
Surminimisation of automata

Victor Marsault

Telecom-ParisTech, 46 rue Barrault 75013 Paris, France

Abstract. We introduce the notion of surminimisation of a finite de-
terministic automaton; it consists in performing a transition relabelling
before executing the minimisation and it produces an automaton smaller
than a sole minimisation would. While the classical minimisation process
preserves the accepted language, the surminimisation process preserves
its underlying ordered tree only. Surminimisation induces on languages
and on Abstract Rational Numeration Systems (ARNS) a transforma-
tion that we call label reduction. We prove that all positional numeration
systems are label-irreducible and that an ARNS and its label reduction
are very close, in the sense that converting the integer representations
from one system into the other is done by a simple Mealy machine.

1 Introduction

The classical notion of minimisation (cf. for instance [7]) is a transformation of
deterministic finite automata and is associated with the automaton equivalence.
Two automata are equivalent if they accept the same language L and minimising
any automaton accepting L produces the automaton accepting L with the fewest
amount of states. Hence, the invariant of minimisation is the accepted language.

In this article, we assume that the alphabet (of every automaton) is equipped
with a total order. We then define another automaton transformation called
surminimisation that produces an automaton with fewer states than the one
resulting from a sole minimisation. The invariant of this new transformation is
no longer the accepted language, but its underlying ordered tree.

For each state p of a given automaton, the order on the alphabet induces
a (total) order on the outgoing transitions of p: a transition is smaller if it is
labelled by a smaller letter. The surminimisation process consists in two steps.
First, it relabels the outgoing transitions of each state p, such that their order is
preserved: the smallest transition is relabelled by the letter 0, the second smallest
is relabelled by 1, and so on. The second step simply consists in a minimisation.

Surminimisation induces on automata an equivalence relation that we call
T-equivalence: two automata are T-equivalent if their surminimisations are iso-
morphic. Moreover, the surminimisation process is idempotent1, hence each T-
equivalence class features a canonical representative computed by surminimising
any member of the class.

1 Two successive surminimisations produce the same result as only one.

We then lift T-equivalence to regular languages (over ordered alphabets). We
prove that if two trim automata are equivalent, then their surminimisations are
equivalent as well. Hence, we say that two languages are T-equivalent if they are
accepted by two T-equivalent (trim) automata and we call label reduction of a
regular language L, the language accepted by the surminimisation of any trim
automaton accepting L.

A regular language over an ordered alphabet is nothing else than an Abstract
Regular Numeration System (ARNS, cf. [9]). It consists in ordering a language L
by the radix, or genealogical order: a longer word is always genealogically greater
than a shorter word, and the genealogical ordering of two words of equal length
coincides with their lexicographical ordering. The representation of an integer n
in the ARNS L is then defined as the (n+1)-th word of L according to the radix
order. The two notions are so close that we use for ARNS’s every notion defined
for regular languages (such as T-equivalence, label reduction, etc.).

Two T-equivalent ARNS’s are very close, in the sense that the function con-
verting one system into the other is realised by a Mealy machine, as stated below.

Theorem 1 The function that maps the representation of an integer n in an
ARNS into the representation of n in an T-equivalent ARNS is realised by a
Mealy machine.

The converse to Theorem 1 is false in the general case. Indeed there exist
ARNS’s that are not T-equivalent but such that the conversion from one to an-
other is realised by a Mealy machine. We call locally increasing a Mealy machine
that is locally preserving the order of letters and prove the following statement,
a weak converse to Theorem 1.

Theorem 2 If the function that maps the representation of an integer n in an
ARNS into the representation of n in another ARNS is realised by a locally-
increasing Mealy machine, then the ARNS’s are T-equivalent.

ARNS’s form the most general class of numeration systems. In particular,
all (reasonable) positional numeration systems (or U-systems, cf. [5]) and all
Substitution Numeration Systems (SNS, cf. [3]) are ARNS’s.

We first prove that 0∗L is label-irreducible if L denotes the representation
language of any positional numeration system. It has quite a significance when
comparing the class of ARNS’s to the class of label-irreducible ARNS’s: the
former contains the latter, but 1) brings no supplementary expressive power and
2) contains no additional concrete examples.

