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Abstract. The signature of a labelled tree (and hence of its prefix-closed
branch language) is the sequence of the degrees of the nodes of the tree
in the breadth-first traversal. In a previous work, we have characterised
the signatures of the regular languages. Here, the trees and languages
that have the simplest possible signatures, namely the periodic ones, are
characterised as the sets of representations of the integers in rational
base numeration systems.

1 Introduction

Rational base numeration systems were defined in a joint work of the second
author together with S. Akiyama and Ch. Frougny [1] and allowed to make
some progress in a number theoretic problem, by means of automata theory and
combinatorics of words. At the same time, it raised the problem of understanding
the structure of the sets of the representations of the integers in these systems
from the point of view of formal language theory.

At first sight, these sets look rather chaotic and do not fit in the classical
Chomsky hierarchy of languages. They all enjoy a property that makes them
defeat, so to speak, any kind of iteration lemma. On the other hand, the most
common example given by the set of representations in the base 3

2 exhibits a
remarkable regularity. The set L 3

2
of representations, which are words written

with the three digits {0, 1, 2}, is prefix-closed and thus naturally represented
as a subtree of the full ternary tree which is shown in Fig.1. It is then easily
observed that the breadth-first traversal of that tree yields an infinite periodic
sequence of degrees: 2, 1, 2, 1, 2, 1, . . . = (21)ω. Moreover, the sequence of labels
of the arcs in the same breadth-first search is also a purely periodic sequence
0, 2, 1, 0, 2, 1, . . . = (021)ω .3

Let us call signature of a tree (or of the corresponding prefix-closed language)
the sequence of degrees in a breadth-first traversal of the tree. With this example,
we are confronted with a situation where a regular process, a periodic signature,
give birth to the highly non regular language, L 3

2
. This paradox was the incentive

to look at the breadth-first traversal description of languages in general. We have
3 The sequence of degrees observed on the tree in the figure begins indeed with a 1
instead of a 2, the sequence of labels begins at the second term. These discrepancies
will be explained later.
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Fig. 1: The tree T 3
2
, representation of the language L 3

2

shown in [11] that regular languages are characterised by signatures belonging
to a special class of morphic words. The purpose of this paper is to establish
that a periodic signature is characteristic of the languages of representations of
the integers in rational base numeration systems (roughly speaking and up to
very simple and rational transformations).

Let us be more specific in order to state more precisely the characterisation
results. An ordered tree of finite degree T is characterised by the infinite se-
quence of the degrees of its nodes visited in the order given by the breadth-first
search, which we call the signature s of T . Such a signature s, together with an
infinite sequence λλλ of letters taken in an ordered alphabet form a labelled sig-
nature (s,λλλ) and characterises then a labelled tree T . The breadth-first search
of T corresponds to the enumeration in the radix order of the prefix-closed lan-
guage LT of branches of T .

We call rhythm of directing parameter (q, p) a q-tuple r of integers whose
sum is p: r = (r0, r1, . . . , rq−1) and p = r0 + r1 + · · · + rq−1. With r, we asso-
ciate sequences γγγ of p letters that meet some consistency conditions. And we
consider the languages that are determined by the labelled signature (rω, γγγω).
The characterisation announced above splits in two parts.

We first determine (Theorem 1) the remarkable labelled signature (rωp
q
, γγγωp

q
)

of the languages L p
q
. The rhythm r p

q
of L p

q
corresponds roughly to the most

equitable way of partitioning p objects into q parts. We call it the Christoffel
rhythm associated with p

q , as it can be derived from the more classical notion of
Christoffel word of slope p

q (cf. [2]), that is, the canonical way to approximate the
line of slope p

q on a Z×Z lattice. The labelling γγγ p
q
is induced by the generation

of Z/pZ by q.

The converse is more convoluted but its complexity is confined in the defi-
nition of a special labelling γγγr associated with every rhythm r (Definition 5). It
is then established (Theorem 2) that the language Lr generated by the labelled
signature (rω, γγγωr ) is a non-canonical representation of the integers in the base
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which is the growth ratio of the rhythm r. The properties of alphabet conversion
in rational base numeration systems (cf. [1] or [5]) allow to conclude that for ev-
ery rhythm r, the language Lr is as complicated (or as simple, in the degenerate
case where the growth ratio happens to be an integer) as these langages L p

q
.

