Breadth-first signature of trees and rational languages

Victor Marsault, joint work with Jacques Sakarovitch

CNRS / Telecom-ParisTech, Paris, France

Developments in Language Theory 2014, Ekateringburg, 2014–08–30

Breadth-first serialisation of languages and numeration systems: The rational case

Victor Marsault, joint work with Jacques Sakarovitch

CNRS / Telecom-ParisTech, Paris, France

Developments in Language Theory 2014, Ekateringburg, 2014–08–30

1 Signature of trees and of languages

- 2 Substitutive signatures and finite automata
- 3 A word on numeration system

- **Rooted:** a node is called *the root* (leftmost in the figures)
- **Directed outward from the root:** there is a unique path from the root to every other node.
- Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

We call tree a...

- **Rooted:** a node is called *the root* (leftmost in the figures)
- **Directed outward from the root:** there is a unique path from the root to every other node.
- Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

We call tree a...

- **Rooted:** a node is called *the root* (leftmost in the figures)
- **Directed outward from the root:** there is a unique path from the root to every other node.
- Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

We call tree a...

- **Rooted:** a node is called *the root* (leftmost in the figures)
- **Directed outward from the root:** there is a unique path from the root to every other node.
- **Ordered:** the children of every node are ordered (In the figures, lower children are smaller.)

Every tree has a canonical breadth-first traversal

2

Two more features

3

• We consider infinite trees only.

Two more features

3

- We consider infinite trees only.
- For convenience, there is loop on the root.

$$s = (3 \ 2 \ 1)^{\omega}$$

$$s = (3 \ 2 \ 1)^{\omega}$$

Prefix-closed languages and labelled trees

Figure : Integer representations in the Fibonacci numeration system.

Prefix-closed languages and labelled trees

Figure : Integer representations in the Fibonacci numeration system.

Prefix-closed languages and labelled trees

Figure : Integer representations in the Fibonacci numeration system.

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

$$s = 2 1$$

 $\lambda = 01 0$

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

$s = 2 \ 1 \ 2$ $\lambda = 01 \ 0 \ 01$

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

$s = 2 \ 1 \ 2 \ 2$ $\lambda = 01 \ 0 \ 01 \ 01$

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

$s = 2 \ 1 \ 2 \ 2 \ 1 \\ \lambda = 01 \ 0 \ 01 \ 01 \ 0$

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

$s = 2 \ 1 \ 2 \ 2 \ 1 \ 2 \\ \lambda = 01 \ 0 \ 01 \ 01 \ 0 \ 0$

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

Definition

The **labelling** of a language is the **sequence of arc labels** of its transitions taken in breadth-first order.

The pair signature/labelling is characteristic

The pair signature/labelling is characteristic

Figure : Non-canonical integer representations in base 2.

L: a prefix-closed language. Signature(L) is substitutive \Leftrightarrow L is accepted by a finite automaton.

A word on substitution

A substitution σ is a morphism $A^* \to A^*$.

Running examples

Fibonacci substitution: $\{a, b\} \rightarrow \{a, b\}^*$ $a \mapsto ab$ $b \mapsto a$

A word on substitution

A substitution σ is a morphism $A^* \to A^*$.

Running examples

```
Fibonacci substitution: \{a, b\} \rightarrow \{a, b\}^*

a \mapsto ab

b \mapsto a

Periodic substitution: \{a, b, c\} \rightarrow \{a, b, c\}^*

a \mapsto abc

b \mapsto ab

c \mapsto c
```

A word on substitution

A substitution σ is a morphism $A^* \to A^*$.

 σ is prolongable on a if $\sigma(a)$ starts with the letter a.

Running examples

```
Fibonacci substitution: \{a, b\} \rightarrow \{a, b\}^*

a \mapsto ab

b \mapsto a

Periodic substitution: \{a, b, c\} \rightarrow \{a, b, c\}^*

a \mapsto abc

b \mapsto ab

c \mapsto c
```


A substitution σ is a morphism $A^* \to A^*$.

 σ is prolongable on *a* if $\sigma(a)$ starts with the letter *a*. In this case, $\sigma^{\omega}(a)$ exists and is called a purely substitutive word.

Running examples

```
Fibonacci substitution: \{a, b\} \rightarrow \{a, b\}^*

a \mapsto ab

b \mapsto a

Periodic substitution: \{a, b, c\} \rightarrow \{a, b, c\}^*

a \mapsto abc

b \mapsto ab

c \mapsto c
```

Substitutive signature

- $\sigma: \text{ a substitution } A^* \to A* \text{ prolongable on } a.$
- f : a letter-to-letter morphism $f(\sigma^{\omega}(a))$ is called a subtitutive word.

Substitutive signature

 σ : a substitution $A^* \to A*$ prolongable on a.

f: a letter-to-letter morphism $f(\sigma^{\omega}(a))$ is called a subtitutive word.