We also prove that every prefix-closed ARNS is T-equivalent to some SNS,
by using classical transformations from substitutions into automata (cf. [11] or
even [2]). It is known that every SNS is a prefix-closed ARNS (cf. [1]), and the
previous results induce a weak converse to this statement: every prefix-closed
ARNS is very close to some SNS (in the sense of Theorem 1).

The paper is organised as follows. In Section 2, we define in details the notions
of surminimisation, label reduction, etc. The following Section 3 is dedicated to
the proof of Theorems 1 and 2. Finally, Section 4 consists in a discussion of label
reduction within numeration system theory.

2

2 Label Reduction and Surminimisation

For every integer k of N, we write JkK for the set of the k smallest non-negative
integers: JkK = {0, 1, . . . , k−1}. An alphabet is a set of letters and in the following
we consider ordered alphabets only, that is, alphabets (implicitly) equipped
with a total order, denoted by<. The set JkK will be considered both as an integer
interval and as a digit alphabet naturally ordered by 0 < 1 < · · · < (k − 1).

Automata are directed labelled graphs and in the following we consider de-
terministic automata only, written as a 5-tupleA = 〈Q,A, δ, i, F 〉 whereQ is
a finite set of states; A is a finite (ordered) alphabet; δ is the transition function,
a partial function Q×A→ Q; i ∈ Q is called the initial state; and F ⊆ Q is the
set of final states. As usual, δ is extended to Q× A∗ by δ(p, u a) = δ(δ(p, u), a)
and we write p u−−→

A
p′ if δ(p, u) = p′.

The automaton A is said to be trim if each state of A may reach a final state
and is reachable from the initial state. The language accepted by A, denoted
by L(A), is the set of the words u such that δ(i, u) is a final state. Two automata
are said equivalent if they accept the same language.

We also denote by OutA(p) the set of the transitions going out from p.
We write od(p), or more often kp, for |OutA(p)| the out-degree of the state p,
and od(A) = max{od(p) | p ∈ Q}. For every state p of Q, the order on A induces
an order on OutA(p); we enumerate OutA(p) w.r.t. this order as follows:

∀i ∈ JkpK p ai−−→ pi with a0 < a1 < · · · < a(kp−1) .

We call (i+1)-th transition of OutA(p) the transition p ai−−→ pi, as defined above.

We first define the label reduction of an automaton. It consists in relabelling,
for each state p, the transitions of OutA(p) using the alphabet JkpK and such
that the order of OutA(p) is preserved. More precisely.

Definition 1. Let A = 〈Q,A, δ, i, F 〉 be a (deterministic) automaton. We call
label reduction of A, denoted by lred(A) the automaton:

lred(A) = 〈 Q, Jod(A)K, δ′, i, F 〉 ,

where δ′ is such that, for every state p of Q, if p ai−−→
A

pi is the (i+1)-th transition
of OutA(p) then p i−−−−→

lred(A)
pi is a transition of lred(A).

Figure 1 shows an automaton A1 and its label reduction. The label-reduction
process commutes with quotient (cf. Definition 2, below), as stated at Lemma 1.

Definition 2. Let A = 〈QA, A, δA, iA, FA 〉 and M = 〈QM, A, δM, iM, FM 〉
be two automata. An automaton morphism φ : A → M is a surjective func-
tion QA → QM meeting the three following conditions.
1. φ(iA) = iM;
2. p a−−→

A
p′ is a transition of A ⇐⇒ φ(p) a−−→

M
φ(p′) is a transition ofM;

3. FA = φ−1(FM).

3

α β γ
c

b b

a

b

(a) An automaton L1

α β γ
1

0 0

0

1

(b) lred(L1)

Fig. 1: Label reduction of an automaton L1

In this case, M is called a quotient of A. If in addition, M is a quotient of
another automaton B, then A and B are said bisimilar. Every regular language L
is canonically associated with a minimal trim automaton ML; it is a quotient
of every trim automaton accepting L.

Lemma 1. Let A andM be two automata. IfM is a quotient of A, then lred(M)
is a quotient of lred(A).

Proof. We denote by φ : A →M the automaton morphism associated with the
quotient. Note that the state set of A and of lred(A) are identical (and similarly
for M and lred(M)), hence φ also maps states of lred(A) to states of lred(M);
let us prove that φ is an automaton morphism from lred(A) to lred(M).