The same techniques allow to treat the generalisation to ultimately periodic
which raises no special difficulties and the results readily extend.

The languages with periodic labelled signature keep most of their mystery.
But we have at least established that they are all alike, essentially similar to the
representation languages of rational base numeration systems, and that varia-
tions in the rhythm and labelling do not really matter.

Due to space constraints, some proofs are only sketched and some figures
have been removed. A complete version may be found on arXiv [9].

2 Rythmic Trees and Languages

Trees and I-trees Classically, a tree is an undirected graph in which any two
vertices are connected by exactly one path (cf. [3], for instance). Our point of
view differs in two respects (as already discussed in [11]).

First, a tree is a directed graph T = (V, Γ ) such that there exists a unique
vertex, called root, which has no incoming arc, and there is a unique (oriented)
path from the root to every other vertex. In the figures, we draw trees with the
root on the left, and arcs rightwards.

Second, our trees are ordered, that is, the set of children of every node is
totally ordered. The order will be implicit in the figures, with the convention
that lower children are smaller (according to this order).

It will prove to be convenient to have a slightly different look at trees and
to consider that the root of a tree is also a child of itself, that is, bears a loop
onto itself. We call such a structure an i-tree. It is so close to a tree that we
pass from one to the other with no further ado. Nevertheless, some definitions
or results are easier or more straightforward when stated for i-trees, and others
when stated for trees: it is then handy to have both available. A tree will usually
be denoted by Tx for some index x and the associated i-tree by Ix. Fig.1 shows
a tree and Fig.2a shows an i-tree.

The degree of a node is the number of its children. In the sequel, we consider
infinite (i-)trees of finite degree, that is, all nodes of which have finite degree.
The breadth-first traversal of such a tree defines a total ordering of its nodes. We
then consider that the set of nodes of an (i-)tree is always the set of integers N.
The root is 0 and n is the (n+1)-th node visited by the search. We write n−→

T
m

if and only if m is a child of n in T .
Let I be an (infinite) i-tree (of finite degree). The sequence s of the degrees of

the nodes of I visited in the breadth-first search of I is called the signature of I
and is characteristic of I, that is, one can compute I from s (cf. Proposition 1).
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By convention, the signature of a tree T is always that of the corresponding i-
tree I.

In this paper, we are interested in signatures that are purely periodic. We
call the period of a periodic signature a rhythm.

Rhythms Given two integers n and m such that m > 0, we denote by n
m their

division in Q; by n÷m and n%m respectively the quotient and the remainder
of the Euclidean division of n by m, that is verifying n = (n÷m)m+ (n%m)
and 0 6 (n%m) < m. We also denote the integer interval {n, (n+ 1), . . . ,m}
by Jn,mK .

Definition 1. Let p and q be two integers with p > q > 1.
(i) We call rhythm of directing parameter (q, p), a q-tuple r of non-negative

integers whose sum is p:

r = (r0, r1, . . . , rq−1) and
q−1∑
i=0

ri = p .

(ii) We say that a rhythm r is valid if it satisfies the following equation:

∀j ∈ J0, q − 1K
j∑
i=0

ri > j + 1 . (1)

(iii) We call growth ratio of r the rational number z = p
q , also written z = p′

q′

where p′ and q′ are coprime; it is always greater than 1.

Examples of rhythms of growth ratio 5
3 are (2, 2, 1), (3, 1, 1), (1, 2, 2), (3, 0, 2),

(2, 1, 3, 0, 0, 4); all but the third one are valid; the directing parameter is (3,5)
for the first four, and (6,10) for the last one.

In the following, whenever the reference to a rhythm r = (r0, r1, . . . , rq−1) is
clear, we denote simply by Rj the partial sum of the first j components of rω:

∀j ∈ N Rj =

j−1∑
i=0

ri% q

(
= Rj−1 + r(j−1)% q if j > 0

)
.

Generating Trees by Rhythm An (i-)tree can be ‘reconstructed’ from its
signature s (cf. [11]), hence in the present case, from its rhythm.

Proposition 1. Let r = (r0, r1, . . . , rq−1) be a (valid) rhythm. Then, there exists
a unique i-tree Ir whose signature is rω.

