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Abstract

We present here the notion of signature of trees and of languages, and its rela-
tionships with the theory of numeration systems. The signature of an ordered
infinite tree (of bounded degree) is an infinite (bounded) sequence of integers,
the sequence of the degrees of the nodes taken in the visit order of the canonical
breath-first traversal of the tree. A prefix-closed language defines such a tree
augmented with labels on arcs, hence is associated with a signature. This way
of ‘traversing’ a language is related to the notion of abstract numeration system,
due to Lecomte and Rigo.

After having set in detail the framework of signature, we study and char-
acterise the signatures of rational languages. Using a known construction from
numeration system theory, we show that these signatures form a special subclass
of morphic words. We then use this framework to give an alternative definition
to morphic numeration systems (also called Dumont-Thomas numeration sys-
tems). We finally highlight that the classes of morphic numeration systems and
of (prefix-closed) rational abstract numeration systems are essentially the same.

Keywords: Abstract numeration systems, Morphic words, Finite automata,
Rational languages

1. Introduction

This work introduces the notion of breadth-first signature of a tree, or of a
language. It consists of an infinite word describing the tree (or the language).
Depending on the direction from the tree to the word, or conversely, it is either
a serialisation of the tree into an infinite word or a generation of the tree by the
word. Here, we study and characterise the serialisation of rational, or regular,
languages.

The breath-first signature or, for short, the signature of an ordered tree of
finite degree is the sequence of the degrees of the nodes visited by a breadth-first
traversal of the tree. Since the tree is ordered, there is a canonical breadth-first
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traversal; hence the signature is defined by the tree. Conversely, and under a
validity condition, a signature characterises a tree.

Similarly, the labelling of a labelled tree is the infinite sequence of the labels
of the arcs visited by the breadth-first traversal of this tree. The pair signa-
ture/labelling is once again characteristic of the labelled tree. It provides an
effective serialisation of labelled trees, hence of prefix-closed languages.

This serialisation of a prefix-closed language over an ordered alphabet is
very close, and in some sense, equivalent to the enumeration of the words of the
language in the radix order. It makes then this notion particularly fit to describe
the languages of integer representations in various numeration systems. It is of
course the case for the representations in an integer base p which corresponds
to the signature pω, the constant sequence. But it is also the case for non-
standard numeration systems such as the Fibonacci numeration system, whose
representation language has for signature the Fibonacci word. It is also the
case for the rational base numeration systems, as defined in [1], and whose
representation languages have periodic signatures, that is, signatures that are
infinite periodic words. To tell the truth, it is the latter case that first motivated
our study of signatures and a subsequent work is devoted to the characterisation
of the trees and languages generated by periodic signatures [2].

In this work, we first show that the signatures of prefix-closed rational lan-
guages all belong to a special subclass of morphic infinite words that we call
s-morphic signatures. An s-morphic signature is a morphic word where the
projection (or ‘coding’) morphism is entirely determined by the prolongable
morphism itself; more precisely it is a word the form fσ(σω(a)) where fσ is the
morphism that maps every letter b to the length of σ(b) (considered as a digit).
Conversely, we prove that every s-morphic signature, paired with an appropri-
ate morphic labelling, generates a prefix-closed rational language. The proof of
these results relies on a correspondence between morphic words and automata
due to Maes and Rigo [3] or Dumont and Thomas [4, 5, 6] and whose principle
goes back to the work of Cobham [7].

The fact that the description of a language by its signature is, in some
sense, equivalent to the enumeration of the words of the language in the radix
order makes the notion of signature remarkably close to the one of Abstract
Numeration System (ANS for short) as proposed by Lecomte and Rigo [8].
An ANS is defined by an arbitrary language L over an ordered alphabet; this
language is ordered by the radix order and the representation of the integer n is
by definition the (n+1)-th word of L, independently of any evaluation function
as it is the case in ‘concrete’ numeration systems. An ANS L is said rational if L
is a rational language. Note that Lecomte and Rigo usually consider rational
ANSs only and call them simply ANSs; the systems that we call ANSs are
referred to as generalised numeration system in the few cases when they consider
them (such as in [9]).

We then use our framework to give an alternative definition of Morphic
Numeration System (MNS) originally introduced by Dumont and Thomas in [4],
hence often called Dumont-Thomas numeration systems in the literature.
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By our definition, a MNS is a prefix-closed rational ANS of a special form
and is canonically associated with an s-morphic (unlabelled) signature. We
then show that any given rational prefix-closed ANS L may be converted eas-
ily to the MNS K associated with the s-morphic signature of L: the conver-
sion function L → K, that maps the representation of every integer n in L
to the representation of n in K, is realised by a letter-to-letter pure-sequential
transducer. This conversion transducer is moreover graph-isomorphic to the
automata accepting L and K; note that this second automaton is the so-called
prefix automaton. These considerations result in the idea that prefix-closed
rational ANSs and MNSs have the same expressive power.

Section 2 describes the correspondence between signatures, trees and prefix-
closed languages. Section 3 defines s-morphic signature and establishes the
characterisation theorem. Section 4 gives the definition of Dumont–Thomas
numeration systems and shows their central position. A very preliminary version
of this work, covering part of the content of sections 2 and 3 only, has appeared
in [10]. Most of the results are also part of the PhD thesis of the first author
[11].

Acknowledgements. The authors would like to thank the referees of the
submitted version of [10] for their constructive comments. They are particularly
grateful to Michel Rigo, who has pointed to several references among which the
works of Dumont–Thomas, for his precious advices and friendly encouragements.

2. Signatures of trees and languages

We describe here a process of serialisation of (infinite) trees, (infinite) la-
belled trees, and (infinite) prefix-closed languages, that is, the representation
of such objects by one, or two, (infinite) words, using the assumption of the
existence of an underlying order. We also recall the related concept of abstract
numeration system and introduce the one of padded language and, for the ra-
tional case, of padded finite automata.

2.1. On trees

Classically, a tree is an undirected graph in which any two vertices are con-
nected by exactly one path (cf. [12], for instance). Our point of view differs in
two respects. First, a tree is a directed graph such that (i) there exists a unique
vertex, called root, which has no incoming arc, and (ii) there is a unique (ori-
ented) path from the root to every other vertex. Second, our trees are ordered,
that is, the set of children of every node is totally ordered.

In the figures, we draw trees with the root on the left, arcs rightwards and
the child order will be implicitly defined by the convention that children placed
higher are greater (according to this order).

It will prove to be convenient to have a slightly different look at trees and
to consider that the root of a tree is also a child of itself, that is, bears a loop
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onto itself.1 We call such a structure an i-tree. It is so close to a tree that we
pass from one to the other with no further ado. Nevertheless, some definitions
or results are easier or more straightforward when stated for i-trees, and others
when stated for trees: it is then handy to have both available. A tree will usually
be denoted by Tx for some index x and the associated i-tree by Ix. Figure 1
shows such a pair of a tree and the associated i-tree.
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(a) A tree that is almost ternary
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(b) The ternary i-tree

Figure 1: The tree and i-tree associated with the base 3 numeration system

The degree of a node is the number of its children. In the sequel, we consider
infinite (i-)trees of finite degree, that is, all nodes of which have finite degree.
(We consider indeed infinite (i-)trees of bounded degree, but this restriction does
not matter for the definitions to come.) The breadth-first traversal of such an
ordered (i-)tree defines a total ordering of its nodes.

Convention. The set of nodes of an (i-)tree is always the set N of the non-
negative integers.

With this convention, the root is 0 and n is the (n+1)-th node visited by the

1This convention is sometimes taken when implementing tree-like structures (for instance
in the unix/linux file system).
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traversal. For n,m in N, we write

n−→
T
m

whenever m is a child of n in T . We denote by d(n) the degree of the node n.

2.2. Signatures of trees

We call signature any infinite sequence s = s0s1s2 · · · of non-negative inte-
gers. Whenever the signature s is obvious from the context, we simply denote
by Sj , for every integer j, the partial sum of the j first letters of s:

∀j ∈ N Sj =

j−1∑
i=0

si ,

that is, S0 = 0 , S1 = s0 and more generally Sj = Sj−1 + sj−1 for every j > 0.