Let p be a state of lred(A). We enumerate the outgoing transitions of p in A as
follows: ∀i ∈ JkpK, p ai−−→ pi with a0 < a1 < · · · < a(kp−1), where kp = od(p). It
follows that the enumeration of the outgoing transitions of φ(p) in M
are ∀i ∈ JkpK, φ(p) ai−−→ φ(pi) with a0 < a1 < · · · < a(kp−1).

Hence, from Definition 1, Outlred(A)(p) consists of p i−−→ pi, ∀i ∈ JkpK. Simi-
larly, Outlred(M)(φ(p)) consists of the transitions φ(p) i−−→ φ(pi), ∀i ∈ JkpK.

The next proposition, follows almost immediately.

Proposition 1. Let A and B be two trim automata. If A and B are equivalent
then so are lred(A) and lred(B).

The hypothesis trim in Proposition 1 is crucial. Indeed the complete automa-
ton accepting 1∗ is equivalent to the trim automaton accepting 1∗ whereas their
label reductions are not.

In the following, we consider trim automata only. Hence, Proposition 1 allows
to lift label reduction to regular languages: the label reduction2 lred(L) of a
regular language L is the language L(lred(A)) where A is any trim automaton
accepting L. For instance, the label reduction of ((a+ b∗)c)∗ is (00 + 10∗1 + 2)∗.

Definition 3 (T-equivalent automata). Two automata A and B are said
tree-equivalent (or for short T-equivalent), denoted by A T∼B, if their label
reductions are equivalent: L(lred(A)) = L(lred(B)). Similarly, two regular lan-
guages L and K are said T-equivalent if their label reductions are equal.
2 Label reduction may be defined directly on language; cf. Remark 2, page 10.

4

A B C D
x

x

y y

y

z

(a) An automaton A2

A B C D

0

0

1 0

0

1

(b) lred(A2)

Fig. 2: Label reduction of another automaton A2

1

0

0

Fig. 3: The surminimisation either of A1 or of A2

Figure 2 shows the automaton A2 and its label reduction. This automaton
is T-equivalent to the automaton A1 (previously shown at Figure 1a). Indeed,
their respective label-reductions lred(A1) and lred(A2) are equivalent: they have
the same minimisation, shown at Figure 3. This method is a good way to decide
whether two automata are T-equivalent, as formalised below.

Definition 4. We call surminimisation of an automaton A, the minimisation
of the label reduction of A: surmin(A) = minim(lred(A)).

Figure 3 shows the surminimisation either of A1 or of A2. The next propo-
sition follows directly from the definitions; it gives both a characterisation and
an efficient decision algorithm for T-equivalence.

Proposition 2. Two automata are T-equivalent if and only if their respective
surminimisations are isomorphic.

Remark 1. Surminimisation (or label reduction) removes the meaning of the let-
ters (if there is any) and retains their order only. For instance the language 0∗1∗
may be described as 0’s followed by 1’s while its label reduction is 0∗+0∗10∗ that
may be described as words with at most one 1. In particular, surminimisation
also removes the complexity due to an arbitrary choice of letters: for instance
the label reduction of the language L3 = arbi(trary)∗ is 04

(
05
)∗ and the label

reduction of3 Pre (L3) is 0∗; this example highlights that the question of the
succinctness of surminimisation is meaningless.

The classical notions of equivalence and minimisation feature a natural in-
variant: they preserve the accepted language. We have already seen that T-
equivalence and surminimisation do not preserve the language; however they
feature another invariant: the underlying (ordered) tree.

3 Pre (L) is the set of prefixes of words of L: Pre (L) = {u | u v ∈ L for some word v }.

5

α

β

α

γ

β

α

β

α

γ

β

α

γ

β

α

β

α

γ

β

α

b

c

b

b

c

a

b

b

b

c

b

b
c

a
b

b

b
c

(a) The labelled tree TL1

B

A

C

B

D

C

A

C

B

D

C

B

D

C

A

C

B

D

C

x

y

x

y

z

x

y

y

y

z

x

y
z

x
y

y

y
z

(b) The labelled tree TL2

Fig. 4: The unfolding of two T-equivalent automata

Definition 5. A language L over an alphabet A may be represented as an infi-
nite labelled tree (or infinite acyclic automaton) as follows: TL = (V,A,E, F).
The vertex set is V = Pre (L) ; the edge labels are taken in the alphabet A; the
edge set is E = {(u, a, ua) | ua ∈ V } ⊆ V ×A×V ; the set of final vertices F = L.