Definitions

let f_{σ} be the (letter-to-letter) morphism: $A^* \to \mathbb{N}^*$ defined by • $\forall b, f_{\sigma}(b) = |\sigma(b)|$ We call $f_{\sigma}(\sigma^{\omega}(a))$ a subtitutive signature.

Substitutive signature

 σ : a substitution $A^* \to A*$ prolongable on a.

f: a letter-to-letter morphism $f(\sigma^{\omega}(a))$ is called a subtitutive word.

Definitions

let f_σ be the (letter-to-letter) morphism: $A^* o \mathbb{N}^*$ defined by

•
$$\forall b, f_{\sigma}(b) = |\sigma(b)|$$

We call $f_{\sigma}(\sigma^{\omega}(a))$ a subtitutive signature.

If g is a morphism such that

•
$$\forall b, |g(b)| = |\sigma(b)|$$

• if
$$g(b) = c_0 c_1 \cdots c_k$$
 then $c_0 < c_1 < \cdots < c_k$

We call $g(\sigma^{\omega}(a))$ a substitutive labelling.

Example 1 – the Fibonacci signature

if we choose g:

$$g(a) = 01$$

 $g(b) = 0$
 $g(\sigma^{\omega}(a)) = 010010100101001010 \cdots$

Example 1 – the Fibonacci signature

$$\sigma(\mathbf{a}) = \mathbf{a}\mathbf{b} \implies f_{\sigma}(\mathbf{a}) = 2$$

$$\sigma(\mathbf{b}) = \mathbf{a} \implies f_{\sigma}(\mathbf{b}) = 1$$

$$f_{\sigma}(\sigma^{\omega}(\mathbf{a})) = 2122121221221221221222\cdots$$

if we choose g:

$$g(a) = 01$$

 $g(b) = 0$
 $g(\sigma^{\omega}(a)) = 010010100101001010 \cdots$

This pair signature/labelling defines the language of integer representations in the Fibonacci numeration system.

Example 2 – a periodic signature

$$\sigma(a) = abc \quad (f_{\sigma}(a) = 3)$$

$$\sigma(b) = ab \quad (f_{\sigma}(b) = 2)$$

$$\sigma(c) = c \quad (f_{\sigma}(c) = 1)$$

$$\sigma(abc) = abc abc \qquad \text{hence } f_{\sigma}(\sigma^{\omega}(a)) = (321)^{\omega}$$

If we choose g:

$$g(a) = 012$$

 $g(b) = 12$
 $g(c) = 1$
 $g(\sigma^{\omega}(a)) = (012121)^{\omega}$

Example 2 – a periodic signature

$$\sigma(a) = abc \quad (f_{\sigma}(a) = 3)$$

$$\sigma(b) = ab \quad (f_{\sigma}(b) = 2)$$

$$\sigma(c) = c \quad (f_{\sigma}(c) = 1)$$

$$\sigma(abc) = abc abc \qquad \text{hence } f_{\sigma}(\sigma^{\omega}(a)) = (321)^{\omega}$$

If we choose g:

$$g(a) = 012$$

 $g(b) = 12$
 $g(c) = 1$
 $g(\sigma^{\omega}(a)) = (012121)^{\omega}$

This pair signature/labelling defines a *non-canonical* representation of integers in base 2.

$$\sigma(a) = ab$$
 $(f_{\sigma}(a) = 2)$
 $\sigma(b) = ba$ $(f_{\sigma}(b) = 2)$
 $f_{\sigma}(\sigma^{\omega}(a)) = 2^{\omega}$

 \forall labelling g, the language is essentially $(0+1)^*$.

- L: a prefix-closed language.
- Signature(L) is substitutive \Leftrightarrow L is accepted by a finite automaton.

- *L*: a prefix-closed language. Signature(*L*) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
- $\begin{array}{l} (\sigma,g) \colon \text{ a substitutive signature.} \\ (\sigma,g) \text{ defines a finite automaton } \mathcal{A}_{(\sigma,g)}. \\ \text{It is analogous to} \end{array}$
 - the prefix graph/automaton in Dumont-Thomas '89,'91,'93
 - or the correspondence used in Maes-Rigo '02.

L: a prefix-closed language.

Signature(L) is substitutive \Leftrightarrow L is accepted by a finite automaton.

- $\begin{array}{l} (\sigma,g) \colon \text{a substitutive signature.} \\ (\sigma,g) \text{ defines a finite automaton } \mathcal{A}_{(\sigma,g)}. \\ \text{It is analogous to} \end{array}$
 - the prefix graph/automaton in Dumont-Thomas '89,'91,'93
 - or the correspondence used in Maes-Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma,g)}$ has signature (σ,g) .

