ of
states in 0-circuits. ℓ = 5

2 Build Aℓ.

3 Compute the pseudo-
morphism ϕ : A → Aℓ.

4 Check that states s, t
such that ϕ(s) = ϕ(t) are
ult-equiv.

Conclusion 21

Main theorem

Periodicity is decidable in 0(b n log(n)) time
(where n is the state-set cardinal.)

Conclusion 21

Main theorem

Periodicity is decidable in 0(b n log(n)) time
(where n is the state-set cardinal.)

Possible future work

Design efficient data structure for integer set.
Consider sets of real numbers.
Extend result to multi-dimensional sets of Nk

Represent integers with a non-standard numeration systems.

A(12,{5,7}) as the product A(4,?) × A(3,?) 22

0 1 2

0

2

1

3

0 4 8

6 10 2

9 1 5

3 7 11

	Introduction
	Key notions
	Description of the algorithm in the purely periodic case

