Breadth-first signature of trees and rational languages

Victor Marsault, joint work with Jacques Sakarovitch
CNRS / Telecom-ParisTech, Paris, France

Developments in Language Theory 2014, Ekateringburg, 2014-08-30

Breadth-first serialisation of languages and numeration systems:

The rational case

Victor Marsault, joint work with Jacques Sakarovitch

CNRS / Telecom-ParisTech, Paris, France

Developments in Language Theory 2014, Ekateringburg, 2014-08-30

Outline

1 Signature of trees and of languages

2 Substitutive signatures and finite automata

3 A word on numeration system

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)
- Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)

■ Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)
- Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Directed graph which is

- Rooted: a node is called the root (leftmost in the figures)

■ Directed outward from the root: there is a unique path from the root to every other node.
■ Ordered: the children of every node are ordered (In the figures, lower children are smaller.)

Every tree has a canonical breadth-first traversal

- We consider infinite trees only.

- We consider infinite trees only.
- For convenience, there is loop on the root.

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

$\mathbf{s}=$

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

$$
\mathbf{s}=2
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

$$
\mathbf{s}=21
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

$$
\mathbf{s}=212
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

$$
\mathbf{s}=2122
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

$$
\mathbf{s}=21221
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

$$
\mathbf{s}=212212
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

$$
\mathbf{s}=2122121
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

$$
\mathbf{s}=21221212
$$

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

Signature of a tree

Definition

The signature of a tree is the sequence of the degrees of the nodes taken in breadth-first order.

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

The signature is characteristic of a tree

$$
\mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega}
$$

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Alphabets are ordered hence prefix-closed languages $=$ labelled trees.

Figure: Integer representations in the Fibonacci numeration system.

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$\mathbf{s}=$
$\lambda=$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$\mathbf{s}=2$
$\lambda=01$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{aligned}
& \mathbf{s}=21 \\
& \lambda=010
\end{aligned}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lll}
\mathbf{s}=2 & 1 & 2 \\
\lambda=01 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lllll}
\mathbf{s}=2 & 1 & 2 & 2 \\
\lambda=01 & 0 & 01 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\left.\begin{array}{c}
\mathbf{s}=2 \\
=2
\end{array} 12 \begin{array}{cccccc}
2 & 2 & 1 & 2 & 1 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01
\end{array}\right)
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{lllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & 01
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{array}{llllllllll}
\mathbf{s}=2 & 1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 \\
\lambda=01 & 0 & 01 & 01 & 0 & 01 & 0 & 01 & 01 & 0
\end{array}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$\mathbf{s}=2122112122112$ $\lambda=010010100100101001$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{aligned}
& 0_{0}^{(0) \rightarrow(1) \rightarrow 0 \rightarrow(2)} \\
& \mathbf{s}=2 \begin{array}{lllllllllllll}
1 & 2 & 2 & 1 & 2 & 1 & 2 & 2 & 1 & 2 & 2
\end{array} \\
& \lambda=01001010010010100101
\end{aligned}
$$

Serialisation of a prefix-closed language

Definition

The labelling of a language is the sequence of arc labels of its transitions taken in breadth-first order.

$$
\begin{aligned}
& \text { (0) } 1 \rightarrow \text { (1) } 0 \rightarrow \text { (2) }
\end{aligned}
$$

The pair signature/labelling is characteristic

$$
\begin{aligned}
& \mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega} \\
& \lambda=\left(\begin{array}{lll}
0 & 12 & 12
\end{array}\right)^{\omega}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{s}=\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)^{\omega} \\
& \lambda=\left(\begin{array}{lll}
0 & 12 & 12
\end{array}\right)^{\omega}
\end{aligned}
$$

Figure : Non-canonical integer representations in base 2.

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.

A substitution σ is a morphism $A^{*} \rightarrow A^{*}$.

Running examples
Fibonacci substitution: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$

A substitution σ is a morphism $A^{*} \rightarrow A^{*}$.

Running examples

Fibonacci substitution: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
Periodic substitution: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$

A substitution σ is a morphism $A^{*} \rightarrow A^{*}$.
σ is prolongable on a if $\sigma(a)$ starts with the letter a.

Running examples

Fibonacci substitution: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
Periodic substitution: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$

A substitution σ is a morphism $A^{*} \rightarrow A^{*}$.
σ is prolongable on a if $\sigma(a)$ starts with the letter a.
In this case, $\sigma^{\omega}(a)$ exists and is called a purely substitutive word.

Running examples

Fibonacci substitution: $\{a, b\} \rightarrow\{a, b\}^{*}$
$a \mapsto a b$
$b \mapsto a$
Periodic substitution: $\{a, b, c\} \rightarrow\{a, b, c\}^{*}$
$a \mapsto a b c$
$b \mapsto a b$
$c \mapsto c$

Substitutive signature

σ : a substitution $A^{*} \rightarrow A *$ prolongable on a.
f : a letter-to-letter morphism
$f\left(\sigma^{\omega}(a)\right)$ is called a subtitutive word.