If L is a regular language, an isomorphic tree may be obtained by unfolding
a (trim) automaton accepting L.

Figure 4 shows the tree representations of L1 = L(A1) and L2 = L(A2); in
the figure, a vertex is labelled by the corresponding state of the automaton, and
is drawn with a double line if it is final. These two trees, TL1

and TL2
, coincide

up to labelling; it is a consequence of the fact that L1 and L2 are T-equivalent,
as stated in the next Proposition 3. It is a direct consequence of Lemma 2.

Proposition 3. Let A and B be two automata. If A T∼B, then their respective
unfoldings differ only by the labellings.

Lemma 2. Let A be an automaton and M = surmin(A). Then the respective
unfoldings of A andM differ only by the labellings.

Proof (Sketch). Let φ be the automaton morphism lred(A) → M. It is also a
function from QA to QM which is not an automaton morphism A →M: it does
not meet the condition 2 of Definition 2. However, φ satisfies the next condition.

p a−−→
A

q is the (i+ 1)-th transition of OutA(p) ⇐⇒ φ(p) i−−→
M

φ(q)

The function φ may be extended to a bijection that maps vertices of TL(A) to
vertices of TL(M), and satisfies an analogous condition.

6

3 T-equivalent Languages Define the Same ARNS

An ordered alphabet A induces two orders on words of A∗, the classical lexico-
graphic order <lex and the radix order <rad defined as follows: u <rad v either
if |u| < |v| or if |u| = |v| and u <lex v. Ordering a language L with the radix
order defines the Abstract Numeration System (ANS, cf. [9]) associated with L:
every integer n is represented by the (n + 1)-th word of L in the radix order
which is denoted by 〈n〉L. If L is a regular language, it defines an Abstract Reg-
ular Numeration System (ARNS). Let K be another ANS; we call conversion
function from L into K the function that maps 〈n〉L to 〈n〉K , for every integer n.

A Mealy machine is a graph labelled with pair of letters (cf. [6]); it is written
as a 6-tuple T = 〈Q,A,B, τ, i, F 〉, where Q, A, i and F are defined as in
an automaton, B is the output alphabet and τ is a function Q×A→ B ×Q,
extended as usual to Q × A∗ → B∗ × Q. We write p u | v−−−−→

T
q if τ(p, u) = (v, q)

and the pair u | v is said to be accepted by T if in addition p = i and q ∈ F . The
function realised by T maps u to v for all pairs u | v accepted by T . 4

Let A and B be two (trim) automata. We now define a Mealy machine A�B;
it is a variant of the well-known automaton product (used for regular-language
intersection). The underlying graphs of A � B and lred(A)× lred(B) coincide,
but the transitions of A� B are labelled using the labels of A and B. 5

Definition 6. Let A = 〈QA, A, δA, iA, FA 〉 and B = 〈QB, B, δB, iB, FB 〉 be two
automata. We denote by A� B the Mealy machine

A� B = 〈QA ×QB, A, B, τ, (iA, iB), FA × FB 〉 ,

where the transition function τ is defined as follows. If p ai−−→
A

pi and q bi−−→
B

qi
are respectively the (i+1)-th transitions of OutA(p) and of OutB(q), then A�B
features the transition (p, q) ai | bi−−−−−→

A�B
(pi, qi).

We say that a state (p, q) is inconsistent if either 1) p or q is final but the
other is not; or 2) the out-degrees of p and q are not equal: odA(p) 6= odB(q).

Figure 5 shows the automaton A1 �A2; in the figure, inconsistent states are
drawn in dotted lines and their outgoing transitions are omitted and inaccessible
but consistent states are drawn in dashed lines. We can now state Theorem 1
under the more precise following form.

Theorem 1. Let A and B be two trim automata. If A and B are associated with
two T-equivalent ARNS’s L and K, then A�B realises the conversion function
from L into K.

4 According to transducer terminology, a Mealy machine is a pure sequential and letter-
to-letter transducer cf. [5, 12]. Mealy machines have the same expressive power as
Moore Machines, also called deterministic finite automata with output (DFAO).

5 In the classical automaton product, transitions are matched using transition labels,
hence lred(A)× lred(B) and A× B have different underlying graphs.