Definition 1. A signature s = s0s1s2 · · · is valid if the following holds:

∀j ∈ N Sj+1 > j+1 . (1)

In particular, the validity of s implies that s0 is greater than, or equal to, 2.

Definition 2.
(i) The breadth-first signature or, for short, the signature, of an i-tree I is

the sequence s = s0s1s2 · · · of the degrees of the nodes of the i-tree I:

∀i ∈ N si = d(i) .

(ii) The breadth-first signature of a tree T is the signature of the corresponding
i-tree.

Figure 1 shows both the tree and the i-tree the signature of which is 3ω .
Valid signatures are in bijection with infinite i-trees of finite degree, as expressed
by the next proposition.

Proposition 3.
(i) Let s = s0 s1 s1 · · · be a valid signature. There exists a unique i-tree Is

whose signature is s: the i-tree such that every node n has sn children,
the sn nodes of the interval

{
Sn, Sn+1, . . . , Sn+1−1

}
.

(ii) The signature of any infinite (i-)tree of finite degree is valid.

Proof. The proof of (i) takes essentially the form of a procedure that generates
an i-tree from a valid signature s = s0s1s2 · · · . It maintains two integers:
the node n to be processed and the number m of nodes created so far, both
initially set to 0. At step (n+1) of the procedure, sn nodes are created, namely
the nodes m,m+1, . . . , (m+ sn − 1), and sn edges are created, all with starting
point n, and one for each of these new nodes as end point. Then n is incremented
by 1, and m by sn.
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This procedure indeed describes an i-tree. The first node created is 0 and
the first arc created is the loop 0 −→ 0 on the root. It is verified by induction
that at every step, m is equal to Sn. The initial conditions (n = m = 0) indeed
satisfies this equality since S0 is an empty sum.

The validity of s ensures that at the end of every step of the procedure n < m
holds (but not at the beginning of the first step where n = m = 0). It follows
that every node is strictly larger than its father, but for the root, whose father
is itself.

(ii) Let I be an infinite i-tree and s = s0s1s2 · · · its signature; Sn is the
number of children of the first n nodes of I. If s is not valid, the smallest
integer j for which Equation (1) does not hold is such that Sj = j, in which
case the set of the children of the j first nodes is of cardinal j, hence I has j
nodes and is finite.

Figure 2 shows the first eight steps of the generation process applied to the
signature s1 = (321)ω. A slightly larger initial part of the resulting infinite
i-tree Is1 together with a labelling is shown in Figure 3.

2.3. Labelled signatures of labelled trees

In our framework, alphabets are totally ordered. In the case of alphabets of
digits, the natural order is of course implicitly used. A word w = a0a1 · · · ak−1

is increasing if a0 < a1 < · · · < ak−1. As usual, the length of a finite word w is
denoted by |w|.

A labelled tree T, or i-tree I, is an (i-)tree every arc of which holds a label
taken in an alphabet A. Since both A and T (or I) are ordered, the labels on
the arcs have to be consistent with this two orders: two arcs originating from
the same node n must be labelled by two letters whose order is the same as the
endpoints of the arcs or, more intuitively, an arc to a greater child is labelled
by a greater letter. For n,m in N, and a in A,we write

n
a−−→
I
m (2)

whenever m is a child of n in I and the arc from n to m holds the label a.
The labelling λ = λ0λ1λ2 · · · of a labelled i-tree I (labelled in A) is an

infinite word of Aω, the sequence of the labels of the arcs of I visited in a
breadth-first traversal:

∀m ∈ N λm is the label of the unique arc incoming to the node m in I .

It follows that λ0 is the label of the loop on the root of I.
As it is an infinite sequence of non-negative integers, a signature s naturally

determines a factorisation of any other infinite word λ: λ = w0w1w2 · · · by
the condition that |wn| = sn for every n in N (and thus wn = ε if sn = 0).

Definition 4. Let s be a signature. An infinite word λ in Aω is consistent
with s if the factorisation λ = w0w1w2 · · · determined by s has the property
that every wn is an increasing word.
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Figure 2: The first eight steps of the generation of I(321)ω
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A pair (s,λ) of infinite words is a valid labelled signature if s is a valid
signature and if λ is consistent with s.

A simple and formal verification yields the following.

Proposition 5. A labelled i-tree I uniquely determines a valid labelled signature
and conversely any valid labelled signature (s,λ) uniquely determines a labelled
i-tree I(s,λ) whose labelled signature is precisely (s,λ).
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Figure 3: The labelled i-tree I(s1,λ1) where s1 = (321)ω and λ1 = (012.12.1)ω

Figure 3 shows the labelling of the i-tree whose signature is s1 = (321)ω by
the infinite periodic2 word λ1 = (012 .12 .1)ω. (This is of course a very special
labelling: labellings consistent with s do not need to be periodic, but periodic
words are the easiest cases of finitely defined infinite words.)

2.4. Labelled signatures of languages

The branch language of a labelled tree is the set of words that label all paths
from the root to every node of the tree. It is a prefix-closed language. Conversely,
every prefix-closed language over a totally ordered alphabet uniquely defines a
labelled ordered tree.

The branch language of a labelled i-tree is a language of a special form that
we call padded. The most common example of a padded language is given by the
writings of the integers in (an integer) base p. The representation of an integer

2The dots in the period are written to make obvious the factorisation of the labelling λ1

determined by the signature s1.
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is a word over the alphabet JpK = {0, 1, . . . , p− 1} that does not begin with a 0
(and the set of representations is not a padded language). But there are cases
where one wants to have the possibility to write a number differently. For the
addition of two numbers for instance, it is convenient to have representations of
the same length, and the shorter one is prefixed with the adequate numbers of 0’s
to match with the longer one. It is currently said that the shorter representation
is padded with 0’s.

The branch language K of an i-tree has clearly the property that any word
of K can be prefixed by an arbitrary number of the label of the loop (on the
root) and still be in K. The label of the loop of an i-tree is called padding
letter. The notion of padded language can be given a purely language-theoretic
definition as follows.

Definition 6. Let A be a (totally ordered) alphabet and let a be a letter in A.
A language K over A is said to be a-padded if the following conditions hold:

(i) u ∈ K ⇔ au ∈ K ;
(ii) If bu is in K, with b in A, then b is not smaller than a.

A language is padded if it is a-padded for some letter a.

If a language is padded, it is a-padded for a unique a: the second condition
of Definition 6 implies that if K is both a-padded and a′-padded, then a = a′.

Notation. A padded language is written either as a∗L, or as L̂ if the padding
letter does not need to be specified; in both cases L is then implicitly defined as
the set of the words of the padded language which do not start with the padding
letter.

It is easy to verify that if I is a labelled i-tree and T the corresponding
tree, then the branch language of I is a padded language L̂ where L is the
branch language of T. Our notation transfers at the level of branch languages
the correspondence between trees and i-trees.

To some extent, there is no difference, between a labelled (i-)tree and the
prefix-closed language of its branches. We may thus speak of the labelled signa-
ture, and of the signature, of a prefix-closed language and take the corresponding
notation: the branch language of a tree Tx (resp. an i-tree Ix), for some in-

dex x, is denoted by Lx (resp. L̂x). Proposition 5 may then be rephrased in
the following way.

Proposition 7. A prefix-closed padded language L̂ uniquely determines a la-
belled i-tree and hence a valid labelled signature, the labelled signature of L̂ and
conversely any valid labelled signature (s,λ) uniquely determines a labelled i-

tree I(s,λ) and hence a prefix-closed padded language L̂(s,λ), whose signature is
precisely (s,λ).

Remark 8. Any language L over a totally ordered alphabet A can be made
padded by adding a new letter # to A and by setting # smaller than all letters
in A. We then consider K = #∗L instead of L and L is rational if and only if
so is K.

9



Remark 9. A very ‘simple’ tree may produce an artificially ‘complex’ language
when paired with a ‘complex’ labelling. For instance, the infinite unary tree may
be labelled by an infinite word whose prefixes form a non-recursive language.
Therefore, any result relative to languages defined by signatures will always
require some hypothesis to constrain the labelling. The notion of periodic la-
belling as in the example shown in Figure 3 or s-morphic labelled signature
defined in the next Section 3 are examples of such hypotheses.

