Auto-similarity in rational base number systems

Victor Marsault*, joint work with Shigeki Akiyama[†] and Jacques Sakarovitch*

*CNRS / Telecom-ParisTech, Paris, France
†University of Tsukuba, Japan

WORDS, Turku, Finland 2013-09-17

- 1 From integer base to rational base
- 2 The world of minimal words
- 3 Auto-similarity and derived transducer
- 4 Span of a node

Integer base

- base $p \ge 2$
- lacksquare alphabet $A_{m p}=\{0,1,\ldots, {m p}-1\}$

- base $p \ge 2$
- alphabet $A_p = \{0, 1, ..., p-1\}$
- evaluation $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n a_i p^i$
- $\blacksquare \ \pi(A_p^*) = \mathbb{N}$

- base $p \ge 2$
- alphabet $A_p = \{0, 1, ..., p-1\}$
- evaluation $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n a_i p^i$
- $\blacksquare \ \pi(A_p^*) = \mathbb{N}$
- representation $\langle n \rangle_p = \langle n' \rangle_p.a$
 - (n', a) is the Euclidean division of n by p.

- lacktriangle representation $\langle n \rangle_{rac{p}{q}} = \langle n' \rangle_{rac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

- representation $\langle n \rangle_{\frac{P}{q}} = \langle n' \rangle_{\frac{P}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

$$\langle 3 \rangle_{\frac{3}{2}} =$$

- lacktriangle representation $\langle n \rangle_{rac{p}{q}} = \langle n' \rangle_{rac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

$$\langle 3 \rangle_{\frac{3}{2}} =$$

$$\begin{array}{c|c}
2 \times 3 &= 3 \times N_1 + a_0; \\
\uparrow & \uparrow & \uparrow \\
q & n & p
\end{array}$$

- representation $\langle n \rangle_{\frac{P}{q}} = \langle n' \rangle_{\frac{P}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

Example: computation of $\langle 3 \rangle_{\frac{3}{2}}$:

$$\langle 3 \rangle_{\frac{3}{2}} =$$

 $2 \times 3 = 3 \times N_1 + a_0; \Rightarrow N_1 = 2 \text{ and } a_0 = 0.$

- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} \, 0 =$$

- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} \, 0 =$$

$$2\times 2=3\times N_2+a_1;$$

- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} \, 0 =$$

$$2 \times 2 = 3 \times N_2 + a_1; \quad \Rightarrow N_2 = 1 \text{ and } a_1 = 1.$$

- representation $\langle n \rangle_{\frac{P}{q}} = \langle n' \rangle_{\frac{P}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} \, 0 = \langle 1 \rangle_{\frac{3}{2}} \, 10 =$$

- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} \, 0 = \langle 1 \rangle_{\frac{3}{2}} \, 10 =$$

$$2 \times 1 = 3 \times N_3 + a_2;$$

- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} \, 0 = \langle 1 \rangle_{\frac{3}{2}} \, 10 =$$

$$2 \times 1 = 3 \times N_3 + a_2$$
; $\Rightarrow N_3 = 0$ and $a_2 = 2$.

- representation $\langle n \rangle_{\frac{P}{q}} = \langle n' \rangle_{\frac{P}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

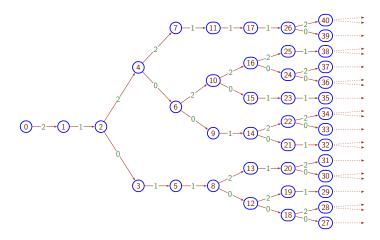
$$\langle 3 \rangle_{\frac{3}{2}} = \langle 2 \rangle_{\frac{3}{2}} \, 0 = \langle 1 \rangle_{\frac{3}{2}} \, 10 = 210$$

- lacksquare a base $\frac{p}{q}$ with p>q and p coprime with q
- alphabet $A_p = \{0, 1, \dots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.

