On number sets rationally represented in a rational base number system

Victor MARSAULT, joint work with Jacques SAKAROVITCH

LTCI, Paris, France

2013 - 09 - 03

1 From integer base to rational base

2 BLIP Languages

3 Incrementer

Integer base

- base $p \ge 2$
- lacksquare alphabet $A_{m p}=\{0,1,\cdots, p-1\}$

- base $p \ge 2$
- lacksquare alphabet $A_p = \{0, 1, \cdots, p-1\}$
- lacksquare value $\pi(a_n\cdots a_1a_0)=\sum_{i=0}^n a_ip^i$

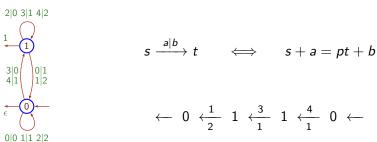
Example (base 3) -
$$\pi(12) = 5$$
 $\pi(122) = 17$

- base $p \ge 2$
- lacksquare alphabet $A_p = \{0, 1, \cdots, p-1\}$
- \blacksquare value $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n a_i p^i$
- $\blacksquare \ \pi(A_p^*) = \mathbb{N}$

- base $p \ge 2$
- alphabet $A_p = \{0, 1, \dots, p-1\}$
- \blacksquare value $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n a_i p^i$
- $\blacksquare \ \pi(A_p^*) = \mathbb{N}$
- representation $\langle n \rangle_p = a_i \cdots a_1 a_0$
 - $N_0 = n$
 - $N_k = p \times N_{(k+1)} + a_k \forall k > 0$

Digit-wise addition : $A_p \times A_p \mapsto A_{2p-1}$ example (base 3) : 122+12 = 134

Alphabet conversion : $A_{2p-1} \mapsto A_p$



lacksquare a base $\frac{p}{q}$ with p>q and p coprime with q

- representation $\langle n \rangle_{\frac{p}{q}} = a_i \cdots a_1 a_0$:
 - $N_0 = n$

- lacksquare a base $\frac{p}{q}$ with p>q and p coprime with q
- alphabet $A_p = \{0, 1, ..., p-1\}$
- evaluation $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n (\frac{a_i}{q}) (\frac{p}{q})^i$

- representation $\langle n \rangle_{\frac{p}{q}} = a_i \cdots a_1 a_0$:
 - $N_0 = n$

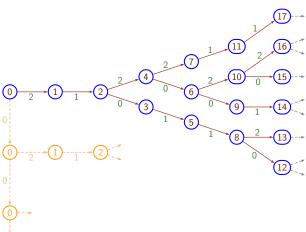
- lacksquare a base $\frac{p}{q}$ with p>q and p coprime with q
- alphabet $A_p = \{0, 1, ..., p-1\}$
- evaluation $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n (\frac{a_i}{q}) (\frac{p}{q})^i$

Example
$$(\frac{3}{2}$$
-system) $\pi(2) = 1$ $\pi(20) = \frac{3}{2}$ $\pi(21) = 2$

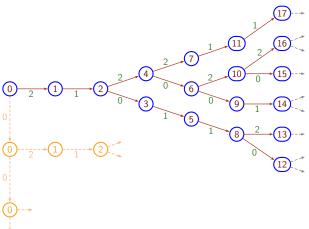
- representation $\langle n \rangle_{\frac{p}{q}} = a_i \cdots a_1 a_0$:
 - $N_0 = n$

- lacksquare a base $\frac{p}{q}$ with p>q and p coprime with q
- alphabet $A_p = \{0, 1, ..., p-1\}$
- evaluation $\pi(a_n \cdots a_1 a_0) = \sum_{i=0}^n (\frac{a_i}{q}) (\frac{p}{q})^i$
- representation $\langle n \rangle_{\frac{p}{q}} = a_i \cdots a_1 a_0$:
 - $N_0 = n$

• $L_{\frac{p}{q}}$ is prefix-closed



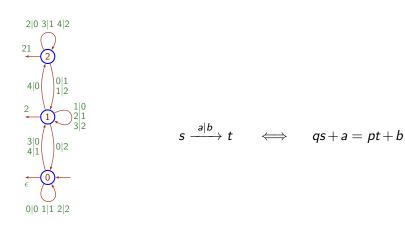
- $L_{\frac{p}{q}}$ is prefix-closed
- $L_{\frac{p}{q}}$ is not rational (not even context-free) [AFS08].



- contains every integer;
- contains only numbers of the form $\frac{n}{q^k}$

- contains every integer;
- contains only numbers of the form $\frac{n}{a^k}$
- given k, contains every number $\frac{n}{q^k}$ for n greater than some bound n_k .

Rational base - Additioner



Is there a set simple both from

- arithmetical perspective (finitely generated)
- language theory perspective (rationally represented)

Number	Language
$V_{\frac{p}{q}}$	$\langle V_{rac{p}{q}} angle = A_p^*$
$\pi(L_{\frac{p}{q}})=\mathbb{N}$	$L_{\frac{p}{q}}$

Is there a set simple both from

- arithmetical perspective (finitely generated)
- language theory perspective (rationally represented)

The answer is NO:

Main Theorem

M finitely generated additive submonoid of $V_{rac{p}{q}}$ $\Longrightarrow \langle M \rangle_{rac{p}{q}}$ is not rational.

1 From integer base to rational base

2 BLIP Languages

3 Incrementer

Bounded Left Iteration Property (BLIP)

A language L is BLIP if

 $\forall u, v, \exists$ finitely many $i \quad uv^i$ is prefix of a word of L

Example : the language $\{\epsilon, ab, ab.aab, ab.aab.aaab, \ldots\}$

Bounded Left Iteration Property (BLIP)

A language L is BLIP if

 $\forall u, v, \exists$ finitely many $i \quad uv^i$ is prefix of a word of L

Example : the language $\{\epsilon, ab, ab.aab, ab.aab.aaab, \ldots\}$

Intuition 1

■ *L* does not contain an infinite rational language.