2.5. Trees, languages and abstract numeration systems

The identification between a prefix-closed language L over a totally ordered
alphabet and the ordered labelled tree TL whose branch language is L (and
whose set of nodes is N) is very close to the notion of Abstract Numeration
Systems (ANS) introduced by Lecomte and Rigo (cf. [8, 13]). In this setting,
the language L over the totally ordered alphabet A is ordered by the trace of the
radix order over A∗ and — since it is meant to define a numeration system —
the representation of an integer n in this system, also called the L-representation
of n and denoted by 〈n〉L, is the (n+1)-th word of L in the radix order.

This notion generalises the situation in classical numeration systems. Let
us take for instance the numeration in base 3. The usual way for defining the
representation of integers in that system is to define an evaluation function
π3 : J3K∗ → N by the following: if w = dkdk−1 · · · d1d0 is a word of length k+1,
then

π3 (w) = π3 (dkdk−1 · · · d1d0) =

k∑
i=0

di3
i . (3)

Note that in this case, it is convenient to have the digits indexed from right to
left.

As said above, every integer n is uniquely represented by a word 〈n〉3
of J3K∗ = {0, 1, 2}∗ which does not begin with a 0, that is, the set L3 of in-
teger representations in base 3 is defined by

L3 = {〈n〉3 | n ∈ N} = {1, 2}{0, 1, 2}∗ ∪ {ε}

(with the convention that the integer 0 is represented by ε rather than by the
digit 0, which suits us better). It then turns out that 〈n〉3 is the (n+1)-th
word of L3 in the radix order, that is, the representation of n in base 3 coin-
cides with the representation of n in the ANS defined by L3 over the ordered
alphabet {0, 1, 2}:

∀n ∈ N 〈n〉3 = 〈n〉L3
.

On the other hand, since TL is visited by a breadth-first search, the (n+1)-th
node of TL — labelled with n — is reached from the root by the (n+1)-th word
— in the radix order — of the branch language of TL, that is, L itself (under
the hypothesis that L is prefix-closed, which is necessary for the identification
between L and TL).

These two descriptions show that considering a prefix-closed language over
an ordered alphabet as an ANS or as the branch language of a labelled ordered
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tree are two ways of expressing the concept, namely the radix order over the lan-
guage. The similarity between the two notions is further shown in the following
equation

∀n ∈ N 0
〈n〉L−−−−→
TL

n , (4)

which implies

∀n,m ∈ N , ∀a ∈ A 〈n〉La = 〈m〉L ⇐⇒ n
a−−→
TL

m . (5)

3. S-morphic signatures

Now that the general framework of signature is set up, we may turn to
the case of rational padded languages. We begin with the definition of the
folding automaton morphism between a rational i-tree and the finite automaton
that accepts its branch language. We then characterize the signature of these
languages in terms of fixed point of iterated (word) morphisms. In the last two
sections we show that the labelling does not really matter and we consider the
special case of ultimately periodic signatures.

3.1. Finite automata and rational padded languages

For the terminology, notation and basic definitions on finite automata and
rational (or regular) languages (and transducers in the forthcoming sections)
we essentially follow [14] (cf. also [15]): a deterministic automaton A over A∗

is written A = 〈Q,A, δ, i, F 〉 where Q is the set of states, A the alphabet, δ the
transition function, i the initial state and F the set of final states. For all p
in Q and a in A, we write

p
a−−→
A

q (6)

if δ(p, a) = q. The transition function δ is extended to Q×A∗ and it is convenient
to write δ(i, w) = i · w for w in A∗. A word w of A∗ is accepted (or recognised)
by A if i · w ∈ F . The language L(A) accepted (or recognised) by A is the set
of words accepted (by A).

All automata we deal with are finite and deterministic — and we thus call
them simply automata — but the infinite trees and i-trees may also be seen as
infinite (deterministic) automata, with N as set of states and where the root 0
is the unique initial state and all nodes are final. The writing (2) is then consis-

tent with (6) and the language L̂ (resp. L) is accepted by the ‘automaton’ IL
(resp. TL).

An automaton morphism ϕ from an automaton A = 〈Q,A, δ, i, F 〉 to an
automaton B = 〈R,A, η, j,G 〉 is a map ϕ : Q→ R such that

(i) ϕ(i) = j,

(ii) ϕ(F ) = G, and

(iii) ∀p, q ∈ Q , ∀a ∈ A p
a−−→
A

q =⇒ ϕ(p)
a−−→
A

ϕ(q) .

The morphism ϕ is a covering if moreover
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(iv) ϕ−1(G) = F , and

(v) ∀p, q ∈ Q , ∀a ∈ A ϕ(p)
a−−→
A

ϕ(q) =⇒ p
a−−→
A

q .

The definition of covering is simpler here than in the general case (cf. [14]) since
we consider deterministic automata only. Obviously, if ϕ : A → B is a covering
then L(A) = L(B).

If a padded language L̂ = a∗L is a rational language, then its minimal au-
tomaton AL̂ = 〈Q,A, δ, i, F 〉 has the property that the initial state i bears a

loop whose label is a (since Definition 23(i) implies a−1K = K) and a is the
smallest of all labels of transitions outgoing from i (as a consequence of Defini-
tion 23(ii)). By metonymy and for conciseness, we call padded an automaton
with such a property and the language accepted by a padded automaton is a
padded language.

If a rational language L is prefix-closed, then any trim automaton A that
accepts L has the property that every state is final and conversely an automaton
every state of which is final (is trim if accessible and) accepts a prefix-closed
language. For conciseness and by metonymy again, we call prefix-closed an
automaton with such a property.

Let us note that any labelled i-tree IL may bee seen as an infinite prefix-
closed padded automaton which accepts L̂ and TL as an infinite prefix-closed
automaton which acccepts L.

Proposition 10. Let A = 〈Q,A, δ, i, Q 〉 be a prefix-closed padded automa-

ton, L̂ = L(A) the padded language it accepts and IL the associated i-tree.
Let ϕA : N→ Q be the function that maps every node n of IL to the state of A
reached by the reading of 〈n〉L:

∀n ∈ N ϕA(n) = i · 〈n〉L .

Then, ϕA is a covering from IT onto A (which we call the folding morphism
on A).

Proof. Since ε = 〈n〉L, ϕ(0) is the initial state i, conditions (ii) and (iv) follow
from the fact that both IL and A are prefix-closed and conditions (ii) and (iv)
both follow from Equation (5):

∀n,m ∈ N , ∀a ∈ A n
a−−→
IL

m ⇐⇒ ϕ(n)
a−−→
A

ϕ(m) . (7)

Indeed, IL is the partial unfolding of the automaton A, partial because the
loop i

a−−→
A

i is not unfolded.

Remark 11. Let A = 〈Q,A, δ, i, F 〉 be a padded automaton that accepts
the padded language a∗L. It is not true that suppressing the loop i

a−−→
A

i

yields an automaton that accepts L. The latter property holds only if the loop
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suppression yields a standard automaton, that is, an automaton in which there
is no transition incoming to the initial state. This is not always the case, as
witnessed for instance by the examples given in Figures 5(a) and 5(b) later on.

3.2. Automatic and morphic words

The study of the relationship between morphic words and automata goes
back to Cobham (in [7], cf. Theorem 14 below) and has been developed by Rigo
and Maes (in [3], cf. Theorem 15 below). These results require some further
definitions on automata and substitutions before being stated. We follow [16]
for the terminology and basic definitions on substitutions which we rather call
morphisms in order to have a better consistency with the whole field of automata
theory.

Automatic words are built via automata with final function, morphic words
via prolongable morphisms. We first recall the classical instance of this equiva-
lence in the case of p-automatic words and p-uniform morphic words. We then
state the equivalence of these two generating devices. The classic reference for
automatic words is the treatise of Allouche and Shallit [17]. We only recall what
is necessary to set up the link with the notion of signature.