Proof (Sketch). The i-tree Ir is built from r by a kind of procedure which main-
tains two integers, n and m, both initialised to 0: n is the node to be processed
andm is the next node to be created. At every step of the procedure, r(n% q) nodes
are created: the nodes m, (m+ 1), . . . , (m+ r(n% q) − 1), and the corresponding
arcs from n to every new node are created. Then n is incremented by 1, and m
by r(n% q). It is verified by induction that at every step, m is equal to Rn. In

4



0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) The i-tree I(3,1,1)

0 1

2

6

3

0

34

42

5

6

7

0

3

6

8

4

9

2

10

11

12

0

3

6

13

4

14

2
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Fig. 2: Tree and language generated by the rhythm (3, 1, 1)

particular, since R0 is an empty sum hence equal to 0, the root 0 of Ir is a child
of itself. The next equation then gives an explicit definition of Ir:

∀n,m ∈ N n −→
Ir

m ⇐⇒ Rn 6 m < Rn+1 . (2)

We denote by Tr the tree resulting from the removal from Ir of the loop on
its root and call respectively Tr and Ir the tree and i-tree generated by r. Fig.2a
shows I(3,1,1) and Fig.1 shows T(2,1) (if one forgets the labels on the arcs).

The validity of the rhythm is the necessary and sufficient condition for m to
always be greater than n in the course of the execution of the procedure, that
is, a node is always ‘created’ before being ‘processed’, or, equivalently, for the
i-tree described in Proposition 1 be infinite.

A direct consequence of the proof is that q consecutive nodes of Ir (in the
breadth-first traversal) have p (consecutive) children, hence the name growth
ratio given to the number p

q . More precisely, the following holds.

Lemma 1. Let Ir be the i-tree generated by the rhythm r of directing parame-
ter (q, p). Then, for all n, m in N: n−−→

Ir
m ⇐⇒ (n+ q)−−→

Ir
(m+ p) .

Generating Languages by Rhythm and Labelling If the arcs of an i-tree I
are labelled then I also defines the sequence λλλ of the labels of the arcs as they are
visited in the breadth-first search; conversely, I as well as its branch language,
will be determined by the pair (s,λλλ).

In this paper, labels are digits, that is, integers, hence naturally ordered. The
labelling of I has to be consistent with the order of I, that is, the children of
every node are in the same order as the labels of their incoming arcs.

We consider here periodic signatures s = rω where r is a rhythm of directing
parameter (q, p). We then will consider pairs (s,λλλ) with λλλ = γγγω where γγγ is a
sequence of letters (digits) of length p.

It follows from Lemma 1 that the labelling is consistent on the whole tree
if and only if it is consistent on the first q nodes, hence on the first p arcs.
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Let γγγ = u0 u1 · · · uq−1 be the factorisation of γγγ induced by r, that is, satisfy-
ing |ui| = ri for every i, 0 6 i < q. Note that ui = ε if ri = 0. The labelling γγγ is
then consistent with r if and only if each ui is increasing4 and the pair (r, γγγ) is
valid if in addition r is valid.

For instance, the labelling γγγ = (0, 3, 6, 4, 2) is consistent with the rhythm
r = (3, 1, 1) since u0 = (0, 3, 6), u1 = (4) and u2 = (2) are all increasing
and u0 u1 u2 is the factorisation of γγγ induced by r.

We denote by I(r,γγγ) the labelled i-tree generated by a rhythm r of directing
parameter (q, p) and a labelling γγγ = (γ0, γ1, . . . , γp−1) consistent with r. The
labels of the arcs of I(r,γγγ) are determined by

∀n,m ∈ N n
a−−−→
Ir

m implies a = γ(m% p) which belongs to u(n% q) . (3)

By convention, we denote by L(r,γγγ) the branch language of the tree T(r,γγγ) rather
than the one of i-tree I(r,γγγ), and we call it the language generated by (r, γγγ).
The branch language of I(r,γγγ) is thus z∗L(r,γγγ) where z = γ0 is the label of the
loop 0 −→ 0 in I(r,γγγ) and we call it the padded language generated by (r, γγγ).