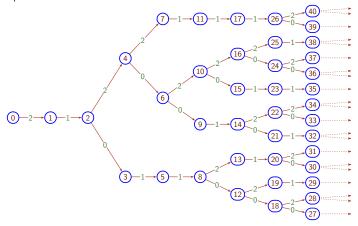
- lacksquare a base $\frac{p}{q}$ with p > q and p coprime with q
- alphabet $A_p = \{0, 1, ..., p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.
- evaluation $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n (\frac{a_i}{q}) (\frac{p}{q})^i$

- lacksquare a base $\frac{p}{q}$ with p > q and p coprime with q
- alphabet $A_p = \{0, 1, \dots, p-1\}$
- representation $\langle n \rangle_{\frac{p}{q}} = \langle n' \rangle_{\frac{p}{q}}.a$:
 - (n', a) is the Euclidean division of $(\mathbf{q} \times n)$ by p.
- evaluation $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n (\frac{a_i}{q}) (\frac{p}{q})^i$
 - if $\pi(u) = n \in \mathbb{N}$, u is of the form $0^k \langle n \rangle$
 - $\blacksquare \mathbb{N} \subsetneq \pi(A_p^*) \subsetneq \mathbb{Q}$

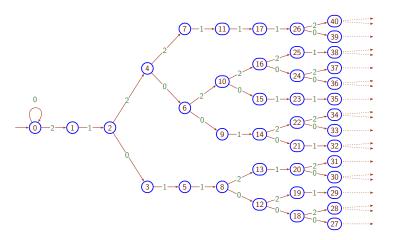
• $L_{\frac{p}{2}}$ is prefix-closed and right-extendable.



- $L_{\frac{p}{2}}$ is prefix-closed and right-extendable.
- $L_{\frac{p}{a}}$ is not rational (not even context-free) [AFS'08].

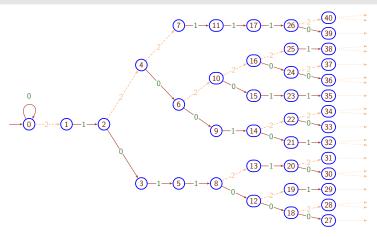


 $lacksymbol{T}_{rac{p}{q}}$ accepts $0^*L_{rac{p}{q}}$ (that is, the words u such that $\pi(u)\in\mathbb{N}$)



- 1 From integer base to rational base
- 2 The world of minimal words
- 3 Auto-similarity and derived transducer
- 4 Span of a node

 w_n : the (infinite) word starting from n taking the lowest branch.



Given an integer n, the minimal word w_n is

- lacksquare over the alphabet $\{0,\ldots,(q-1)\}=A_q$
- the unique word over A_a readable from n

Given an integer n, the minimal word w_n is

- lacksquare over the alphabet $\{0,\ldots,(q-1)\}=A_q$
- the unique word over A_q readable from n

Proposition [AFS'08]

 w_n and w_m have the same prefix of length k.

$$\uparrow \\
n \equiv m \ [q^k]$$

Given an integer n, the minimal word w_n is

- over the alphabet $\{0,\ldots,(q-1)\}=A_q$
- the unique word over A_q readable from n
- different from w_m (for $m \neq n$)
- aperiodic

Proposition [AFS'08]

 w_n and w_m have the same prefix of length k.

W: the set of minimal words.

Topological properties

- The topological closure of W is A_q^{ω} whole.
- The interior of *W* is *empty*.

Shift operation

- W is stable by shift
- W cannot be finitely generated through shift.

Derived function

$$\gamma: A_q^{\omega} \longrightarrow A_q^{\omega}$$
 $w_n \longmapsto w_{n+1}$

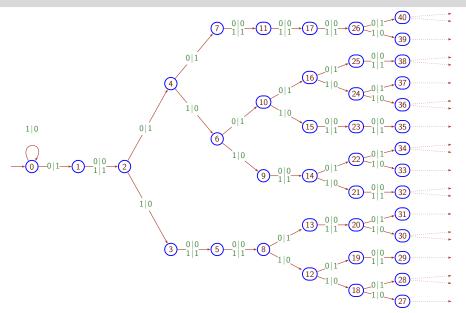
Derived function

$$\gamma: A_q^{\omega} \longrightarrow A_q^{\omega}$$
 $w_n \longmapsto w_{n+1}$

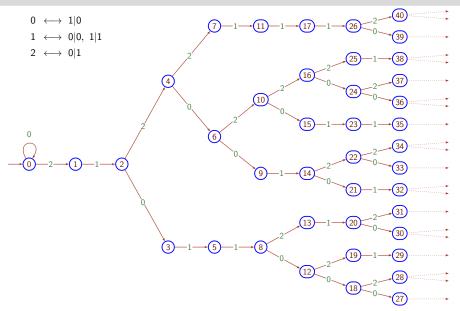
Remark

 $w_n = a.w_{n+p}$ for some letter a and integer p. (Or, equivalently $\gamma^p(w_n)$ is the shifted of w_n .)