[IRS: Greibach 1975]

■ *L* is "hard" to extend to an infinite rational language.

Bounded Left Iteration Property (BLIP)

A language L is BLIP if

 $\forall u, v, \exists$ finitely many $i \quad uv^i$ is prefix of a word of L

Example : the language $\{\epsilon, ab, ab.aab, ab.aab.aaab, \ldots\}$

Intuition 1

■ *L* does not contain an infinite rational language.

[IRS: Greibach 1975]

■ *L* is "hard" to extend to an infinite rational language.

Intuition 2

■ Every infinite branch of the tree representation of *L* is aperiodic

BLIP - Properties

- Every finite language is BLIP.
- Any finite union of BLIP languages is BLIP.
- Any intersection of BLIP languages is BLIP.
- Any sublanguage of a BLIP language is BLIP.

BLIP - Properties

- Every finite language is BLIP.
- Any finite union of BLIP languages is BLIP.
- Any intersection of BLIP languages is BLIP.
- Any sublanguage of a BLIP language is BLIP.

• $L_{\frac{p}{q}}$ is BLIP [AFS08].

Theorem A

M finitely generated additive submonoid of $V_{rac{p}{q}}$ $\Longrightarrow \langle M \rangle_{rac{p}{q}}$ is a BLIP language.

Proposition

M finitely generated additive submonoid of $V_{\frac{p}{q}}$ $\Longrightarrow M \subseteq \bigcup_{i \in I} (\mathbb{N} + x_i)$ with I finite

Since BLIP is stable by sublanguage and finite union It is enough to prove that for every $x \in V_{\frac{p}{q}}$, $\langle \mathbb{N} + x \rangle$ is BLIP.

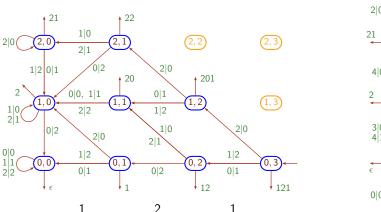
Outline

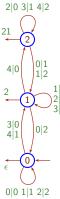
1 From integer base to rational base

2 BLIP Languages

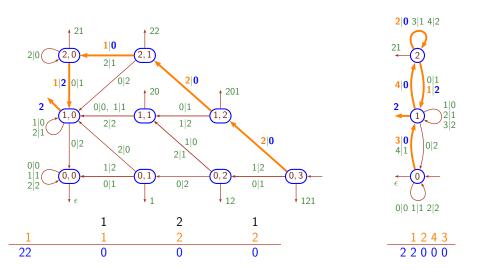
3 Incrementer

Incrementer by 3.125 (or "121") in base $\frac{3}{2}$





Incrementer by 3.125 (or "121") in base $\frac{3}{2}$



The incrementer and BLIP languages

Notation

$$(L \oplus x) = \langle S + x \rangle$$
, where $L = \langle S \rangle$.

Theorem B

$$L\subseteq A_p^*,\ x\in V_{rac{p}{q}}$$

 L is not BLIP $\Longrightarrow (L\oplus x)$ is not BLIP

The incrementer and BLIP languages

Notation

$$(L \oplus x) = \langle S + x \rangle$$
, where $L = \langle S \rangle$.

Theorem B

$$L \subseteq A_p^*, x \in V_{\frac{p}{q}}$$

 $L \text{ is not BLIP} \Longrightarrow (L \oplus x) \text{ is not BLIP}$

Theorem $B \Rightarrow$ Theorem A

- $\exists y \in V_{\frac{p}{q}}, (x+y) \in \mathbb{N}$ $\Longrightarrow (\mathbb{N} + x + y) \subseteq \mathbb{N}$ $\Longrightarrow (L_{\frac{p}{q}} \oplus x \oplus y) \text{ is BLIP}$
- If $(L_{\frac{p}{q}} \oplus x)$ is not BLIP, neither is $(L_{\frac{p}{q}} \oplus x \oplus y)$

Elements of proof

L is not BLIP

 $\iff \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for infinitely many } i.$

Elements of proof

L is not BLIP

 $\iff \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for infinitely many } i.$

WLOG

- $|w_i|$ arbitrarily large;
- all w_i reach the same state s of the incrementer by x;
- $lue{s}$ is stable by every letter of v.

Elements of proof

L is not BLIP

 $\iff \exists u, v \text{ and } \{w_i\}_i, uv^iw_i \in L \text{ for infinitely many } i.$

WLOG

- $|w_i|$ arbitrarily large;
- **a** all w_i reach the same state s of the incrementer by x;
- $lue{s}$ is stable by every letter of v.

$$\leftarrow \frac{u|u'}{s} + \frac{v^i|(v')^i}{s} + \frac{w_i|w'_i}{s}$$

$$(L \oplus x) \ni u'(v')^i w'_i$$
 for infinitely many $i \iff (L \oplus x)$ is not BLIP

Conclusion and future work

M finitely generated submonoid of $V_{\frac{p}{q}}$ \Longrightarrow (M,+) is NOT an automatic structure.

Conclusion and future work

M finitely generated submonoid of $V_{\frac{p}{q}}$

 \implies (M,+) is NOT an automatic structure.

Conjecture

M additive submonoid $\mathbb{N} \subseteq M$ and $\langle M \rangle$ is rational.

$$\langle M
angle = X.A_p^*$$
 where $X = L_{rac{p}{q}} \cap A_{p}^{\leq n}$