3.2.1. Automata with final function and automatic words

An automaton with final function A is an automaton endowed with a func-
tion from the set of final states to a set D called also alphabet here. An automa-
ton with final function is then specified by a classical deterministic automaton
A = 〈Q,A, δ, i, F 〉 together with a total function f : F → D. Such an au-
tomaton realises a map from A∗ to D, denoted by |||A|||, whose domain is L(A)
and defined by |||A||| (w) = f(i · w) if i · w belongs to F and |||A||| (w) is undefined
otherwise.

Let p > 1 be an integer that will be considered as a base. And let D be finite
alphabet. An infinite word s = s0s1s2 · · · of Dω is said to be p-automatic3 if
there exists an automaton A over JpK∗ with final function f in D such that for
every n in N, |||A||| (〈n〉p) = sn , that is, if the reading of the representation of
the integer n in base p leads A to a state that is mapped to sn by f .

3.2.2. Prolongable morphisms and morphic words

Let A and D be two alphabets. A letter-to-letter morphism from A∗ to D∗

is a morphism that maps every letter of A onto a letter of D (sometimes called
a strictly alphabetic morphism). A continuous morphism from A∗ to D∗ is a
morphism that maps no letter of A onto the empty word of D∗ (sometimes
called a non-erasing morphism). Let ‘a’ be a letter in A. A morphism (an
endomorphism indeed) σ : A∗ → A∗ is said to be prolongable on ‘a’ if ‘a’ is the
first letter of σ(a) and if the length of the words of the sequence (σn(a))n∈N

3It is usually said that a sequence is p-automatic rather than an infinite word, cf. the
eponymous work [17] already cited. We use the latter to be consistent with the definitions of
signature and labelling.
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tends to infinity. In the sequel, we say that a morphism is prolongable without
mentioning on ‘a’ and this letter is thus kept by convention for this usage (and
we enclose it between quotes in order to improve readability).

If σ is prolongable, there exists by definition a non-empty word u such
that σ(a) = au and the sequence (σn(a))n∈N converges to the infinite word

σω(a) = auσ(u)σ2(u) · · · . (8)

Any infinite word of this form σω(a) for a certain prolongable morphism σ is
called a pure morphic word.

Definition 12. An infinite word s is a morphic word if it is the image of a
pure morphic word by a morphism, that is, if s = f(σω(a)), where σ : A∗ → A∗

is a prolongable morphism and f : A∗ → D∗ a morphism.

Without loss of generality, one can take more restrictive hypotheses to gen-
erate morphic words.

Lemma 13 ([18], cf. also [17]). Let s be a morphic word of Dω. Then, there
exist an alphabet A, a continuous prolongable morphism σ : A∗ → A∗ and a
letter-to-letter morphism f : A∗ → D∗ such that s = f(σω(a)) .

3.2.3. The coincidence between automatic and morphic words

Let p > 1 be an integer that will be considered as a base. A morphism
σ : A∗ → A∗ is said to be p-uniform if the image by σ of every letter of A is a
word of length p. A morphic word s is p-uniform if there exist a letter-to-letter
morphism f and a p-uniform prolongable morphism σ such that s = f(σω(a)) .
Cobham’s result reads then:

Theorem 14 ([7]). Let p > 1 be an integer. An infinite word is p-automatic if
and only if it is a p-uniform morphic word.

The notion of rational abstract numeration system (rational ANS) has al-
lowed Rigo and Maes to generalise this correspondence beyond the hypothesis
of p-uniformity.

Let L be a rational language over a (totally ordered) alphabet A that will
be considered as an ANS (see Section 2.5). Along the same line as the definition
of p-automatic words, an infinite word s = s0s1s2 · · · of Dω is said to be L-
automatic if there exists an automaton A over A with final function in D such
that for every n in N, |||A||| (〈n〉L) = sn , that is, if A accepts L — hence the
hypothesis that L is rational — and the reading of the L-representation of the
integer n leads A to a state which is mapped to sn by f . The generalisation of
Theorem 14 reads then:

Theorem 15 ([3]). An infinite word s is L-automatic for a certain rational
ANS L if and only if s is a morphic word.

14



3.3. S-morphic signatures

If the alphabetD above is an alphabet of non-negative digits, the p-automatic
words and the L-automatic words are infinite words of non-negative integers,
hence signatures. We now define signatures that are morphic words of a special
form.

Definition 16. Let σ : A∗ → A∗ be a prolongable morphism.
(i) We denote by fσ : A∗ → D∗ the letter-to-letter morphism defined by

∀b ∈ A fσ(b) = |σ(b)|

(D is thus an alphabet of digits). The morphic word fσ(σω(a)) is called
an s-morphic signature.

(ii) Let B be an ordered alphabet. A morphism g : A∗ → B∗ is consistent
with σ if, for every b in A,

|g(b)| = |σ(b)| = fσ(b) , and g(b) is increasing . (9)

The pair
(
fσ(σω(a)), g(σω(a))

)
is called an s-morphic labelled signature, and

also denoted by (σ, g) for convenience.

If σ is a prolongable morphism, then for any prefix v of σω(a), |σ(v)| > |v|
and then it holds:

Proposition 17. An s-morphic signature is valid, and so is an s-morphic la-
belled signature.

The morphism fσ is entirely determined by σ and the set of s-morphic sig-
natures is strictly contained in the one of morphic words; on the other hand, it
is incomparable with the set of pure morphic words (cf. Remark 32).

Example 18. The labelled signature (s1,λ1) of Figure 3 with s1 = (321)ω

and λ1 = (012121)ω is an s-morphic signature. Indeed, s1 = fσ1(σ1
ω(a)) where

σ1 : {a, b, c}∗ → {a, b, c}∗ is defined by:

σ1(a) = abc , σ1(b) = ab and σ1(c) = c

and λ1 = g1(σ1
ω(a)) where g1 : {a, b, c}∗ → {0, 1, 2}∗ is the morphism consistent

with σ defined by:

g1(a) = 012 , g1(b) = 12 and g1(c) = 1 .

An interpretation of the padded language L̂(σ1,g1) is given in Example 29.

Example 19 (The Fibonacci signature). The Fibonacci word is the pure mor-
phic word σ2

ω(a) defined by σ2(a) = ab and σ2(b) = a:

σ2
ω(a) = abaababaabaab · · · .
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The s-morphic signature defined by σ2 is

fσ2

(
σ2
ω(a)

)
= 2122121221221 · · ·

Let g2 be the morphism consistent with σ2 defined by g2(a) = 01 and g2(b) = 1 :

g2
(
σ2
ω(a)

)
= 01.0.01.01.0.01.0.01.01.0.01.01.0 · · ·

It is remarkable that the branch language L̂(σ2,g2) of the i-tree I(σ2,g2) shown in
Figure 4 is the language of the representations of the integers in the Fibonacci
numeration system.
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Figure 4: The labelled i-tree I(σ2,g2)

We may now state our characterisation, or serialisation, result.

Theorem 20. A prefix-closed padded language is rational if and only if its
labelled signature is s-morphic.

This statement is close to be a consequence of Theorem 15, but not quite:
it is in some sense more precise. Let L be a rational prefix-closed language and
let A be a trim automaton accepting L, every state of which is thus final. If A
is endowed with the final function that maps every state to its outgoing degree,
then the L-automatic word it realises is precisely the signature sL of L and from
Theorem 15 follows then that sL is a morphic word. Similarly, the labelling λL
of L may be shown to be L-automatic, hence morphic by Theorem 15 again.
However, we have to go from morphic to s-morphic and moreover, it is the
pair (sL,λL) that is to be shown s-morphic, that is, generated by the same
prolongable morphism (cf. Definition 16). The proof of Theorem 20 requires a
more accurate construction.
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3.4. The correspondence between automata and s-morphic signatures

The core of the proof of Theorem 20 lies indeed in a statement found also
in the Rigo and Maes paper [3] and restated here as Lemma 25. It is based
on two opposite constructions described in Definitions 21 and 22 that build an
automaton from an s-morphic labelled signature and conversely.