7

x

x

y y

y

z

c

b

b
a

b

c | y

b |x

c |x

b | y

b |x

a |x

b | y

b | y

a | y

b | z

Fig. 5: The Mealy machine A1 �A2

The proof of Theorem 1 breaks down into Lemmas 3 and 4. First, we give a
few properties following directly from Definition 6.

Property 1. Let A, B be two automata and u | v, u′ | v′ be accepted by A� B.
a. u = u′ ⇔ v = v′.
b. u <rad u

′ ⇔ v <rad v
′.

c. Let (p, q) a | b−−−→ (p′, q′) be a transition of A�B. Then p a−−→ p′ is a transition
of A and q b−−→ q′ is a transition of B.

d. Let p a−−→ p′ be a transition of A and q be a state of B. If (p, q) is consistent,
then (p, q) a | b−−−→ (p′, q′) is a transition of A� B, for some q′ and b. 6

Lemma 3. Let A and B be two automata. If A�B has no inconsistent accessible
states, then it realises the conversion function from L(A) into L(B)

Proof. Let us denote by A′ the trim of the input automaton of A� B. If A� B
has no inconsistent accessible states then it follows from Properties 1.c and 1.d
that A is a quotient of A′ (through the projection (p, q) 7→ p). It follows that the
input language of A� B is L(A); symmetrically, the output language of A� B
is L(B). Since A � B realises a bijection (from Property 1.a) and preserves the
order (from Property 1.b), it follows that A� B maps 〈n〉A to 〈n〉B.

Lemma 4. Let A and B be two automata. If A T∼B, then every inconsistent
state of A� B is not accessible.

Proof. Since they are T-equivalent, A and B have the same surminimisation,
denoted by M; it is a quotient both of lred(A) and of lred(B) realised by the
6 For concision, we omitted the symmetrical statement.

8

0 | 1
1 | 0 0 | 0

0 | 0

Fig. 6: A Mealy machine which is not locally increasing

automaton morphisms φ : lred(A)→M and ψ : lred(B)→M. The proof of the
next claim consists in an induction over a traversal of A�B and is omitted here.
Claim. Every accessible state (p, q) of A� B meets the condition φ(p) = ψ(q).

Let (p, q) be an accessible state of A � B. It follows that φ(p) = ψ(q) (from
the claim), hence that p and q are both final or both non-final and that p and q
have the same amount of outgoing transitions. Hence (p, q) is not an inconsistent
state.

Theorem 1 follows directly from Lemmas 3 and 4. However, its converse
is false in the general case: the Mealy machine shown at Figure 6 realises the
conversion from 0+10+ into 1+00+, two distinct and label-irreducible languages
hence not T-equivalent.

We say that a Mealy machine T is locally increasing if it locally preserves
the order of labels or, more formally, if it satisfies the following condition.

For every pair of transitions of T
p a | b−−−→

T
q

p c | d−−−→
T

q′
a < c ⇔ b < d (1)

For instance, the Mealy machine A� B is always locally increasing whereas
the one shown at Figure 6 is not: the two outgoing transitions of the initial state
reverse the order of the letters.

Theorem 2. Let T be a locally increasing Mealy machine, A and B its respective
input and output automata. Then A and B are T-equivalent.

Proof. Note that A, B, T have the same state set and that since T is lo-
cally increasing, then B is deterministic. Let p be a state of A, B and T .
We enumerate the outgoing transitions of p in T : ∀i ∈ JkpK p ai | bi−−−−−→

T
pi

where kp = odT (p) and a0 < a1 < · · · < akp−1; since T is locally increasing,
then b0 < b1 < · · · < bkp−1.

We fix i in JkpK. The transitions p ai−−→
A

pi and p bi−−→
B

pi are respectively
the (i+1)-th transitions of OutA(p) and OutB(p). It follows that both transitions
are relabelled by the same digit i in lred(A) and lred(B), hence coincide. Since A
and B differ only by their transition labels, lred(A) and lred(B) are isomorphic.