- 1 From integer base to rational base
- 2 The world of minimal words
- 3 Auto-similarity and derived transducer
- 4 Span of a node



A simple label substitution...



Auto-similarity

Proposition

If p = 2q - 1,

- the underlying graph of $D_{\frac{p}{q}}$ and $T_{\frac{p}{q}}$ are identical;
- the labels of the transitions of $D_{\frac{p}{q}}$ are obtained by an (injective) substitution from those of $T_{\frac{p}{q}}$.

Auto-similarity

Proposition

If
$$p = 2q - 1$$
,

- the underlying graph of $D_{\frac{p}{q}}$ and $T_{\frac{p}{q}}$ are identical;
- the labels of the transitions of $D_{\frac{p}{q}}$ are obtained by an (injective) substitution from those of $T_{\frac{p}{q}}$.

Theorem

The derived transducer $D_{\frac{p}{a}}$ is locally computable from $T_{\frac{p}{a}}$.

Step 1: changing the alphabet

$$A_p \longrightarrow B_{p,q} = \{p - (2q-1), \ldots, p-1\}$$

- $B_{p,q}$ always has (2q-1) elements
- The maximal element of A_p and $B_{p,q}$ are the same.

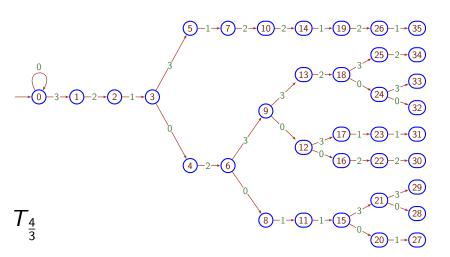
Step 1: changing the alphabet

$$A_p \longrightarrow B_{p,q} = \{p - (2q - 1), \dots, p - 1\}$$

- $B_{p,q}$ always has (2q-1) elements
- The maximal element of A_p and $B_{p,q}$ are the same.
- if p = (2q 1), $A_p = B_{p,q}$
- if p < (2q 1), $A_p \subseteq B_{p,q}$ (the base $\frac{p}{q}$ is "too small")
- if p > (2q-1), $A_p \supseteq B_{p,q}$ (the base $\frac{p}{q}$ is "too big")

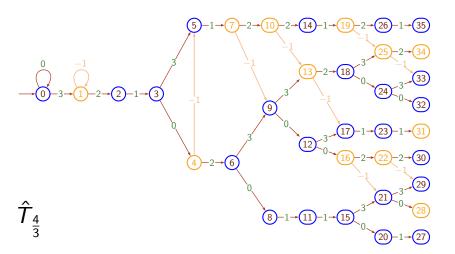
Example of the "small" base $\frac{4}{3}$ (Step 1)

$$A_4 = \{0,1,2,3\} \subseteq \{-1,0,1,2,3\} = B_{4,3}$$



Example of the "small" base $\frac{4}{3}$ (Step 1)

$$A_4 = \{0, 1, 2, 3\} \subseteq \{-1, 0, 1, 2, 3\} = B_{4,3}$$



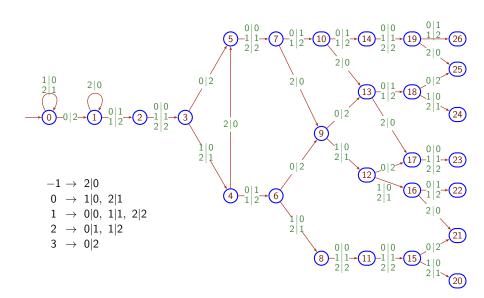
Step 1: changing the alphabet

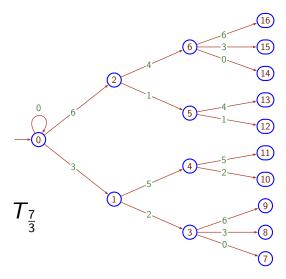
$$A_p \longrightarrow B_{p,q} = \{p - (2q-1), \ldots, p-1\}$$