For instance, the language generated by r = (2, 1) and γγγ = (0, 2, 1) is shown
in Fig.1 and the padded language generated by r = (3, 1, 1) and γγγ = (0, 3, 6, 4, 2)
in Fig.2b .

Let L be a prefix-closed language over an ordered alphabet A and TL its asso-
ciated labelled tree (whose set of nodes is then N). The enumeration of L in the
radix order is then equivalent to the breadth-first traversal of TL. This ordering
of L is precisely the idea underlying the notion of Abstract Numeration System
(ANS) as defined by Lecomte and Rigo (cf. [7, 8]). An ANS is a language L
over an ordered alphabet and in this system every integer n is represented by
the (n + 1)-th word of L in the radix order; this word is denoted by 〈n〉L. The
integer representations in the ANS L and the nodes of the tree TL are thus linked
by: 〈0〉L = ε and

∀n ∈ N , ∀m ∈ N+ , ∀a ∈ A 〈n〉L a = 〈m〉L ⇐⇒ n
a−−−→
TL

m . (4)

3 From Rational Base Numeration Systems to Rhythms

Integer and Rational Base Numeration Systems Let p be an integer,
p > 2, and Ap = J0, p − 1K the alphabet of the first p digits. Every word w =
an an−1 · · · a0 of A ∗p is given a value n in N by the evaluation function πp:
πp (an an−1 · · · a0) =

∑n
i=0 ai p

i , and w is a p-development of n. Every n
in N has a unique p-development without leading 0’s in A ∗p : it is called the p-
representation of n and is denoted by 〈n〉p. The p-representation of n can be
computed from left-to-right by a greedy algorithm, and also from right-to-left
by iterating the Euclidean division of n by p, the digits ai being the successive
remainders. The language of the p-representations of the integers is the regular
language Lp = {〈n〉p | n ∈ N} = (Ap \ 0) A ∗p .

4 A word a0 a1 a2 · · · an is increasing if a0 < a1 < a2 < · · · < an.
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Let p and q be two co-prime integers, p > q > 1. In [1], these classical
statements have been generalised to the case of numeration system with rational
base p

q . The
p
q -evaluation function π p

q
is defined by:

∀an an−1 · · · a0 ∈ A ∗p π p
q
(an an−1 · · · a0) =

n∑
i=0

ai
q

(
p

q

)i
,

and it is shown that every integer n has a unique p
q -representation 〈n〉 pq , that is,

a word of A ∗p such that π p
q

(
〈n〉 p

q

)
= n . This representation is computed (from

right to left) by the modified Euclidean division algorithm as follows: let N0 = n
and, for all i > 0,

qNi = pN(i+1) + ai , (5)

where ai is the remainder of the Euclidean division of qNi by p, hence belongs
to Ap = J0, p− 1K. Since p > q, the sequence (Ni)i∈N is strictly decreasing and
eventually stops at Nk+1 = 0. The p

q -representation of n is then the word 〈n〉 p
q
=

ak ak−1 · · · a0 of A ∗p .
The set L p

q
= {〈n〉 p

q
| n ∈ N} of p

q -representations of integers is ‘far’ from
being a regular language. It has a property that we have later called FLIP 5 (for
Finite Left Iteration Property, cf. [10]) and which is equivalent (for prefix-closed
languages) to the fact that it contains no infinite regular subsets (IRS condition
of [6]). This implies that L p

q
does not meet any kind of iteration lemma and in

particular that it is not context-free. It is also shown in [1] that the numeration
system with rational base p

q coincide with the ANS L p
q
.

In many respects, the case of integer base can be seen as a special case of
rational base numeration system. The definitions of π p

q
, 〈n〉 p

q
and L p

q
coincide

with those of πp, 〈n〉p and Lp respectively, when q = 1. In the sequel, we consider
the base p

q where p and q are two coprime integers verifying p > q > 1, that
is, indifferently one numeration system or the other. In particular, the following
holds in both integer or rational cases:

∀n ∈ N , ∀m ∈ N+ , ∀a ∈ Ap 〈m〉 p
q
= 〈n〉 p

q
a ⇐⇒ a = qm− pn . (6)

Geometric Representations of Rhythms Rhythms are given a very useful
geometric representation as paths in the (Z×Z)-lattice and such paths are coded
by words of {x, y}∗ where x denotes an horizontal unit segment and y a vertical
unit segment. Hence the name path given to a word associated with a rhythm.

