An efficient algorithm to decide periodicity of b-recognisable sets using MSDF convention

Victor Marsault joint work with Bernard Boigelot, Isabelle Mainz and Michel Rigo

Montefiore Institute and Department of Mathematics, University of Liège, Belgium

ICALP 2017
Warsaw

Plan

1 Introduction

2 Key notions

3 Description of the algorithm in the purely periodic case

Integer base numeration systems

- $b>1$
- Alphabet used to represent numbers: $\{0,1, \ldots, b-1\}$

Integer base numeration systems

- $b>1$
- Alphabet used to represent numbers: $\{0,1, \ldots, b-1\}$
- VAL : $\{0,1, \ldots, b-1\}^{*} \longrightarrow \mathbb{N}$

$$
x_{n} \cdots x_{1} x_{0} \quad \longmapsto x_{n} b^{n}+\cdots+x_{1} b^{1}+x_{0} b^{0}
$$

In base $b=2, \quad \operatorname{vaL}(010011)=0+2^{3}+0+0+2^{1}+2^{0}=19$.

Integer base numeration systems

- $b>1$
- Alphabet used to represent numbers: $\{0,1, \ldots, b-1\}$
- VAL $:\{0,1, \ldots, b-1\}^{*} \longrightarrow \mathbb{N}$

$$
x_{n} \cdots x_{1} x_{0} \quad \longmapsto x_{n} b^{n}+\cdots+x_{1} b^{1}+x_{0} b^{0}
$$

In base $b=2, \quad \operatorname{VAL}(010011)=0+2^{3}+0+0+2^{1}+2^{0}=19$.

- REP $: \mathbb{N} \longrightarrow\{0,1, \ldots, b-1\}^{*}$

$$
\begin{aligned}
& 0 \longmapsto \varepsilon \\
& n>0 \longmapsto \operatorname{REP}(m) d, \quad \text { where }(m, d) \text { is the } \\
& \text { Eucl. div of } n \text { by } b \text {. }
\end{aligned}
$$

In base 2, $\operatorname{REP}(19)=\operatorname{REP}(9) 1=\operatorname{REP}(4) 11=\cdots=10011$.

b-recognisable sets

Definition

X : a set of integers.
X is b-recognisable if $\operatorname{REP}(X)$ is a regular language.

b-recognisable sets

Definition

X : a set of integers.
X is b-recognisable if $0^{*} \operatorname{REP}(X)$ is a regular language.

b-recognisable sets

Definition

X : a set of integers.
X is b-recognisable if $0^{*} \operatorname{REP}(X)$ is a regular language.

Ex.: the powers of two form a 2-recognisable set:

Automaton accepting $0^{*} \operatorname{REP}\left(2^{\mathbb{N}}\right)$
\longrightarrow Final/Initial \longrightarrow Labelled by 0
\rightarrow Labelled by 1
Legend

b-recognisable sets (2)

Theorem (folklore)
Eventually periodic sets are b-recognisable in all base b.

b-recognisable sets (2)

Theorem (folklore)

Eventually periodic sets are b-recognisable in all base b.

Example: $R+p \mathbb{N}$

- Alph.: $\{0, \ldots, b-1\}$
- State set: $\mathbb{Z} / p \mathbb{Z}$
- Initial state: 0
- Transitions:
\forall state s, \forall digit x

$$
s \xrightarrow{x} s b+x
$$

- Final-state set: R

b-recognisable sets (2)

Theorem (folklore)

Eventually periodic sets are b-recognisable in all base b.

Example: $R+p \mathbb{N}$

- Alph.: $\{0, \ldots, b-1\}$
- State set: $\mathbb{Z} / p \mathbb{Z}$
- Initial state: 0
- Transitions:
\forall state s, \forall digit x

$$
s \xrightarrow{x} s b+x
$$

- Final-state set: R

Example 1: $p=3, ~ R=\{2\}$

Example 2: $p=4, \quad R=\{2,3\}$

b-recognisable sets (2)

Theorem (Cobham, 1969)

b, c : two integer bases, multiplicatively independent ${ }^{\dagger}$.
X : a set of integers.
$\left.\begin{array}{l}X \text { is b-recognisable } \\ X \text { is c-recognisable }\end{array}\right\} \Longrightarrow X$ is eventually periodic
${ }^{\dagger}$ such that $b^{i} \neq c^{j}$ for all $i, j>0$.
$\{$ Eventually periodic sets $\}=\{$ Sets b-recognisable for all $b\}$

Periodicity problem

Periodicity

- Parameter: an integer base $b>1$.
- Input: a deterministic finite automaton \mathcal{A}
(hence the b-recognisable set X accepted by \mathcal{A}).
- Question: is X eventually periodic?