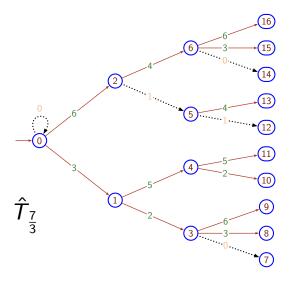
Step 2: changing the labels

$$\omega: B_{p,q} \longrightarrow \mathbb{P}(A_p \times A_p)$$

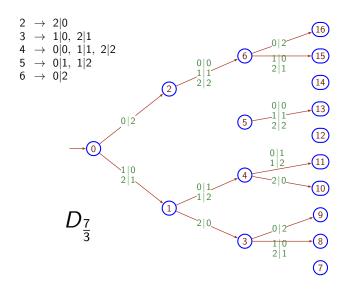
$$a \longmapsto \{(b|c) \mid (b-c) = \underbrace{a - (p-q)}\}$$
distance to the center of B







Example of the "big" base $\frac{7}{3}$ (Step 2)

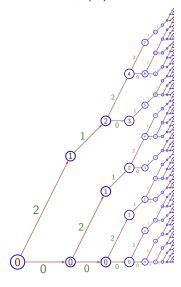


Outline

- 1 From integer base to rational base
- 2 The world of minimal words
- 3 Auto-similarity and derived transducer
- 4 Span of a node

Real evaluation

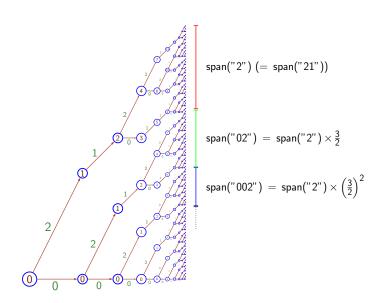
$$\rho(a_1a_2\cdots a_n\cdots) = \sum_{i\geq 0} \frac{a_i}{q} \left(\frac{p}{q}\right)^{-i}.$$



Span and renormalised span

Definition – span of the node X

The length of the interval reachable from X in the tree.



Span and renormalised span

Definition – span of the node X

The length of the interval reachable from X in the tree.

Definition – renormalised span of the node X

the span of X multiplied by $(\frac{p}{q})^k$, where k is the depth of X.

 $S_{rac{
ho}{a}}$ denotes the set of the renormalised span of every node.

Span words

Definition

- The span of n is represented by the word $(w'_n \ominus w_n)$, where:
 - w'_n is the maximal word starting from n;
 - " \ominus " denotes the digit-wise subtraction. (Example : $321 \ominus 012 = 31(-1)$)
- It is called the *span-word* of n and is over the alphabet $B_{p,q}$.

Span words

Definition

- The span of n is represented by the word $(w'_n \ominus w_n)$, where:
 - w'_n is the *maximal* word starting from n;
 - " \ominus " denotes the digit-wise subtraction. (Example : $321 \ominus 012 = 31(-1)$)
- It is called the *span-word* of n and is over the alphabet $B_{p,q}$.

Proposition

 $\hat{T}_{\frac{p}{q}}$ accepts the topological closure of the language of the span-words.

Topological Property of $S_{\frac{p}{q}}$

Theorem

- If $p \le 2q 1$, $S_{\frac{p}{q}}$ is dense.
- If p > 2q 1, $S_{\frac{p}{q}}$ is nowhere dense.

Conclusion and future work

- The derived transducer somehow requires the same structure as the original tree.
- The topological properties of the set of spans divides the rational base number systems in two classes.
- The cases p = 2q 1 is remarkable in both constructions.

Next question

For a given integer n, is there a *finite* transducer realising $w_n \mapsto w_{n+1}$?