Definition 2. Let r = (r0, r1, . . . , rq−1) be a rhythm of directing parameter (q, p).
With r, we associate the word path(r) of {x, y}∗:

path(r) = yr0xyr1xyr2 · · ·xyrq−1x

which corresponds to a path from (0, 0) to (q, p) in the (Z×Z)-lattice.
5 This property was introduced in [10] under the unproper name of Bounded Left
Iteration Property, or BLIP for short.
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Fig. 3: Words and paths associated with rhythms of directing parameter (3, 5)

Fig.3 shows the paths associated with three rhythms of directing param-
eter (3, 5). It then appears clearly that Definition 1 (ii) can be restated as ‘a
rhythm is valid if and only if the associated path is strictly above the line of
slope 1 passing through the origin’.

Rhythm and Labelling of Rational Base We introduce r p
q
, a particular

rhythm of directing parameter (q, p) associated with a canonical labelling γγγ p
q
.

The former relates to the classical notion of Christoffel words while the later
results from the generation of Z/pZ by q. The remarkable fact is then that the
representation language in the p

q -numeration system is generated by (r p
q
, γγγ p

q
).

Christoffel words code the ‘best (upper) approximation’ of segments the Z×Z-
lattice and have been studied in the field of combinatorics of words (cf. [2]).

Definition 3 ([2]). The (upper) Christoffel word of slope p
q , denoted by w p

q
, is

the label of the path from (0, 0) to (q, p) on the (Z×Z)-lattice, such that
– the path is above the line of slope p

q passing through the origin;
– the region enclosed by the path and the line contains no point of Z×Z.

We translate then Christoffel words into rhythms.

Definition 4. The Christoffel rhythm associated with p
q , and denoted by r p

q
, is

the rhythm whose path is w p
q
: path(r p

q
) = w p

q
, hence its directing parameter

is (q, p).

Fig.3b shows the path of w 5
3
= y y x y y x y x , the Christoffel word as-

sociated with 5
3 ; then, r 5

3
= (2, 2, 1). Other instances of Christoffel rhythms

are r 3
2
= (2, 1), r 4

3
= (2, 1, 1) and r 12

5
= (3, 2, 3, 2, 2). The definition of Christof-

fel words yields the following proposition on rhythms.
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Fig. 4: The padded language 0∗L 5
3
of the representation of integers in base 5

3

Proposition 2. Given a base p
q of rhythm r p

q
= (r0, r1, · · · , rq−1), for every

integer k 6 q, the partial sum Rk of the first k components of r is equal to the
smallest integer greater than k pq .

Since p and q are coprime integers, q is a generator of the group Z/pZ (ad-
ditive). We denote by γγγ p

q
the sequence induced by this generation process:

γγγ p
q

= ( 0, (q%p), (2q%p), . . . , ((p− 1)q%p) ) .

Theorem 1. Let p and q be two coprime integers, p > q > 1. The language L p
q

of the p
q -representations of the integers is generated by the rhythm r p

q
and the

labelling γγγ p
q
.

For instance, L 3
2
, shown in Fig.1, is built with the rhythm r 3

2
= (2, 1) and

the labelling γγγ 3
2
= (0, 2, 1) while the padded language 0∗L 5

3
, shown in Fig.4, is

built with the rhythm r 5
3
= (2, 2, 1) and the labelling γγγ 5

3
= (0, 3, 1, 4, 2).

The proof of Theorem 1 requires additional definitions and statements. We
define the sequence of integers e0, e1, . . . , eq−1 such that ej is the difference be-
tween the approximation Rk = (r0 + r1 + · · · + rk−1) and the point of the
associated line of the respective abscissa, that is (k pq ). This difference is a ratio-
nal number smaller than 1 and whose denominator is q, in order to obtain an
integer we multiply it by q:

∀k ∈ J0, q − 1K ek = qRk − k p . (7)

Below are compiled basic properties of the rj ’s and ej ’s that follow directly
from Proposition 2 and Equation (7).