4 Label Reduction Within Numeration System Theory

We briefly recall here basic definitions and notations for positional numera-
tion system; see for instance Section 2.3.3 of [5] for more details. A basis is

9

a strictly increasing sequence of integers (Ui)i∈N with U0 = 1 defining the
positional numeration system U . The U -evaluation function πU maps a finite
word dk dk−1 · · · d0 over a digit alphabet to the integer πU (dk dk−1 · · · d0) =∑k
i=0 di Ui. The Rényi greedy algorithm (cf. for instance [10, Chapter 7]) com-

putes a word whose evaluation is n; it is called the U -representation of n and is
denoted by 〈n〉U . We also denote by L(U) the language L(U) = {〈n〉U | n ∈ N}.

In the following, we always assume that the ratio Un+1/Un is bounded by
an integer constant M = sup{ dUn+1/Une | n ∈ N }, in which case the digits of
each U -representation belong to the alphabet AU = JMK. The next two classical
propositions follow.

Proposition 4 ([5, Proposition 2.3.44]). Let u be a word of AU∗. If u does
not start with the letter 0 then u ≤rad 〈n〉U , where n = πU (u).

Proposition 5 ([5, Proposition 2.3.45]). Let n and m be two positive inte-
gers. Then n < m if and only if 〈n〉U <rad 〈m〉U .

The next proposition (together with the remark following it) is the main
result from this section.

Proposition 6. Let U be a positional numeration system. If L(U) is a regular
language, then 0∗L(U) is label-irreducible. 7

Proof. For concision, we write 〈 〉 and π() instead of 〈 〉U and πU () in this
proof. The whole statement follows from the next claim.
Claim. Let m be an integer u, v be two words of A ∗U and (d + 1) be a positive
digit. If 〈m〉 = u(d+ 1)v and (u, d) 6= (ε, 0), then there exists an integer n such
that 〈n〉 = udv′, for some v′.
Proof of the Claim. Without loss of generality, we may assume that v is the
smallest word in the radix order such that u(d+ 1)v is the representation of an
integer (Assumption (∗)). Let k = |v|, we denote by n the value of u d v: that
is n = π (u d v) = (m − Uk). Note that (since it is a prefix of 〈m〉,) u may
not start with the letter zero; since (u, d) 6= (ε, 0), it follows that udv does not
start with the letter 0 either and applying Propositions 4 and 5 yields the two
following inequations: u d v ≤rad 〈n〉 <rad u (d+ 1) v .
It follows that 〈n〉 is of one of the three following forms.
• 〈n〉 = u dw with v <rad w and π (v) = π (w). It follows that u (d+1) v <rad
u (d + 1)w and that π(u (d+ 1)w) = m, hence the representation of m
cannot be equal to u (d+ 1) v, a contradiction to Proposition 4.
• 〈n〉 = u(d+ 1)w for some w <rad v, a contradiction to Assumption (∗).
• 〈n〉 = u d v yielding the proof of the claim.

Remark 2. Proposition 6 could be made substantially stronger if label reduction
were defined directly on languages (ie. independently of automata). The label
reduction of a language would be defined as lred(L) = {fL(u) | u ∈ L} with

fL(ε) = ε
fL(u b) = fL(u) gL(u, b) where gL(u, b) = |{ua | a < b and ua ∈ Pre (L)}| .

7 A language is said label-irreducible if it is equal to its label reduction.

10

A language L is label-irreducible if ∀ub, ub ∈ Pre (L) ⇒ ∀a < b, ua ∈ Pre (L).
The statement every positional numeration system is label-irreducible is then an
immediate consequence of the Claim of the previous proof.

Remark 3. Let us compare the classes of ARNS’s and label-irreducible ARNS’s.
– Every ARNS is T-equivalent to some label-irreducible ARNS, hence from

Theorem 1, one may be converted into the other by means of a Mealy ma-
chine. It follows that both systems will share the same properties

– Within an T-equivalence class, the unique label-irreducible ARNS is associ-
ated with an automaton with the smallest amount of states.

– All concrete numeration systems seem to be label-irreducible. 8

In the remainder of this section, we prove that every T-equivalence class
contains a Substitution Numeration System (SNS, cf. [3]). It is known that an
SNS is a particular ARNS (cf. [1]) and we use this result to give here a very brief
description of SNS’s as ARNS’s.

