
On Sets of Numbers Rationally Represented

in a Rational Base Number System.

Victor Marsault⋆ and Jacques Sakarovitch

Telecom-ParisTech and CNRS, 46 rue Barrault 75013 Paris, France

Abstract. In this work, it is proved that a set of numbers closed under
addition and whose representations in a rational base numeration system
is a rational language is not a finitely generated additive monoid.
A key to the proof is the definition of a strong combinatorial property on
languages : the bounded left iteration property. It is both an unnatural
property in usual formal language theory (as it contradicts any kind
of pumping lemma) and an ideal fit to the languages defined through
rational base number systems.

1 Introduction

The numeration systems in which the base is a rational number have
been introduced and studied in [1]. It appeared there that the language of
representations of all integers in such a system is “complicated”, by reference
to the classical Chomsky hierarchy and its usual iteration properties. This work
is a contribution to a better understanding of the structure of this language. It
consists in a result whose statement first requires some basic facts about number
systems.

Given an integer p as a base, the set of non-negative integers N is represented
by the set of words on the alphabet Ap = {0, 1, . . . , (p− 1)} which do not begin
with a 0. This set Lp = (Ap\0)Ap

∗ is rational, that is, accepted by a finite
automaton. This representation of integers has another property related to finite
automata: the addition is realised by a finite 3-tape automaton.

This addition algorithm can be broken down into two steps : first a digit-
wise addition which outputs a word on the double alphabet A2p−1 whose value
in base p is the sum of the two input words; second a transformation of a word
of (A2p−1)

∗
into a word of Ap

∗ without modifying its value. This second step can
be done by a finite transducer called the converter (see Section 2.2.2 of [3]).

Many non-standard numeration systems that have been studied so far have
the property that the set of representations of the integers is a rational language.
It is even the property that is retained in the study of the abstract numeration
systems, even if it is not the case that addition can be realised by a finite
automaton (cf. [6]).

In the rational base numeration systems, as defined and studied in [1], the
situation is reverse: the set of integers is not represented by a rational language

⋆ Corresponding author, victor.marsault@telecom-paristech.fr

1

(not even a context-free one), but nevertheless the addition is realised by a finite
automaton. More precisely, let p and q be two coprime integers, with p > q.
In the p

q
-numeration system, the digit alphabet is again Ap, and the value of

a word u = an · · · a2 a1 in Ap
∗ is π(u) = 1

q

∑n

i=0 ai(
p
q
)i. In this system, every

integer has a unique finite representation, but the set L p

q
of the p

q
-representations

of the integers is not a rational language. The set V p

q
of all numbers that can

be represented in this system, V p

q
= π(Ap

∗), is closed under addition but is not

finitely generated (as an additive monoid).
In this work, we establish the contradiction between being a finitely generated

additive monoid and having a rational set of representations in a rational base
number system.

Theorem 1. The set of the p
q
-representations of any finitely generated additive

submonoid of V p

q
is not a rational language.

The proof of this statement relies on three ingredients. The first one is
the description of a weak iteration property whose negation is satisfied by the
language L p

q
. The second one is the construction of a sequential letter-to-letter

right transducer that realises, on the p
q
-representations, the addition of a fixed

value to the elements of V p

q
. Finally, the third one is a characterisation of a

finitely generated additive submonoid of V p

q
as a finite union of translates of the

set of the integers.
The paper is organised as follows: after the preliminaries, where we essentially

recall the definition of transducers, we present with more details in Section 3
the numeration system in base p

q
. In Section 4, we describe the Bounded

Left Iteration Property (BLIP) and in Section 5, we build a transducer called
incrementer. In the last section, we give the proof of a much stronger statement
than Theorem 1, expressed with the BLIP property.

2 Preliminaries

We essentially follow notations and definitions of [8] for automata and
transducers. An alphabet is a finite set of letters, the free monoid generated
by A, and denoted by A∗, is the set of finite words over A. The concatenation
of two words u and v of A∗ is denoted by uv, or by u.v when the dot adds
hopefully to readability. A language (over A) is any subset of A∗.

A language is said to be rational (resp. context-free) if it is accepted by a
finite automaton (resp. a pushdown automaton). The precise definitions of these
classes of automata are however irrelevant to the present work, and can be found
in [5]. Similarly, we are only considering (and thus defining) a very restricted class
of transducers, namely the sequential letter-to-letter transducer.