Definition 21. Let (σ, g) be an s-morphic labelled signature where σ : A∗ → A∗

is prolongable on ‘a’ and g : A∗ → B∗ a morphism consistent with σ. This sig-
nature defines the automaton A(σ,g) over B∗:

A(σ,g) = 〈A,B, δ, a, A 〉 ,

with A as set of states and ‘a’ as initial state and whose transitions are defined
in the following way: from every state b, there is a transition to every letter
of σ(b) and the transition to the k-th letter c of σ(b) is labelled by the k-th
letter y of g(b):

b
y−−−−→

A(σ,g)

c .

Since g(b) is an increasing word for every b, A(σ,g) is deterministic. Since σ is
prolongable on ‘a’ and g(a) an increasing word, A(σ,g) is a padded automaton.

Figure 5(a) shows the automaton associated with the Fibonacci signature,
Figure 5(b) the one associated with (s1,λ1) (cf. Example 18).

a b

0

1

0

(a) The automaton A(σ2,g2)

a

b

c

1

1

2

0
2

1

(b) The automaton A(σ1,g1)

Figure 5: Two automata built from an s-morphic signature

Notation. For every state p of an automaton A = 〈Q,B, δ, i, Q 〉, we write kp
for the number of transitions going out of p minus 1. For instance, in the
automaton A(σ,g) of Definition 21, kb = |σ(b)| − 1 = |g(b)| − 1 for every b in B.
We take this convention for the easiness of writing, as a consequence of the fact
that the first letter of a word is indexed by 0, the k-th by k−1, and we rather
not have kp−1 written as an index ( cf. Equation (10)).

Definition 22. Let B an ordered alphabet and A = 〈Q,B, δ, i, Q 〉 a padded, de-
terministic and prefix-closed automaton over B. Two morphisms σA : Q∗ → Q∗

and gA : Q∗ → B∗ are associated with A in the following way. For every state p
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in Q, let p
b0−−→ q0, p

b1−−→ q1, . . . , p
bkp−−−→ qkp be the (kp+1) transitions going

out from p, listed in the increasing order of the labels: b0 < b1 < · · · < bkp . The
values of σA and gA on p are then defined by:

σA(p) = q0 qi · · · qkp and gA(p) = b0 b1 · · · bkp . (10)

Since A is padded, the loop i
b0−−→ i is the first in the list of transitions outgoing

from ‘i’ and σA is prolongable on ‘i’.

An easy and formal verification shows that the constructions described in
Definitions 21 and 22 are opposite of each other:

Proposition 23.
(i) If B is a trim prefix-closed padded automaton, then A(σB,gB) = B.
(ii) If (τ, h) is an s-morphic labelled signature, then σA(τ,h)

= τ and gA(τ,h)
= h.

Theorem 20 is the direct consequence of the following proposition which
lifts the correspondence between automata and the signature stated in Propo-
sition 23 to a correspondence between automata and the languages and which
also show the consistency of Definitions 21 and 22.

Proposition 24.
(i) The signature of the language accepted by a padded automaton A is (σA, gA).
(ii) The automaton A(σ,g) associated with the s-morphic (valid) signature (σ, g)

accepts the padded language L̂(σ,g).

The core of the proof of the lifting consists in the description of the rela-
tionship between the computations in an automaton A and the infinite word
generated by σA. It could be found in [3] under a different formulation.

Lemma 25 ([3]). Let A = 〈Q,A, δ, i, Q 〉 be a padded automaton, L̂ the padded
language it accepts and σA the associated prolongable morphism on ‘i’. Let
σ ω
A (i) = q0 q1 q2 · · · be the pure morphic word of Qω generated by σA. Then,

for every integer n, qn is the state of A reached after the reading of the repre-
sentation of n in the ANS L:

∀n ∈ N qn = i · 〈n〉L .

Proof. Let ϕA : IL → A be folding morphism on A which we rather write ϕ
here to lighten the notation. Proving the lemma amounts to establish

σA
ω
(
ϕ(0)

)
= ϕ(0)ϕ(1)ϕ(2) · · · (11)

Since ϕ is an automaton morphism, if m, (m + 1), . . . , (m + k) are all the
successors of n in IL then

σA
(
ϕ(n)

)
= ϕ(m)ϕ(m+ 1) · · · ϕ(m+ k) . (12)

Let us establish by induction on d the following claim.
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Claim 25.1. For every integer d

σA
d
(
ϕ(0)

)
= ϕ(0)ϕ(1)ϕ(2) · · · ϕ(m)

where m is the greatest node of IL at depth d.

Applying the previous Equation (12) to the root 0 yields

σA
(
ϕ(0)

)
= σA(i) = iu with u = ϕ(1)ϕ(2) · · · ϕ(k0)

where 1, 2, . . . , k0 are all the nodes at depth 1 in IL. The same equation applied
to every n in {1, 2, . . . , k0} implies then that

σA(u) = σA
(
ϕ(1) . . . ϕ(k0)

)
= ϕ(r)ϕ(r + 1) · · ·ϕ(r + s) ,

where r, (r+1), . . . , (r+s) are all the nodes at depth 2 in IL. The same argument
used inductively shows that the following equation holds for every integer d:

σA
d(u) = ϕ(r)ϕ(r + 1) · · ·ϕ(r + s) ,

where r, (r + 1), . . . , (r + s) are the nodes at depth (d+1) in IL. The whole
claim follows from the previous equation, since for every integer d, σd(i) is equal
to iuσ(u)σ2(u) · · · σd−1(u). And Equation (11) is in turn a direct consequence
of the claim, hence the lemma holds.

Proof of Proposition 24. (i) Since the folding morphism is a covering, the
degree of the node n in IL is equal to the out-degree of ϕ(n) in A. Besides, it
follows from Definition 22 that fσA maps every state of A to its outgoing degree,

hence from Lemma 25 that the signature of IL, hence of L̂, is fσA(σA
ω(i)).

Similarly, it follows from Definition 22 that gA maps every state of A to the
concatenation of its outgoing labels taken in increasing order, hence that the
labelling of IL is gA(σA

ω(i)).

(ii) We write A = A(σ,g) and L̂ the language it accepts. It follows from (i)

that the labelled signature of L̂ is (σA, gA), which is equal to (σ, g) from Propo-

sition 23(ii), hence that L̂ = L̂(σ,g) since labelled signatures and languages are
in bijection (Proposition 5).

For further use (in proof of Theorem 39, Section 4) we give a more precise
version of Lemma 25.

Proposition 26. Let (σ, g) be an s-morphic (valid) signature and IL the i-tree
it generates. Let n be an integer, w the prefix of length (n+1) of σω(a) and m
the greatest successor of n in IL. Then, σ(w) is the prefix of length (m+1)
of σω(a).

Proof. Let d be the depth of the node n, let n′ and m′ be the greatest nodes
of IL at depth (d−1) and d respectively. It then holds n′ < n 6 m′ < m and m
is at depth (d+1). The same argument as the one used for proving Claim 25.1
yields

σ
(
ϕ(0)ϕ(1) · · · ϕ(n′)

)
= ϕ(0)ϕ(1) · · · ϕ(m′)
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and it remains to show that

σ
(
ϕ(n′ + 1)ϕ(n′ + 2) · · · ϕ(n)

)
= σ

(
ϕ(m′ + 1)ϕ(m′ + 2) · · · ϕ(m)

)
. (13)

The nodes (n′ + 1), (n′ + 2), . . . , n are the smallest (n − n′) nodes at depth d,
hence their successors are the smallest j nodes at depth (d+1), for some in-
teger j. Since (m′+1) is the smallest node at depth (d+1) and m is the
maximal successor of n, the successors of the nodes (n′ + 1), (n′ + 2), . . . , n
are (m′ + 1), (m′ + 2), . . . ,m.

Applying Equation (12) to every node (n′ + 1), (n′ + 2), . . . , n successively
then yields Equation (13) and concludes the proof.

3.5. The unimportance of labelling

By definition, the language generated by the s-morphic signature (σ, g) de-
pends upon the two parameters σ and g. The intuition is that it depends
‘heavily’ on σ and ‘lightly’ on g or, to state it in another way, the languages
generated by two (valid) signatures (σ, g) and (σ, h) are ‘very similar’. Let us
formalise this notion before we give the statement that applies to our case.