Let X be an alphabet and let σ : X∗ → X∗ be a monoid morphism. We
assume that σ is prolongable on x ∈ X, that is, 1) σ(x) starts with an x and
2) limn→∞(|σn(x)|) =∞. In the following, we manipulate the alphabet Bσ (de-
fined below) whose letters are words over the alphabet X. If u or x0x1 · · ·xk de-
notes a word ofX∗, the corresponding letter ofBσ is denoted by [u] or [x0x1 · · ·xk].
Bσ = { [u] | u is a strict prefix of σ(y) for some y ∈ A } .

The prefix automaton Aσ = 〈X,Bσ, δ, x,X 〉 is defined as follows. Its state
set is X (ie. the alphabet of σ), its initial state is x and all states are accepting.
The transition function δ is defined such that Aσ features the transition y [u]−−−→

Aσ
z

if and only if uz is a prefix of σ(y). The SNS σ is then the ARNS L, where L
consists of the words of L(Aσ) that do not start with the letter [ε].

If every ARNS is not necessarily an SNS, it is pretty close to be the case, as
stated by the Corollary 1 of the next proposition. The proof of this statement is
omitted here, and consists in a thorough examination of classical transformations
from automaton to substitution (cf. [11, 8]).

Proposition 7. Every prefix-closed ARNS is T-equivalent to an SNS.

Corollary 1. Every prefix-closed ARNS can be converted into an SNS through
a Mealy machine.

5 Conclusion

We introduced the notion of surminimisation of automata, a transformation
producing an automata smaller than the one resulting from the classical min-
imisation. While minimisation preserves the language (that is, a labelled tree),
surminimisation preserves the underlying unlabelled tree only.
8 We call here concrete the numeration systems that may be defined by an evaluation
function, by opposition to those defined by their representation language.

To the best of our knowledge, the only label-reducible concrete numeration sys-
tems are the rational base numeration systems (cf. Section 2.5 of [5]) and, even in
this case, it happens to exist a variant which is label-irreducible (cf. [4]).

11

Surminimisation induces on Abstract Regular Numeration Systems (ARNS)
a transformation, called label reduction, and an equivalence relation; each equiva-
lence class features a canonical representative: the label reduction of any element
of the class. We proved that members of the same equivalence class are essen-
tially the same (ie. may be converted from one into another by a Mealy machine)
and, conversely, that if the conversion from one ARNS into another is realised
by a locally increasing Mealy machine, then the ARNS’s are T-equivalent.

Moreover, a simple verification yields that all positional numeration systems
are label-irreducible. In summary, label reduction allows to simplify ARNS’s
without excluding any concrete cases.

Acknowledgements The author thanks Michel Rigo and Émilie Charlier for their
invitation to Liège and the discussions he had with them about this work.

References

1. Valérie Berthé and Michel Rigo. Odometers on regular languages. Theory Comput.
Syst., 40(1):1–31, 2007.

2. Alan Cobham. Uniform tag sequences. Math. Systems Theory, 6:164–192, 1972.
3. Jean-Marie Dumont and Alain Thomas. Digital sum problems and substitutions

on a finite alphabet. Journal of Number Theory, 39(3):351–366, 1991.
4. Christiane Frougny and Karel Klouda. Rational base number systems for p-adic

numbers. RAIRO - Theor. Inf. and Applic., 46(1):87–106, 2012.
5. Christiane Frougny and Jacques Sakarovitch. Number representation and finite

automata. in Combinatorics, Automata and Number Theory, V. Berthé, M. Rigo
(Eds), Encyclopedia of Mathematics and its Applications 135, Cambridge Univ.
Press (2010) 34–107.

6. Georges H. Mealy. A method for synthesizing sequential circuits. Bell Syst. Tech.
J., 34:1045–1079, 1955.

7. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

8. Pierre Lecomte and Michel Rigo. Abstract numeration systems. in Combinatorics,
Automata and Number Theory, V. Berthé, M. Rigo (Eds), Encyclopedia of Math-
ematics and its Applications 135, Cambridge Univ. Press (2010) 108–162.

9. Pierre Lecomte and Michel Rigo. Numeration systems on a regular language.
Theory Comput. Syst., 34:27–44, 2001.

10. M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press,
2002.

11. Michel Rigo and Arnaud Maes. More on generalized automatic sequences. Journal
of Automata, Languages and Combinatorics, 7(3):351–376, 2002.

12. Jacques Sakarovitch. Eléments de théorie des automates. Vuibert, 2003. Corrected
English translation: Elements of Automata Theory, Cambridge University Press,
2009.

12