Given two alphabets A and B, a sequential letter-to-letter (left) transducer T
from A∗ to B∗ is a directed graph whose edges are labelled in A × B. More
precisely, T is defined by a 6-tuple T = 〈Q,A,B, δ, η, i, ω 〉 where Q is the set

2

of states; A is the input alphabet ; B is the output alphabet ; δ : Q×A→ Q is the
transition function; η : Q × A → B is the output function; i is the initial state
and ω : Q→ B∗ is the final function.

Moreover, we call final any state in the definition domain of ω. As usual,
the function δ (resp. η) is extended to Q × A∗ → Q (resp. Q × A∗ → B∗)
by δ(p, ε) = p (resp. η(p, ε) = ε) and δ(p, a.u) = δ(δ(p, a), u) (resp. η(p, a.u) =
η(p, a).η(δ(p, a), u)).

Given T , we write p
u | v

−−−−→
T

q if, and only if, δ(p, u) = q and η(p, u) = v.

By analogy, we denote by p
w

−−→
T

the fact that p is a final state and

that ω(p) = w. The image by T of a word u, denoted by T (u), is the word v.w ,

if i
u | v

−−−−→
T

p
w

−−→
T

.

Finally, a transducer is said to be a right transducer, if it reads the words
from right to left; and to be complete if both the transition function and the
output function are total functions.

In the following, every considered transducer will be complete, letter-to-
letter, right and sequential.

3 Rational Base Number System

We recall here the definitions, notations and constructions of [1]. Let p and q

be two coprime integers such that p > q > 1. Given a positive integer N , let us
define N0 = N and for all i > 0:

qNi = pNi+1 + ai (1)

where ai is the remainder of the Euclidean division of qNi by p, hence in Ap.
Since p > q, the sequence (Ni)i is strictly decreasing and eventually stops at
Nk+1 = 0. Moreover the equation

N =

k
∑

i=0

ai

q

(

p

q

)i

(2)

holds. The evaluation function π is derived from this formula. The value of a
word u = anan−1 · · · a0 over Ap is defined as

π(anan−1 · · · a0) =

n
∑

i=0

ai

q

(

p

q

)i

(3)

Conversely, a word u is called a p
q
-representation of a number x

if π(u) = x. Since the representation is unique up to leading 0’s (see [1, Theo-
rem 1]), u is denoted by 〈x〉 p

q
(or 〈x〉 for short), and in the case of integers, can be

computed with the modified Euclidean division algorithm above. By convention,
the representation of 0 is the empty word ε.

3

It should be noted that a rational base number systems is not a β-numeration
(cf. [7, Chapter 7]) in the special case where β is rational. In the latter, the digit
set is {0, 1, . . . , ⌈p

q
⌉} and the weight of the i-th leftmost digit is (p

q
)i; whereas in

rational base number systems, they respectively are {0, 1, . . . , (p−1)} and 1
q
(p
q
)i.

Definition 1. The representations of integers in the p
q
-system form a language

over Ap, which is denoted by L p

q
.

It is immediate that L p

q
is prefix-closed (since, in the modified Euclidean

division algorithm 〈N〉 = 〈N1〉.a0) and prolongable (there exists an a such
that q divides (np + a) and then 〈np+a

q
〉 = 〈n〉.a). As a consequence, L p

q
can

be represented as a tree whose branches are all infinite (cf. Figure 1). On the

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

2 1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0

2

1

0
2

1

0
2

1

0
2

1

0
2

1

0
2

Fig. 1: The tree representation of the language L 3
2

other hand, the suffix language of L p

q
is all A∗

p, and, moreover, every suffix

appears periodically as established by the following:

Proposition 1 ([1, Proposition 10]). For every word u over Ap of length k,
there exists an integer n < pk such that u is a suffix of 〈m〉 if, and only if, m is
congruent to n modulo pk.

In short, the congruence modulo pk of n determines the suffix of length k

of 〈n〉. In contrast, the congruence modulo qk of n determines the words of

4

length k appendable to 〈n〉 in order to stay in L p

q
, as is stated in the next

lemma.

