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1We call tree a...

Directed graph which is

Rooted: a node is called the root (leftmost in the figures)

Directed outward from the root: there is a unique path
from the root to every other node.

Ordered: the children of every node are ordered
(In the figures, lower children are smaller.)
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2Every tree has a canonical breadth-first traversal
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3Two more features

We consider infinite trees only.
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3Two more features

We consider infinite trees only.

For convenience, there is loop on the root.
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4Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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4Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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5The signature is characteristic of a tree

s =( 3 2 1 )ω
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6Prefix-closed languages and labelled trees

Alphabets are ordered hence
prefix-closed languages = labelled trees.
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Figure : Integer representations in the Fibonacci numeration system.
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Alphabets are ordered hence
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7Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Definition

The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Definition
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transitions taken in breadth-first order.

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1 0

0

1

0

1

0

0

1

0

0

1

0
1

0

0
1

0
1

0

s = 2 1 2 2 1 2 1 2 2 1 2 2 1 · · ·
λ =01 0 01 01 0 01 0 01 01 0 01 01 0 · · ·



8The pair signature/labelling is characteristic

s = (3 2 1)ω

λ = (012 12 1)ω
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Figure : Non-canonical integer representations in base 2.



Theorem

L: a prefix-closed language.
Signature(L) is substitutive ⇔ L is accepted by a finite automaton.
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10A word on substitution

A substitution σ is a morphism A∗ → A∗.

σ is prolongable on a if σ(a) starts with the letter a.

In this case, σω(a) exists and is called a purely substitutive word .

Running examples

Fibonacci substitution: {a, b} → {a, b}∗
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b 7→ a

Periodic substitution: {a, b, c} → {a, b, c}∗
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11Substitutive signature

σ: a substitution A∗ → A∗ prolongable on a.

f : a letter-to-letter morphism
f (σω(a)) is called a subtitutive word.

Definitions

let fσ be the (letter-to-letter) morphism: A∗ → N
∗ defined by

∀b, fσ(b) = |σ(b)|

We call fσ(σ
ω(a)) a subtitutive signature.

If g is a morphism such that

∀b, |g(b)| = |σ(b)|

if g(b) = c0c1 · · · ck then c0 < c1 < · · · < ck

We call g(σω(a)) a substitutive labelling.



12Example 1 – the Fibonacci signature

σ(a) = ab =⇒ fσ(a) = 2
σ(b) = a =⇒ fσ(b) = 1

fσ(σ
ω(a)) = 2122121221221212212122 · · ·

if we choose g :
g(a) = 01
g(b) = 0

g(σω(a)) = 01 0 01 01 0 01 0 01 01 0 01 01 0 · · ·



12Example 1 – the Fibonacci signature

σ(a) = ab =⇒ fσ(a) = 2
σ(b) = a =⇒ fσ(b) = 1

fσ(σ
ω(a)) = 2122121221221212212122 · · ·

if we choose g :
g(a) = 01
g(b) = 0

g(σω(a)) = 01 0 01 01 0 01 0 01 01 0 01 01 0 · · ·

This pair signature/labelling defines the language of integer
representations in the Fibonacci numeration system.



13Example 2 – a periodic signature

σ(a) = abc (fσ(a) = 3)
σ(b) = ab (fσ(b) = 2)
σ(c) = c (fσ(c) = 1)

σ(abc) = abc abc hence fσ(σ
ω(a)) = (321)ω

If we choose g :
g(a) = 012
g(b) = 12
g(c) = 1

g(σω(a)) = (012 12 1)ω



13Example 2 – a periodic signature

σ(a) = abc (fσ(a) = 3)
σ(b) = ab (fσ(b) = 2)
σ(c) = c (fσ(c) = 1)

σ(abc) = abc abc hence fσ(σ
ω(a)) = (321)ω

If we choose g :
g(a) = 012
g(b) = 12
g(c) = 1

g(σω(a)) = (012 12 1)ω

This pair signature/labelling defines a non-canonical representation
of integers in base 2.



14Example 3 – the Thue-Morse morphism

σ(a) = ab (fσ(a) = 2)
σ(b) = ba (fσ(b) = 2)

fσ(σ
ω(a)) = 2ω

∀ labelling g , the language is essentially (0 + 1)∗.
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15Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive ⇔ L is accepted by a finite automaton.

(σ, g): a substitutive signature.
(σ, g) defines a finite automaton A(σ,g).
It is analogous to

the prefix graph/automaton in Dumont–Thomas ’89,’91,’93

or the correspondence used in Maes–Rigo ’02.

Proposition

The language accepted by A(σ,g) has signature (σ, g).



16Automaton associated with a subst. signature

σ : A∗ → A∗ prolongable on a and g : A∗ → B∗

A(σ,g) = 〈A ,B , δ , {a} , A 〉

σ( a ) = a b
σ( b ) = a

g( a ) = 0 1
g( b ) = 0
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Theorem

L: a prefix-closed language.
Signature(L) is substitutive ⇔ L is accepted by a finite automaton.

(σ, g): a substitutive signature.
(σ, g) defines a finite automaton A(σ,g).
It is analogous to

the prefix graph/automaton in Dumont Thomas ’89,’91,’93

or the correspondence used in Maes Rigo ’02.

Proposition

The language accepted by A(σ,g) has signature (σ, g).

Proof: unfold the automaton A(σ,g).
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Abstract Numeration System:
built from an arbitrary regular language.

Dumont-Thomas Numeration system:
built from a substitution

Theorem (augmented version)

Two (prefix-closed) ANS built on language with same signature

(but different labelling) are easily† convertible one from the other.

Theorem (augmented version)

Every DTNS is a prefix-closed ANS.

Every prefix-closed ARNS is easily† convertible to a DTNS.

† Through a finite, letter-to-letter and pure sequential transducer.
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19Other works: Ultimately periodic signatures

s = u rω with r = r0 r1 r2 · · · rq−1

Definition: growth ratio

gr(s) =
r0+r1+···+rq−1

q

Theorem (MS, to appear)

If gr(s) ∈ N, then s generates the language of a finite automaton.
It is linked‡ to the integer base b = gr(s).

If gr(s) /∈ N, then s generates a non-context-free language.
It is linked‡ to the rational base p

q
= gr(s). (cf. Akiyama et al. ’08)

‡ It is a non-canonical representation of the integers (using extra digits).



20Future works : Directed signatures

Aperiodic signature: s = s0 s1 s2 · · ·

Sn = 1
n
Σn−1
k=0sk : partial average of s.

α : lim Sn extends the notion of growth ratio.
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