Let L̂ and K̂ be two padded languages over A∗ and B∗ respectively. We
call conversion function from L to K the function χ : A∗ → B∗ whose domain
is L and such that for every integer n, χ (〈n〉L) = 〈n〉K (and hence its image
is K). The ‘complexity’ of the function χ is a good measure for the similarity
between L and K, both considered as ANSs: the simpler the function, the closer
the ANSs. We will not engage into a theory for the complexity of word functions.
It will however easily be accepted that functions realised by finite automata are
among the simplest, that no function (but the identity) will be simpler than
a strictly alphabetic, that is, letter-to-letter, morphism. It is known from a
theorem of Cobham [19] that the conversion between the two (very ‘simple’)
languages {1}{0, 1}∗ and {1, 2}{0, 1, 2}∗, that is, the representations of integers
in base 2 and in base 3, is not a function realised by a finite automaton. On
the other hand, the conversion between the representations of integers in base 4
and in base 2 is a morphism (0 7→ 00, 1 7→ 01, etc.) followed by the removal of
a possible leading zero.

Automata that realise (word) functions are called transducers: they are
automata whose transitions are labelled with pairs of words. We follow [14]
(and [15]) for definitions on transducers and give here as few definitions as
possible.

A transducer is letter-to-letter if the labels are pairs of letters, that is, taken
in a product alphabet A×B. A letter-to-letter transducer over (A×B)∗ is
sequential if the projection on A yields a deterministic automaton over A∗; it is
pure sequential if moreover every state is final.4 Two automata or transducers
are said to be graph-isomorphic if their underlying graphs (obtained by erasing
the transition labels) are isomorphic.

4Letter-to-letter pure-sequential transducers are also sometimes called Mealy machines.
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Pure-sequential letter-to-letter transducers over (A×B)∗ realise the partial
functions from A∗ to B∗ that can be considered as the simplest next to strictly
alphabetic morphisms. The following statement shows that the actual labelling
of a rational ANS is not really important and was established in [20] in a more
general framework.

Proposition 27 ([20]). Let (σ, g) and (σ, h) be two s-morphic (valid) signatures.
The conversion function from L(σ,g) to L(σ,h) is realised by a letter-to-letter
pure-sequential transducer T that is graph-isomorphic to A(σ,g) and A(σ,h).

Proof. Let σ : A∗ → A∗ be a prolongable morphism, and let g : A∗ → B∗

and h : A∗ → C∗ be two morphisms consistent with σ, that is, according to
Definition 16, such that

∀a ∈ A |σ(a)| = |g(a)| = |h(a)| .

We then define the morphism t : A∗ → (B × C)∗ by

∀a ∈ A t(a) = (b0, c0)(b1, c1) · · · (bk, ck)
where g(a) = b0 b1 · · · bk ;

and h(a) = c0 c1 · · · ck .

The automaton A(σ,t) is then a prefix-closed automaton whose alphabet
is (B × C), that is, a letter-to-letter transducer T every state of which is final.
This identification corresponds to the one that maps the free monoid (A×B)∗

to the submonoid of A∗×B∗ generated by A×B: sequences of pairs of letters
are mapped onto pairs of words of equal lengths.

The definition of T as the automaton A(σ,t) associated with (σ, t) by the
construction described in Definition 21 has several outcomes.

Fiorst, T is graph-isomorphic to any other automata associated with σ, in
particular with A(σ,g) and A(σ,h).

Second, if a
(b,c)−−−−→
T

a′, then a′ is the i-th letter of σ(a) and (b, c) the i-th

letter of t(a) for a certain i, from which follows that b is the i-th letter of g(a)
and c the i-th letter of h(a). Hence A(σ,g) is the underlying input automaton
and A(σ,h) the underlying output automaton of T . And then, first, T is pure

sequential, second, T maps L
(
A(σ,g)

)
= L̂(σ,g) onto L

(
A(σ,h)

)
= L̂(σ,h).

Finally, since for every a in A both g(a) and h(a) are increasing words, it

follows that T is locally increasing : for every pair of transitions a
(b,c)−−−−→
T

a′

and a
(b′,c′)−−−−−→
T

a′′ of T originating from the same state a, the following equiva-

lence holds: b < b′ ⇐⇒ c < c′. It follows by an easy induction that T preserves
the strict radix order: if T (u) = v and T (u′) = v′ then u <rad u

′ ⇐⇒ v <rad v
′.

This, combined with the previous property, implies that T realises the conver-
sion function from L(σ,g) to L(σ,h).

3.6. The case of ultimately periodic signatures

Let s = uvω = s0s1 · · · sm−1(smsm+1 · · · sm+q−1)ω be an ultimately peri-
odic signature (remember that every letter of s is a digit). We call growth ratio
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of s (or, alternatively, the growth ratio of v), and denote by gr(s), the average
of the letters of v (which is also the limit of the average of the first n letters
of s, when n tends to infinity):

gr(uvω) = gr(smsm+1 · · · sm+q−1) =
1

q

q−1∑
i=0

sm+i =
Sm+q − Sm

q
.

We treat here the case where gr(v) is an integer, that is, when the sum of the
letters of v is a multiple of its length q.

Proposition 28. Let s be an ultimately periodic (valid) signature. If the growth
ratio of s is an integer, then s is an s-morphic signature.

Proof. We first detail the proof for purely periodic signatures, as it exhibits the
core of the property.

Let s = s0 s1 s2 · · · = (s0 s1 · · · sq−1)ω be a purely periodic signature of
period q. We denote by k the growth ratio of s, that is, satisfying Sq = kq.

We consider the two alphabets JqK and JkqK. Let ϕ : JqK∗ → JkqK∗ be the
morphism defined by

∀i ∈ JqK ϕ(i) = Si (Si + 1) · · · (Si + si − 1) .

Since Si+1 = (Si + si) for every integer i, it follows immediately that

ϕ
(
01 · · · (q−1)

)
= 012 · · · (kq−1) .

Let ψ be the letter-to-letter morphism JkqK → JqK projecting the bigger
alphabet to the smaller: ∀i ∈ JkqK ψ(i) = (i mod q) . We write σ = ψ ◦ ϕ, an
endomorphism on JqK∗ which satisfies, from the previous equation, that

σ
(
01 · · · (q−1)

)
=
(
012 · · · (q−1)

)k
.

It follows that (012 · · · (q−1))ω is a fixed point of σ.
The validity of s insures that for every integer i, 0 < i 6 q, it holds Si > i,

hence the prefix w of length i of (012 · · · (q−1)) satisfies

|σ(w)| = |ϕ(w)| = |01 · · · (Si−1)| = Si > i = |w| .

it follows that σ is prolongable on 0. The s-morphic signature induced by σ
is by definition fσ

[
(012 · · · (q−1))ω

]
; since fσ(i) = |σ(i)| = si for every

integer i < q, the s-morphic signature induced by σ is (s0 s1 · · · sq−1)ω = s,
concluding the proof in the purely periodic case.

The generalisation to an ultimately periodic signature uvω is easy but less
elegant. We write j = |u| and we introduce j new letters 0, 1, . . . , j − 1 gathered
within an alphabet denoted by A.

We consider Sj , which is the sum of the letters of u, and more precisely
the euclidean division of (Sj − j) by (kq), of which we denote the quotient and
remainder respectively by Q and R:

(Sj − j) = Q(kq) +R and 0 6 R < kq .
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The word

w = 01 · · · j−1
(
012 · · · (kq−1)

)Q
012 · · · (R− 1)

is then of length Sj . The function ϕ is now a morphism A ∪ JqK→ A ∪ JkqK,
defined implicitly by:

∀i , 0 6 i < j ϕ
(
01 · · · i

)
is the prefix of length Si+1 of w ,

∀i , 0 6 i < q ϕ(i) = (R+ Vi)(R+ Vi + 1) · · · (R+ Vi + vi − 1) ,

where for all integer i, 0 6 i 6 q, Vi = (Si+j −Si) and vi = si+j (which implies
that Vi+1 = Vi + vi and Vq = kq); the integer Vi is thus the sum of the first i
letter of v.