Theorem (Honkala, 1986)
Periodicity is decidable.

Restating Periodicity in terms of logic

Theorem
 X : a set of integers
 X is eventually periodic $\Longleftrightarrow X$ is definable in $F O[\mathbb{N},+]$

Restating Periodicity in terms of logic

Theorem

X : a set of integers
X is eventually periodic $\Longleftrightarrow X$ is definable in $F O[\mathbb{N},+]$

Definition

V_{b} : function $\mathbb{N} \rightarrow \mathbb{N}$ that maps n to the greatest b^{j} that divides n
Ex. $\quad V_{2}(2017)=1$ and $\quad V_{2}(2016)=V_{2}(32 \times 63)=32$

Restating Periodicity in terms of logic

Theorem

X : a set of integers
X is eventually periodic $\Longleftrightarrow X$ is definable in $F O[\mathbb{N},+]$

Definition

V_{b} : function $\mathbb{N} \rightarrow \mathbb{N}$ that maps n to the greatest b^{j} that divides n
Ex. $\quad V_{2}(2017)=1$ and $\quad V_{2}(2016)=V_{2}(32 \times 63)=32$
Theorem [Büchi 1960] [Bruyère 1985]
X : a set of integers
X is b-recognisable $\Longleftrightarrow X$ is definable in $F O\left[\mathbb{N},+, V_{b}\right]$

Restating Periodicity in terms of logic (2)

7

Presbuger-Definable

- Parameter: an integer base $b>1$.
- Input: a formula Φ in $F O\left[\mathbb{N},+, V_{b}\right]$.
- Question: is there a formula of $F O[\mathbb{N},+]$ equivalent to Φ ?

Restating Periodicity in terms of logic (2)

Presbuger-Definable

- Parameter: an integer base $b>1$.
- Input: a formula Φ in $F O\left[\mathbb{N},+, V_{b}\right]$.
- Question: is there a formula of $F O[\mathbb{N},+]$ equivalent to Φ ?

Periodicity is equivalent to 1 -Presburger-Definable
(Φ has 1 free variable)

Best algorithms to solve Periodicity

Least Significant Digit First (LSDF) convention: the input automaton reads its entry "from right to left".

Best algorithms to solve Periodicity

Least Significant Digit First (LSDF) convention: the input automaton reads its entry "from right to left".

Theorem

With LSDF convention,

- Presbuger-Definable is P-TIME [Leroux 2005]
- Periodicity is Linear-TIME if the input is minimal
[M-Sakarovitch 2013].

Best algorithms to solve Periodicity

Least Significant Digit First (LSDF) convention: the input automaton reads its entry "from right to left".

Theorem

With LSDF convention,

- Presbuger-Definable is P-TIME [Leroux 2005]
- Periodicity is Linear-TIME if the input is minimal [M-Sakarovitch 2013].

Remark

Making an automaton reads from right to left requires a transposition and a determinisation
\Rightarrow Exponential blow-up

Our contribution

Theorem
Periodicity is decidable in $O(b n \log (n))$ time (where n is the state-set cardinal.)

1 Introduction

2 Key notions

3 Description of the algorithm in the purely periodic case

Pseudo-morphisms (1)

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{a} s^{\prime}$ in $\mathcal{A} \Longleftrightarrow \varphi(s) \xrightarrow{a} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphisms (1)

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{a} s^{\prime}$ in $\mathcal{A} \Longleftrightarrow \varphi(s) \xrightarrow{a} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphisms (1)

Definition

\mathcal{A}, \mathcal{M} : two complete DFA
φ : a function $\{$ states of $\mathcal{A}\} \rightarrow\{$ states of $\mathcal{M}\}$
φ is a pseudo-morphism $\mathcal{A} \rightarrow \mathcal{M}$ if

- φ maps the initial state of \mathcal{A} to the initial state of \mathcal{M}
- $s \xrightarrow{a} s^{\prime}$ in $\mathcal{A} \Longleftrightarrow \varphi(s) \xrightarrow{a} \varphi\left(s^{\prime}\right)$ in \mathcal{M}
(A pseudo-morphism is a morphism with no condition on final states.)

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Pseudo-morphisms (2)

Lemma

Computing the pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{M}$, if it exists, may be done in $O(b n)$ time.