Property 1. Let r p
q
= (r0, r1, . . . , rq−1) be the Christoffel rhythm of slope p

q . For
every integer k in J0, q − 1K, it holds:

(a) ek belongs to J0, q − 1K ;

9



(b) rk is the smallest integer such that q rk + ek > p ;
(c) ek+1 = ek + q rk − p .

Lemma 2. For every integer n > 0 (resp. n = 0), the smallest letter a of Ap
such that 〈n〉 p

q
a is in L p

q
is e(n% q) (resp. e0 + q).

Proof. Let n be positive integer and k its congruence class modulo q. Letters a
such that 〈n〉 p

q
a belongs to L p

q
are congruent modulo q (cf. Equation (6)). Since

ek is in J0, q − 1K (Property 1a), it is enough to prove that ek is an outgoing
label of n. From Equation (6), it is the case if (np + ek) is a multiple of q or,
equivalently if (k p+ek) is a multiple of q, which follows from the definition of ek
(Equation (7)).

For n = 0, e0 = 0 and although the equation e0 = qm−pn is verified for some
integer m, that integer is m = 0. It then follows from Equation (6) that 〈0〉 p

q
e0

does not belong to L p
q
(since m is not positive). The reasoning of the previous

paragraph then works for (e0 + q).

Proposition 3. For every integer n > 0 (resp. n = 0), there are exacly r(n% q)

(resp. (r0 − 1)) letters a of Ap such that 〈n〉 p
q
a belongs to L p

q
.

Proof. Let n be positive integer and k its congruence class modulo q. From
Property 1b, rk is the smallest integer such that q rk + ek > p. It follows that
for all k in J0, rk − 1K (ek + q k) < p and that ek + q rk > p.

The set S = {ek, (ek+ q), . . . , (ek+ q (rk− 1))} contains all the letters of Ap
that are congruent to ek modulo q. Since 〈n〉 p

q
ek belongs to L p

q
(Lemma 2), it

follows from Equation (6) that

S = { a ∈ Ap | 〈n〉 p
q
a ∈ L p

q
} .

The set S is of cardinal rk, concluding the case n > 0.
The proof is similar in the case where n = 0, except that the smallest letter

is (e0 + q) instead of e0 (Lemma 2).

The next proposition follows directly from Equation (6).

Proposition 4. For every positive integer m, the rightmost letter of 〈m〉 p
q
is

equal to (qm)%p.

Proposition 3 yields that the rhythm of L p
q
is indeed r p

q
and Proposition 4

that its labelling is γγγ p
q
, hence concluding the proof of Theorem 1.

The next statement gives a different way to compute γγγ p
q
; its generalisation

in the next section (Definition 5) to arbitrary rhythms will be instrumental in
the proof of Theorem 2.

Proposition 5. Let r p
q
be a Christoffel rhythm and γγγ p

q
= γ0γ1 · · · γ(p−1) the

associated labelling. We denote by γγγ p
q
= u0 u1 · · · uq−1 the factorisation of γγγ p

q

induced by r p
q
. Then, γ0 = 0 and, for all integer i, 0 6 i < (p− 1),

10



– if the letters γi and γ(i+1) belong to the same factor uj then γ(i+1) = γi+ q ;
– otherwise, γ(i+1) = γi + q − p .

Proof. We denote by c0 c1 · · · cp−1 the integers computed by the recursive algo-
rithm of the proposition:

ci = q i− pj if γi is a letter of the factor uj .

It should be noted that ci ≡ i q [p], hence that ci ≡ γi [p]; it is then enough to
show that 0 6 ci < p for every integer i < p.

Let us take i, j > 0 such that γ0γ1 · · · γi−1 = u0u1 · · ·uj−1, a word of
length i = Rj . It follows from Proposition 2 that i = dj pq e, or, in other word,
that j p− q 6 q (i− 1) < j p. Since γi−1 is the last letter of uj−1

ci−1 = q (i− 1)− p (j − 1) hence (p− q) 6 c(i−1) < p ,

and since γi is the first letter of uj

ci = (c(i−1) + q − p) hence 0 6 ci < (q − 1) .

We just proved that the first letter of every factor uk is non-negative and
that its last letter is stricly smaller than p. Since every factor is increasing (each
letter being equal to the previous letter plus q), every letter a of every factor
satisfies 0 6 a < p.