It follows that for every integer i,

ϕ
(

01 · · · j−1
(
01 · · · (q−1)

)i)
=

01 · · · j−1
(
01 · · · (kq−1)

)Q+i
01 · · · (R−1) .

We extend the morphism ψ to A ∪ JkqK by the identity over A, thus σ = ψ ◦ ϕ
is now an endomorphism of A ∪ JqK; it then follows from the previous equation
that, for every integer i:

σ
(

01 · · · j−1
(
01 · · · (q−1)

)i)
=

01 · · · j−1
(
01 · · · (q−1)

)k(Q+i)
(0 mod q)(1 mod q) · · · (R−1 mod q) ,

hence, when i tends to infinity,

σ
(

01 · · · j−1
(
01 · · · (q−1)

)ω)
= 01 · · · j−1

(
01 · · · (q−1)

)ω
.

Similarly to the purely periodic case, the validity of the signature then ensures
that σ is prolongable (on 0).

Example 29. The signature s1 = (321)ω considered in Example 18 is purely
periodic. It is generated by the endomorphism σ1 (defined there) which cor-
responds to the construction described in the previous proof. The padded lan-
guage L̂(σ1,g1) is shown in Figure 3; it is accepted by the automaton A(σ1,g1),
shown in Figure 5(b).

Applying a result from [2] yields that this language is a language of non-
canonical representations of the integers in base 2 (that is, the growth ratio
of s1): the (n+1)-th word of L(σ1,g1) in the radix order is a word dkdk−1 · · · d0
over the (non-canonical) alphabet {0, 1, 2} and its binary value

∑k
i=0 di2

i is
equal to n.

Example 30. The ultimately periodic signature s3 = 311810(321)ω is s-
morphique, generated by the endomorphism σ3 of

{
0, 1, 2, 3, 4, 5, 0, 1, 2

}
defined
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as follows.
prefix of s3

↓
σ3(0) = 012 ( fσ3

(0) = 3 )
σ3(1) = 3 ( fσ3

(1) = 1 )
σ3 (2) = 4 ( fσ3(2) = 1 )
σ3(3) = 5 012 012 0 ( fσ3

(3) = 8 )
σ3(4) = 1 ( fσ3

(4) = 1 )
σ3(5) = ε ( fσ3(5) = 0 )

σ3(0) = 201 ( fσ3
(0) = 3 )

σ3(1) = 20 ( fσ3
(1) = 2 )

σ3(2) = 1 ( fσ3(2) = 1 )

The language generated by σ3 and the appropriate morphism g3 is also a
language of non-canonical representations of the integers in base 2.

Remark 31. It can be shown that a language with an ultimately periodic signa-
ture s, the growth ratio of which is not an integer, cannot be a rational language.
Hence s is not an s-morphic signature. The proof of this statement is however
more convoluted; it is the subject of another work of the authors [2].

Remark 32. It is obvious that any purely periodic word is a pure morphic
word (every letter is sent to the period). It is hardly more difficult to see that
an ultimately periodic word is also a pure morphic word. Hence an ultimately
periodic signature is a pure morphic word independently of its growth ratio.

It thus follows from the previous remark that a pure morphic signature is not
necessarily an s-morphic signature.

4. Morphic numeration systems

In this section, we use our framework to describe a family of numeration sys-
tems originally defined in a series of papers authored by Dumont and Thomas
[4, 5, 6], hence often called Dumont-Thomas numeration systems in the litera-
ture (e.g. [21]). The authors themselves spoke of numeration systems associated
with (the fixed point of) a substitution; Berthé and Rigo call them substitution
numeration systems in [22]. Since we systematically use the term of morphism
rather than substitution, we suggest to call these systems morphic numeration
systems (MNS). These systems have been considered in many developments
in the fields of numeration, symbolic dynamics, and word combinatorics (cf.
[23, 24, 25]).

In the following, we consider an alphabet B whose letters are words over
another alphabet A and the free monoid it generates. For the sake of clarity,
if u, or a0a1 · · · ak, denotes a word of A∗, the corresponding letter of B is denoted
by [u], or [a0a1 · · · ak]. Let us emphasis that a word of B∗ is not a word of A∗,
for instance the words [ε] and [ε][ε] are two different words of B∗; neither of
them is equal to the empty word (still denoted by ε) of B∗. Moreover, let us
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recall that by strict prefix of a word u, it is understood a prefix of u different
from u but that may be equal to the empty word.

Definition 33. A morphism σ : A∗ → A∗ prolongable on ‘a’ determines an
alphabet Bσ and a morphism gσ : A∗ → B ∗σ in the following way.

(i) We denote by Bσ the set of the strict prefixes of the images of the letters
of A by σ:

Bσ =
{

[u]
∣∣ u is a strict prefix of σ(b) for some b ∈ A

}
. (14)

(ii) We denote by gσ the morphism gσ : A∗ → B ∗σ which maps every letter b
of A∗ to the concatenation of all the strict prefixes of σ(b) (each one being
considered as a letter of Bσ):

∀b ∈ A gσ(b) = [u0][u1] · · · [uk−1] , where k = |σ(b)|
and, for every i, i < k, ui is the prefix of σ(b) of length i. (15)

Intuitively, gσ is a kind of ‘stuttering expression’ of σ; for instance,

if σ(a) = abccba , then gσ(a) = [ε][a][ab][abc][abcc][abccb] .

Note that gσ(b) does not contain the letter [σ(b)] (which is, a priori, not even a
letter of Bσ) and, since it contains the letter [ε], it has the same length as σ(b).
In particular, if σ(b) is the empty word, then gσ(b) is the empty word of B∗σ
(and not equal to [ε]).

If the alphabet Bσ is ordered by the trace of the radix order of A∗ on its
subset Bσ, it immediately follows from the definition of gσ itself that it holds:

Lemma 34. The morphism gσ is consistent with σ, hence the labelled signa-
ture (σ, gσ) is valid.

To lighten the writing, we denote by Lσ the language L(σ,gσ) and by 〈n〉σ the
representation of an integer n in the ANS Lσ, which is then entirely determined
by σ. The valid signature (σ, gσ) allows to build the automaton A(σ,gσ) as
described by Definition 21. This automaton, written Aσ for short, is called
the prefix automaton associated with σ. Figure 6 shows the prefix automata
associated with the substitutions σ1 and σ2 from Section 3 (cf. Examples 18
and 19).

This automaton is implicitly present as soon as the original paper [4] through
the notion of suite admissible which simulates the run of an automaton; it is
then explicitly defined as an automaton in a subsequent paper [6]. The next
statement gives a characterisation of the transitions of Aσ along the line of the
original definition.

Lemma 35. The automaton Aσ contains the transition b
[u]−−−→ c if and only

if uc is a prefix of σ(b).
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a b

[ε]

[ε]

[a]

(a) The automaton Aσ2

a

b

c

[a]

[ε]

[ab]

[ε] [a]

[ε]

(b) The automaton Aσ1

Figure 6: The prefix automata associated with two substitutions

Proof. From Definition 21, Aσ contains the transition b
[u]−−−→ c if and only if

there is an integer i such that [u] is the i-th letter of gσ(b) and c is the i-th
letter of σ(b). From Equation (15), such an i exists if and only if u = ui−1 is
the prefix of σ(b) of length (i−1) and c is the i-th letter of σ(b), hence if and
only if uc is the prefix of σ(b) of length i.

A direct consequence of this statement, used in the proof of Theorem 39, is
a relationship between labels and states in prefix automata.

Lemma 36. Let b
[u]−−−→ c be a transition of the automaton Aσ. Then, the states

reached from b by reading letters strictly smaller than [u], taken in increasing
order, form the state sequence spelled by u.

The characteristic property of morphic numeration systems requires the def-
inition of a new function.