Substitutive signature

σ : a substitution $A^{*} \rightarrow A *$ prolongable on a.
f : a letter-to-letter morphism
$f\left(\sigma^{\omega}(a)\right)$ is called a subtitutive word.

Definitions

let f_{σ} be the (letter-to-letter) morphism: $A^{*} \rightarrow \mathbb{N}^{*}$ defined by

- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a subtitutive signature.

Substitutive signature

σ : a substitution $A^{*} \rightarrow A *$ prolongable on a.
f : a letter-to-letter morphism
$f\left(\sigma^{\omega}(a)\right)$ is called a subtitutive word.

Definitions

let f_{σ} be the (letter-to-letter) morphism: $A^{*} \rightarrow \mathbb{N}^{*}$ defined by

- $\forall b, f_{\sigma}(b)=|\sigma(b)|$

We call $f_{\sigma}\left(\sigma^{\omega}(a)\right)$ a subtitutive signature.
If g is a morphism such that

- $\forall b,|g(b)|=|\sigma(b)|$
- if $g(b)=c_{0} c_{1} \cdots c_{k}$ then $c_{0}<c_{1}<\cdots<c_{k}$

We call $g\left(\sigma^{\omega}(a)\right)$ a substitutive labelling.

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(a)=a b \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=a \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

if we choose g :
$g(a)=01$
$g(b)=0$
$g\left(\sigma^{\omega}(a)\right)=010010100100101001010 \cdots$

Example 1 - the Fibonacci signature

$$
\begin{aligned}
& \sigma(a)=a b \quad \Longrightarrow f_{\sigma}(a)=2 \\
& \sigma(b)=a \quad \Longrightarrow f_{\sigma}(b)=1 \\
& \\
& \quad f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad 2122121221221212212122 \ldots
\end{aligned}
$$

if we choose g :
$g(a)=01$
$g(b)=0$ $g\left(\sigma^{\omega}(a)\right)=010010100100101001010 \cdots$

This pair signature/labelling defines the language of integer representations in the Fibonacci numeration system.

Example 2 - a periodic signature

$$
\begin{array}{rlr}
\sigma(a) & =a b c & \left(f_{\sigma}(a)=3\right) \\
\sigma(b) & =a b & \left(f_{\sigma}(b)=2\right) \\
\sigma(c) & =c & \left(f_{\sigma}(c)=1\right) \\
\sigma(a b c) & =\quad a b c a b c \quad \text { hence } f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad(321)^{\omega}
\end{array}
$$

If we choose g :

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

$$
g\left(\sigma^{\omega}(a)\right)=(012121)^{\omega}
$$

Example 2 - a periodic signature

$$
\begin{array}{rlr}
\sigma(a) & =a b c & \left(f_{\sigma}(a)=3\right) \\
\sigma(b) & =a b & \left(f_{\sigma}(b)=2\right) \\
\sigma(c) & =c & \left(f_{\sigma}(c)=1\right) \\
\sigma(a b c) & =\quad a b c a b c \quad \text { hence } f_{\sigma}\left(\sigma^{\omega}(a)\right) \quad=\quad(321)^{\omega}
\end{array}
$$

If we choose g :

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

$$
g\left(\sigma^{\omega}(a)\right)=(012121)^{\omega}
$$

This pair signature/labelling defines a non-canonical representation of integers in base 2.

Example 3 - the Thue-Morse morphism

$$
\begin{array}{ll}
\sigma(a)=a b & \left(f_{\sigma}(a)=2\right) \\
\sigma(b)=b a & \left(f_{\sigma}(b)=2\right) \\
f_{\sigma}\left(\sigma^{\omega}(a)\right)=2^{\omega}
\end{array}
$$

\forall labelling g, the language is essentially $(0+1)^{*}$.

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.

Theorem

L: a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont-Thomas '89,'91,'93
- or the correspondence used in Maes-Rigo '02.

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont-Thomas '89,'91,'93
- or the correspondence used in Maes-Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma, g)}$ has signature (σ, g).