4 From Rhythms Back to Rational Bases

We now establish a kind of converse of Theorem 1. With an arbitrary rhythm is
associated a rational base (its growth ratio) and a special labelling. We consider
the language generated by this rhythm and labelling as an abstract numeration
system and show that it features a rule much like Equation (6). We finally show
that this abtract numeration system is simply a rational base on a non-canonical
alphabet (Theorem 2)

In this section, p and q are two integers, p > q > 1, not necessarily coprime,
and r is a rhythm of directing parameter (q, p). As in Definition 1, we denote
by p′ and q′ their respective quotient by their gcd.

Special Labelling The next definition is a generalisation of the labelling of
rational base for arbitrary rhythms; it is based on the characterisation given by
Proposition 5 but is more complicated in order to take into accounts the possible
components equal to 0 appearing in the rhythm.

Definition 5. We call special labelling (associated with r), and denote by
γγγr = (γ0, γ1, . . . , γp−1), the sequence of digits of length p defined as follows.
First γ0 = 0. Second, we denote by γγγr = u0 u1 · · · uq−1 the factorisation of γγγr
induced by r (for all i, 0 6 i < p, |ui| = ri). Then, for every i, 0 6 i < p − 1,
if k and j are the indices such that γi belongs to uk and γi+1 belongs to uk+j,
then γi+1 = γi + q′ − j p′.

11



Example 1. Let r = (3, 1, 1); its directing parameter is (3, 5), hence p = p′ = 5,
q = q′ = 3 and the computation of γγγr is given below, on the left. Within a fac-
tor ui, the difference between two consecutive digits is 3(= q′), otherwise it
is −2 (= q′ − p′).

r = (3, 1, 1) (4, 0, 0, 2)

γγγr = (

u0︷ ︸︸ ︷
0 , 3 , 6 ,

u1︷︸︸︷
4 ,

u2︷︸︸︷
2 ) (

u0︷ ︸︸ ︷
0 , 2 , 4, 6 ,

u1︷︸︸︷ u2︷︸︸︷ u3︷ ︸︸ ︷
−1 , 1 )

Let now r = (4, 0, 0, 2); its directing parameter is (4, 6), p′ = 3, q′ = 2 and the
computation of γγγr is given above, on the right. Within a factor ui, the difference
between two consecutive digits is +2(= +q′); the fourth digit belongs to u0 and
the fifth to u3: the difference between the two is −7(= +q′ − 3p′).

It directly follows from Definition 5 that γγγr is always consistent with r.

Notation. We denote by Lr the language generated by a rhythm r and the
associated special labelling γγγr, that is, Lr = L(r,γγγr)

.

Non-Canonical Representation of Integers If r happens to be a Christoffel
rhythm, then, by Theorem 1, Lr is equal to L p′

q′
(which, in this case, is also L p

q
).

The key result of this work is that Lr and L p′
q′

are indeed of the same kind.

Theorem 2. Let r be a rhythm of directing parameter (q, p) and p′

q′ the reduced
fraction of p

q . Then, the language Lr is a set of representations of the integers

in the rational base p′

q′ using a non-canonical set of digits.

The proof of Theorem 2 is sketched below. Let us call r-representation of an
integer n, and denote it by 〈n〉r, the representation of n in the abstract numer-
ation system Lr. We know from Equation (4) that 〈n〉r labels the path from
the root 0 to the node n in the labelled tree defined by Lr. First we show that
the existence of arcs in Lr has a necessary condition similar to those of L p′

q′
(cf.

Equation (6)).

Lemma 3. Let r be a rhythm of directing parameter (q, p) and p′

q′ the reduced
fraction of pq . Then, for every integers n and m > 0, it holds:

〈n〉r a = 〈m〉r =⇒ a = q′m− p′n .

The converse of Lemma 3 does not hold in general; it holds only for rhythms
(of directing parameter (q, p)) such that p and q are coprime, and for powers of
such rhythms. Otherwise, the alphabet of the letters appearing in γγγr contains at
least two different digits congruent modulo p′; the incoming arc of a given node
then depends on its congruence class modulo p (and not only modulo p′).

Theorem 2 is then equivalent to the following statement.