Definition 37. Let σ : A∗ → A∗ be a prolongable morphism and Bσ the
associated (word) alphabet. The function ρσ from B ∗σ into A∗ is defined in
the following way: ρσ(ε) = ε and for every word w of B ∗σ of length (k+1),
w = [vk][vk−1] · · · [v0] , it holds:

ρσ

(
[vk][vk−1] · · · [v0]

)
= σk(vk)σk−1(vk−1) · · · σ0(v0) . (16)

Alternatively, ρσ may be defined recursively by ρσ(ε) = ε and

∀w ∈ B ∗σ , ∀v ∈ A∗ ρσ

(
w [v]

)
= σ

(
ρσ(w)

)
v . (17)

The function ρσ is the combination of a convoluted use of the substitution σ
and of the flattening map from B ∗σ to A∗ and will play the role of the evaluation
function in a numeration system. We shall see with Theorem 40 that the eval-
uation of a word w is indeed equal to |ρσ(w)|. We first illustrate this intuition
with the translation of a classical numeration system in base p into a morphic
numeration system.
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Example 38 (Base 3). Let σ3 : {a}∗ → {a}∗ be the morphism (prolongable
on ‘a’) defined by σ3(a) = aaa. We have

Bσ3 =
{

[ε], [a], [aa]
}

and gσ3(a) = [ε] [a] [aa] .

The automaton Aσ3
is shown in Figure 7. If we think of the letters of Bσ3

as
transcription of the digits 0, 1 and 2 respectively, then any word of Aσ3

∗ which
does not begin with the letter [ε] is the transcription of the representation in
base 3 of an integer n and (16) immediately yields that |ρσ3(w)| = n .

a

[ε]

[a]

[aa]

Figure 7: The automaton Aσ3

The essence of the result and construction of Dumont and Thomas may now
be expressed in the following statement.

Theorem 39. Let σ : A∗ → A∗ be a prolongable morphism on ‘a’, Aσ the prefix
automaton associated with σ, and, for every integer n, 〈n〉σ the representation
of n in the ANS Lσ. Then, ρσ (〈n〉σ) is the prefix of length n of σω(a).

This result immediately implies the original statements of Dumont and
Thomas:

Corollary 40 ([4]). Let σ : A∗ → A∗ be a prolongable morphism. For every
integer n, there exists a unique w in B ∗σ such that:

(i) w does not start with [ε],
(ii) w is accepted by Aσ,
(iii) and ρσ(w) is of length n.

Corollary 41 ([4]). Let σ : A∗ → A∗ be a prolongable morphism and w a word
of B ∗σ accepted by Aσ. If the word ρσ(w) has length n, then it is the prefix of
length n of σω(a).

Similarly, the result shown later on by Berthé and Rigo in [22] is contained
in Theorem 39.

Corollary 42 ([22]). Every morphic numeration system is a prefix-closed ra-
tional abstract numeration system.

Proof of Theorem 39. By induction on n. The theorem is verified for n = 0 :
indeed 〈0〉σ = ε hence ρσ(ε) = ε, which is the prefix of length 0 of σω(a).

Let m be a positive integer and n its predecessor, hence n < m. We show
that the statement holds for m.
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We write σω(a) = a0a1a2 · · · . From Lemma 25 follows that for every inte-
ger `, the word 〈`〉σ leads Aσ to the state a`. Let k be the smallest positive inte-
ger such that (n−k) has at least one outgoing arc and let (m−j) be the maximal
successor of (n− k); necessarily, j > 0 and (m− (j − 1)), (m− (j − 2)), . . . ,m
are all successors of n.

It follows from Lemma 36 that the letter b ∈ Bσ which labels the arc n
b−−→ m

(or, in other words, the rightmost letter of 〈m〉σ) is [u], where u is the sequence
of the states reachable from an by reading letters strictly smaller than [u], that
is:

b = [u] = [a(m−j+1)a(m−j+2) · · · am−1] . (18)

Applying Proposition 26 to (n− k) yields

σ(a0a1 · · · an−k) = a0a1 · · · am−j (19)

Since (from the definition of k) for every integer i, 0 < i < k, the node (n − i)
has no outgoing arc, the word 〈n − i〉σ reaches in Aσ the state an which then
must have no outgoing transition, hence

∀i , 0 < i < k σ(an−i) = ε . (20)

Combining Equations (18), (19) and (20) finally yields that

σ(a0a1 · · · an−1)u = a0a1 · · · am−1 . (21)

Since n is the predecessor of m, 〈m〉σ = 〈n〉σ b holds and the induction hy-
pothesis (IH) applied to n implies that ρσ(〈n〉σ) = a0a1 · · · an−1. The following
computation:

ρσ
(
〈m〉σ

)
= ρσ

(
〈n〉σ b

)
= σ

(
ρσ(〈n〉σ)

)
u from Equation (17)

= σ(a0a1 · · · an−1)u from IH applied to n

= a0a1 · · · am−1 from Equation (21)

concludes the proof.

By Theorem 20, any rational ANS has an s-morphic signature and by defini-
tion every s-morphic signature defines a MNS; Proposition 27 implies thus that
even if not every rational ANS is a MNS, it is very close to one.

Proposition 43 ([20]). Let A be a prefix-closed padded automaton that ac-

cepts the prefix-closed padded rational ANS L̂. The conversion function from L̂
to L̂σA is realised by a letter-to-letter pure-sequential transducer which is graph-
isomorphic with A.

This statement results in the idea that prefix-closed rational ANSs and MNSs
are essentially the same and have the same expressive power. To put it in
another way, every prefix-closed rational ANS is ‘equivalent’ to a MNS which
could be considered as a representative of its class.
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a

b

c

(

1, [a]
)

(

1, [ε]
)

(

2, [ab]
)

(

0, [ε]
)

(

2, [a]
)

(

1, [ε]
)

Figure 8: The transducer realising the convertion function from L̂(σ1,g1) to L̂σ1

On the other hand, MNSs have a feature that ANSs are missing in general:
the existence of an evaluation function. Given an ANS L̂ ⊆ A∗, there is no
natural way to attribute values to the words of A∗ that do not belong to L̂
whereas given a prolongable morphism σ any word of B ∗σ may be evaluated
as |ρσ(w)|. In a MNS σ, the evaluation function attribute to each letter [ui] of a
word [uk] [uk − 1] · · · [u0] the value |σi(ui)| that depends both on the letter [ui]
itself and on the position i in the word w. We conclude this work with the
example of the evaluation functions in the case of the two morphisms σ1 and σ2
that served as running examples. They show that understanding the true nature
of the evaluation fonction is another problem that remains to be investigated.

Example 44 (Fibonacci). The Fibonacci morphism σ2 is defined by σ2(a) = ab
and σ2(b) = a.

The value given to the letter [ε] is always 0 (=σi2(ε)) independently of the
position and the value given to the letter [a] at position i is |σ i

2 (a)|, which is
known to be equal to the the i-th number of the Fibonacci sequence.

In this case, the evaluation function ρσ corresponds to the evaluation func-
tion in the Fibonacci numeration system by applying the transcription [ε] 7→ 0,
[a] 7→ 1 and the MNS Lσ2

is a positional numeration system.

Example 45 (Pseudo-base 2). Let σ1 : {a, b, c}∗ → {a, b, c}∗ be the morphism
previously defined in Example 18 by:

σ1(a) = abc , σ1(b) = ab and σ1(c) = c .

• The value given to the letter [ε] is always 0, independently of the position.
• The value given to the letter [a] is 1 if it is the rightmost letter, or 32i−1

if it is at position i > 0.
• The value given to the letter [ab] at position i is (32i−1).

It appears clearly that the evaluation function computed by ρσ1 does not corre-
spond to a positional numeration system since the ratio of the values given to
the letters [a] and [ab] is not independent of the position.

On the other hand, we know (from [2] for instance) that the ANS L(σ1,g1)

(note that g1 6= gσ1
) is a numeration system in base 2 with a non-canonical

alphabet of digits (hence positional).
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in: E. Kranakis, G. Navarro, E. Chávez (Eds.), LATIN 2016, no. 9644 in
Lect. Notes in Comput. Sci., 2016, pp. 605–618.

[3] M. Rigo, A. Maes, More on generalized automatic sequences, J. of Au-
tomata, Languages and Combinatorics 7 (3) (2002) 351–376.
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[23] V. Berthé, A. Siegel, J. Thuswaldner, Substitutions, Rauzy fractals and
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