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, \mathrm{~B}, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

(a) (b)

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(\mathrm{a}) & =\mathrm{ab} \\
\sigma(\mathrm{~b}) & =\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(\mathrm{a})=01 \\
& g(\mathrm{~b})=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, \mathrm{~B}, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(\mathrm{a})=\mathrm{ab} \\
& \sigma(\mathrm{~b})=\mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b \\
& \sigma(b)=a
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(a) & =a b \\
\sigma(b) & =a
\end{aligned}
$$

$$
\begin{aligned}
& g(\mathrm{a})=01 \\
& g(\mathrm{~b})=0 \\
& \text { (b) }
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b \\
& \sigma(b)=a
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
\sigma(a) & =a b \\
\sigma(b) & =a
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=01 \\
& g(b)=0
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(\mathrm{a})=012 \\
& g(\mathrm{~b})=12 \\
& g(\mathrm{c})=1
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

(b)

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
g(a)=012
$$

$$
g(b)=12
$$

$$
g(c)=1
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(\mathrm{a})=012 \\
& g(\mathrm{~b})=12 \\
& g(\mathrm{c})=1
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(\mathrm{a})=012 \\
& g(\mathrm{~b})=12 \\
& g(\mathrm{c})=1
\end{aligned}
$$

Automaton associated with a subst. signature

$$
\sigma: A^{*} \rightarrow A^{*} \text { prolongable on } a \quad \text { and } \quad g: A^{*} \rightarrow B^{*}
$$

$$
\mathcal{A}_{(\sigma, g)}=\langle\mathrm{A}, B, \delta,\{\mathrm{a}\}, \mathrm{A}\rangle
$$

$$
\begin{aligned}
& \sigma(a)=a b c \\
& \sigma(b)=a b \\
& \sigma(c)=c
\end{aligned}
$$

$$
\begin{aligned}
& g(a)=012 \\
& g(b)=12 \\
& g(c)=1
\end{aligned}
$$

Theorem

L: a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont Thomas '89,'91,'93

■ or the correspondence used in Maes Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma, g)}$ has signature (σ, g).

Theorem

L : a prefix-closed language.
Signature (L) is substitutive $\Leftrightarrow L$ is accepted by a finite automaton.
(σ, g) : a substitutive signature.
(σ, g) defines a finite automaton $\mathcal{A}_{(\sigma, g)}$.
It is analogous to

- the prefix graph/automaton in Dumont Thomas '89,'91,'93

■ or the correspondence used in Maes Rigo '02.

Proposition

The language accepted by $\mathcal{A}_{(\sigma, g)}$ has signature (σ, g).
Proof: unfold the automaton $\mathcal{A}_{(\sigma, g)}$.

Abstract Numeration System:
built from an arbitrary regular language.
Dumont-Thomas Numeration system:
built from a substitution

Abstract Numeration System: built from an arbitrary regular language.

Dumont-Thomas Numeration system: built from a substitution

Theorem (augmented version)
Two (prefix-closed) ANS built on language with same signature (but different labelling) are easily ${ }^{\dagger}$ convertible one from the other.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Abstract

Numeration System: built from an arbitrary regular language.

Dumont-Thomas Numeration system: built from a substitution

Theorem (augmented version) Two (prefix-closed) ANS built on language with same signature (but different labelling) are easily ${ }^{\dagger}$ convertible one from the other.

Theorem (augmented version)
Every DTNS is a prefix-closed ANS.
Every prefix-closed ARNS is easily ${ }^{\dagger}$ convertible to a DTNS.
\dagger Through a finite, letter-to-letter and pure sequential transducer.

Other works: Ultimately periodic signatures

$$
\mathbf{s}=u r^{\omega} \quad \text { with } \quad r=r_{0} r_{1} r_{2} \cdots r_{q-1}
$$

Definition: growth ratio

$$
\operatorname{gr}(\mathbf{s})=\frac{r_{0}+r_{1}+\cdots+r_{q-1}}{q}
$$

$$
\mathbf{s}=u r^{\omega} \quad \text { with } \quad r=r_{0} r_{1} r_{2} \cdots r_{q-1}
$$

Definition: growth ratio

$$
\operatorname{gr}(\mathbf{s})=\frac{r_{0}+r_{1}+\cdots+r_{q-1}}{q}
$$

Theorem (MS, to appear)
If $\operatorname{gr}(\mathbf{s}) \in \mathbb{N}$, then \mathbf{s} generates the language of a finite automaton. It is linked ${ }^{\ddagger}$ to the integer base $b=\operatorname{gr}(\mathbf{s})$.

If $\operatorname{gr}(\mathbf{s}) \notin \mathbb{N}$, then \mathbf{s} generates a non-context-free language. It is linked ${ }^{\ddagger}$ to the rational base $\frac{p}{q}=g r(s)$. (cf. Akiyama et al. '08)
\ddagger It is a non-canonical representation of the integers (using extra digits).

Aperiodic signature: $\mathbf{s}=s_{0} s_{1} s_{2} \ldots$
$S_{n}=\frac{1}{n} \sum_{k=0}^{n-1} s_{k}$: partial average of \mathbf{s}.
$\alpha: \lim S_{n}$ extends the notion of growth ratio.