Proposition 6. Let r be a rhythm of directing parameter (q, p), p′

q′ the reduced

fraction of pq and π p′
q′

the evaluation function in the p′

q′ -numeration system. Then,

for every integer n, π p′
q′
(〈n〉r) = n holds.

12



Proof. By induction on the length of 〈n〉r. The equality is obviously verified
for 〈0〉r = ε. Let m be a positive integer and 〈m〉r = ak+1 ak ak−1 · · · a1 a0 its
r-representation, that is, a word of Lr. The word ak+1 ak ak−1 · · · a1 is also
in Lr; it is the r-representation of an integer n strictly smaller than m, verifying
〈n〉r a0 = 〈m〉r, hence n

a0−−−→
Lr

m. On the right hand, by induction hypothesis,

n = π p′
q′
(〈n〉r) and on the other hand, it follows from the previous Lemma 3

that a0 = q′m− p′n , or, equivalently, that m = np′+a0
q′ , hence

m =
p′

q′
π p′

q′
(〈n〉r) +

a0
q

= π p
q
(〈n〉r a0) = π p′

q′
(〈m〉r) .

It is shown in [1] that in spite of this ‘complexity’ of L p
q
, the conversion

from any digit-alphabet B into the canonical alphabet Ap is realised by a finite
transducer exactly as in the case of an integer numeration system (cf. also [5]).
More precisely:

Theorem 3 ([1]). For all digit alphabets B, the function χ : B∗ → A ∗p′ which
maps every word w of B∗ onto the word of A ∗p′ which has the same value in the
p′

q′ -numeration system — hence π p′
q′
(w) = π p′

q′
(χ(w)) — is a (right sequential)

rational function.

If we write B for the set of digits appearing in γγγr, Theorem 3 implies in particular
that χ(Lr) = L p′

q′
. Hence, that the complexity of L p′

q′
extends to Lr.

Corollary 1. Let r be a rhythm of directing parameter (q, p) and Lr the language
generated by the pair (r, γγγr). If

p
q is an integer, then Lr is a regular language,

otherwise, Lr is a FLIP language.

Example 2. Given a directing parameter (q, p), let r be the extreme rhythm
where all components are 0 but one which is p. The validity condition implies that
the positive digit is necessarily the first one: r = (p, 0, . . . , 0) and the associated
special labelling is then γγγr = (0, q, (2q), . . . , (p− 1)q). Since every letter of γγγr
is a multiple of q, we perform a component-wise division of γγγr by q and obtain
γγγ = (0, 1, 2, . . . , (p− 1)).

The language L(r,γγγ) generated by (r, γγγ) is then the language of the repre-
sentations of the integers in a variant (that we call FK after its authors) of p

q -
numeration systems considered in [4]. In the variant FK, the value of a word u,
denoted by πFK(u), is q times its standard evaluation: πFK(u) = q×π p

q
(u). This

is exactly the behaviour described by Proposition 6, since all digits have been
divided by q. This example highlights the soundness of the relationship between
rational base numeration system and periodic signature.

5 Extension, Future Work and Conclusion

For sake of simplicity, we have considered here purely periodic signatures and the
periodic labellings that go with them. The same techniques as the ones developed
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in Section 4 allow to treat the generalisation to ultimately periodic which raises
no special difficulties and the results established here readily extend. One may
even generalise these results to every aperiodic signature whose path (as defined
in Sect.2) is confined to a strip between two parallel lines of slope p

q .
Using rhythm often sheds light on problems related to rational base. It is the

case for the question of representation of the negative integers, tackled in [4], that
may be given a new approach in terms of Christoffel words and their properties.

There is certainly still much to be understood on the relationship between the
‘high regularity’ of periodic signatures and the apparent disorder or complexity
of trees that are generated by these periodic signatures. Some questions, such
as statistics of labels along infinite branches, are indeed related to identified
problems in number theory that are recognised as very difficult.

We have established in this paper that the infinite trees or languages gener-
ated by periodic signatures are completely determined (up to very simple trans-
formations — that is, rational sequential functions) by the growth ratio of the
period only and independent of the actual components of the period. This first
step was somehow unexpected. It makes the scenery simpler but the call for
further investigations on the subject even stronger.
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