Automaton associated with a subst. signature

$$\sigma: A^* \to A^*$$
 prolongable on a and $g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \, \delta \,, \, \{\mathsf{a}\} \,, \, \mathsf{A} \, \rangle$$

$\sigma(a)$	=	a b
$\sigma(b)$	=	а

$$g(a) = 01$$

 $g(b) = 0$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

 $\sigma: A^* \to A^*$ prolongable on a and $g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \delta, \{\mathsf{a}\}, \mathsf{A} \rangle$$

$\sigma(a) = a b c$	g(a) = 012
$\sigma(b) = ab$	g(b) = 12
$\sigma(c) = c$	g(c) = 1

 $\sigma: A^* \to A^*$ prolongable on a and $g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

 $\sigma: A^* \to A^*$ prolongable on a and $g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

$$g(a) = 012$$

 $g(b) = 12$
 $g(c) = 1$

 $\sigma: A^* \to A^*$ prolongable on a and $g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

 $\sigma(a) = abc$ $\sigma(b) = ab$ $\sigma(c) = c$

$$g(a) = 012$$

 $g(b) = 12$
 $g(c) = 1$

 $\sigma: A^* \to A^*$ prolongable on a and $g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

 $\sigma: A^* \to A^*$ prolongable on a and $g: A^* \to B^*$

$$\mathcal{A}_{(\sigma,g)} = \langle \mathsf{A}, \mathsf{B}, \frac{\delta}{\delta}, \, \{\mathsf{a}\}, \, \mathsf{A} \, \rangle$$

 $\sigma(a) = abc$ $\sigma(b) = ab$ $\sigma(c) = c$

$$g(a) = 012$$

 $g(b) = 12$
 $g(c) = 1$

(17)

Theorem

L: a prefix-closed language.

Signature(L) is substitutive \Leftrightarrow L is accepted by a finite automaton.

 (σ, g) : a substitutive signature. (σ, g) defines a finite automaton $\mathcal{A}_{(\sigma,g)}$.

It is analogous to

the prefix graph/automaton in Dumont Thomas '89,'91,'93

• or the correspondence used in Maes Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma,g)}$ has signature (σ,g) .

17

Theorem

L: a prefix-closed language.

Signature(L) is substitutive \Leftrightarrow L is accepted by a finite automaton.

 (σ, g) : a substitutive signature. (σ, g) defines a finite automaton $\mathcal{A}_{(\sigma,g)}$. It is analogous to

the prefix graph/automaton in Dumont Thomas '89,'91,'93

• or the correspondence used in Maes Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma,g)}$ has signature (σ,g) .

Proof: unfold the automaton $\mathcal{A}_{(\sigma,g)}$.

What will be in the augmented version

Abstract Numeration System: built from an arbitrary regular language.

Dumont-Thomas Numeration system: built from a substitution

What will be in the augmented version

Abstract Numeration System: built from an arbitrary regular language.

Dumont-Thomas Numeration system: built from a substitution

Theorem (augmented version)

Two (prefix-closed) ANS built on language with same signature (but different labelling) are easily^{\dagger} convertible one from the other.

[†] Through a finite, letter-to-letter and pure sequential transducer.

What will be in the augmented version

Abstract Numeration System: built from an arbitrary regular language.

Dumont-Thomas Numeration system: built from a substitution

Theorem (augmented version)

Two (prefix-closed) ANS built on language with same signature (but different labelling) are easily[†] convertible one from the other.

Theorem (augmented version)

Every DTNS is a prefix-closed ANS.

Every prefix-closed ARNS is easily^{\dagger} convertible to a DTNS.

[†] Through a finite, letter-to-letter and pure sequential transducer.

Other works: Ultimately periodic signatures

$$\mathbf{s} = u r^{\omega}$$
 with $r = r_0 r_1 r_2 \cdots r_{q-1}$

Definition: growth ratio

$$gr(s) = \frac{r_0 + r_1 + \dots + r_{q-1}}{q}$$

Other works: Ultimately periodic signatures

$$\mathbf{s} = u r^{\omega}$$
 with $r = r_0 r_1 r_2 \cdots r_{q-1}$

Definition:	growth	ratio			
		gr(s)	=	$\frac{r_0+r_1+\cdots+r_{q-1}}{q}$	

Theorem (MS, to appear)

If $gr(s) \in \mathbb{N}$, then **s** generates the language of a finite automaton. It is linked[‡] to the integer base b = gr(s).

If $gr(s) \notin \mathbb{N}$, then **s** generates a non-context-free language. It is linked[‡] to the *rational base* $\frac{p}{q} = gr(s)$. (cf. Akiyama et al. '08)

 ‡ It is a non-canonical representation of the integers (using extra digits).

Aperiodic signature: $\mathbf{s} = s_0 s_1 s_2 \cdots$

$S_n = \frac{1}{n} \sum_{k=0}^{n-1} s_k$: partial average of **s**. α : lim S_n extends the notion of growth ratio.