Ultimate Equivalence (1)

Definition

\mathcal{A} : a complete DFA.
s, s^{\prime} : states of \mathcal{A}.
m : an integer.
s and s^{\prime} are m-ultimately-equivalent (w.r.t. \mathcal{A}), if \forall word u of length $m,\left[s \xrightarrow{u} t\right.$ and $s^{\prime} \xrightarrow{u} t^{\prime}$ implies $t=t^{\prime}$].

- B_{1} and B_{2} are 1-ult.-equiv.

- All others pairs are not ult.-equiv., as witnessed by the family 0^{*}.

Ultimate Equivalence (1)

Definition

\mathcal{A} : a complete DFA.
s, s^{\prime} : states of \mathcal{A}.
m : an integer.
s and s^{\prime} are m-ultimately-equivalent (w.r.t. \mathcal{A}), if \forall word u of length $m,\left[s \xrightarrow{u} t\right.$ and $s^{\prime} \xrightarrow{u} t^{\prime}$ implies $t=t^{\prime}$].

- B_{1} and B_{2} are 1-ult.-equiv.

- B_{2} and B_{3} are 2-ult.-equiv.
- B_{3} and B_{1} are 2-ult.-equiv.
- All others pairs are not ult.-equiv., as witnessed by the family 0^{*}.

Ultimate Equivalence (1)

Definition

\mathcal{A} : a complete DFA.
s, s^{\prime} : states of \mathcal{A}.
m : an integer.
s and s^{\prime} are m-ultimately-equivalent (w.r.t. \mathcal{A}),
if \forall word u of length $m,\left[s \xrightarrow{u} t\right.$ and $s^{\prime} \xrightarrow{u} t^{\prime}$ implies $t=t^{\prime}$].

- B_{1} and B_{2} are 1-ult.-equiv.

- B_{2} and B_{3} are 2-ult.-equiv.
- B_{3} and B_{1} are 2-ult.-equiv.
- A_{1} and A_{2} are 3 -ult.-equiv.
- All others pairs are not ult.-equiv., as witnessed by the family 0^{*}.

Ultimate Equivalence (2)

$\mathcal{A}:$ a DFA.
n : the number of states in \mathcal{A}.
b : the size of the alphabet.

By using the automaton product $\mathcal{A} \times \mathcal{A}$, it is known that:
Lemma (folklore)
Ultimate-equivalence relation of \mathcal{A} can be computed in $O\left(b n^{2}\right)$ time.

There exists a better algorithm:
Theorem (Béal-Crochemore, 2007)
Ultimate-equivalence relation of \mathcal{A} can be computed in $O(b n \log (n))$ time.
$11 / 5$

1 Introduction

2 Key notions

3 Description of the algorithm in the purely periodic case

Characterisation theorem

\mathcal{A}_{p} denotes the naïve automaton accepting $p \mathbb{N}$.

Theorem

\mathcal{A} : a minimal DFA.
X : the b-recognisable set accepted by \mathcal{A}.
ℓ : the total number of states in 0 -circuits.
X is purely periodic if and only if

- ヨ a pseudo-morphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{(\ell, \varnothing)}$;
- states s, s^{\prime} such that $\varphi(s)=\varphi\left(s^{\prime}\right)$, are ultimately equivalent;
- the initial state of \mathcal{A} bears a 0 -loop.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits.

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits.

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

-17

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits. $\ell=\mathbf{5}$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits. $\ell=5$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits. $\ell=5$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits. $\ell=5$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits. $\ell=5$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0 -circuits. $\ell=5$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Execution on an example

$$
\binom{\text { Then, the period is }}{b^{m} \times \ell=2^{3} \times 5=40}
$$

0 Start from a minimal complete DFA \mathcal{A}.

1 Count the number ℓ of states in 0-circuits. $\ell=5$

2 Build \mathcal{A}_{ℓ}.

3 Compute the pseudomorphism $\varphi: \mathcal{A} \rightarrow \mathcal{A}_{\ell}$.

4 Check that states s, t such that $\varphi(s)=\varphi(t)$ are ult-equiv.

Conclusion

Main theorem
Periodicity is decidable in $0(b n \log (n))$ time (where n is the state-set cardinal.)

Conclusion

Main theorem
Periodicity is decidable in $0(b n \log (n))$ time (where n is the state-set cardinal.)

Possible future work

- Design efficient data structure for integer set.
- Consider sets of real numbers.
- Extend result to multi-dimensional sets of \mathbb{N}^{k}
- Represent integers with a non-standard numeration systems.