Lemma 1 ([1, Lemma 6]). Given two integers n,m and a word u over Ap:

(i) if both 〈n〉.u and 〈m〉.u are in L p

q
, then n ≡ m [q|u|]

(ii) if n ≡ m [q|u|], 〈n〉.u is in L p

q
implies 〈m〉.u is in L p

q
.

Proof. (i). The word 〈n〉.u is in L p

q
if, and only, if (n(p

q
)|u| +π(u)) is an integer,

and similarly for m. It follows that (n−m)(p
q
)|u| is equal to some integer z, and

then (p|u|)(n−m) = zq|u|, hence n ≡ m [q|u|].
(ii). Analogous to (i).

A direct consequence of this lemma is that given any two distinct words u
and v of L p

q
, there exists a word w such that uw is in L p

q
but vw is not. Hence,

the set {u−1L p

q
| u ∈ A ∗

p } of left quotients of L p

q
is infinite, or equivalently:

Corollary 1. The language L p

q
is not rational.

Definition 2 (The value set). We denote by V p

q
the set of numbers

representable in base p
q
, namely:

V p

q
= {x | ∃u ∈ A∗

p, π(u) = x} (4)

or equivalently V p

q
= π

(

A∗
p

)

The most notable property of V p

q
is that it is closed under addition, or more

precisely that the addition is realised by a transducer, described in Section 5 (a
full proof can be found in [1, Section 3.3]).

Secondly, from the definition of π, one derives easily that V p

q
⊆ Q. More

precisely V p

q
contains only numbers of the form x

y
where y divides a power of q,

and conversely, for all k, V p

q
contains almost every number x

qk
.

Lemma 2. For every integer k, there exits an integer mk such that, for every
integer n greater than mk,

n
qk

belongs to V p

q
.

Proof. If k = 0, then one can take m = 0 since N is contained in V p

q
.

For k > 1, the words 1 and 1.0(k−1) have for respective value 1
q

and pk−1

qk
.

For every integer i and j, the number (i×p(k−1)+j×q(k−1)

qk
) is in V p

q
, since V p

q
is

closed under addition, and this can be rewritten as (p(k−1)N+q(k−1)N) 1
qk

⊆ V p

q
.

Since p(k−1) and q(k−1) are coprime, (p(k−1)N+ q(k−1)N) ultimately covers N.

Experimentally, the bound mk is increasing with k but the expression
resulting from this Lemma is far from being tight. As a consequence, it proves
to be difficult to define V p

q
without using the p

q
-rational base number system.

5

4 BLIP Languages

In the previous section, an insight is given about why L p

q
is not rational. It

is additionally proven in [1] that L p

q
is not context-free either. However, being

context sensitive doesn’t seem to accurately describe L p

q
. This section depicts

a very strong language property, taylored to capture the structural complexity
of L p

q
.

Let us first define a (very) weak iteration property for languages:

Definition 3. A language L of A∗ is said to be left-iterable if there exist two
words u and v in A∗ such that uvi is a prefix of words in L for an infinite
number of exponents i.

Of course, every rational or context-free language is left-iterable. The
definition is indeed designed above all for stating its negation.

Definition 4. A language L which is not left-iterable is said to have the
Bounded Left-Iteration Property, or, for short, to be BLIP.

Example 1. A very simple way of building BLIP languages is to consider
infinitely many prefixes of an infinite and aperiodic word. For instance the
language {ui}, where u0 = ε and ui+1 = ui.1.0

i; or the language of the finite
powers of the Fibonacci morphism {σi(0)} where σ(0) = 01 and σ(1) = 0.

In order to build a less trivial example let us define the following family of
functions fi:

fi : n 7→ n if n 6= i

n 7→ 0 if n = i.

The language {ui,j}, where ui,0 = 1 and ui,j+1 = ui,j .1.0
fi(j), is BLIP as can be

easily checked.

Since Definition 4 was taylored for the study of L p

q
, the following holds, as

essentially established in [1, Lemma 8].

Proposition 2. The language L p

q
is BLIP.

Proof. If L p

q
were left iterable, there would exist two nonempty words u and v

such that uvi is prefix of a word of L p

q
for infinitely many i. Since L p

q
is prefix-

closed, the word uvi would be itself in L p

q
, for all i. From Lemma 1, it follows that

the integers π(u) and π(uv) are congruent modulo qk, for all k, a contradiction.

Being BLIP is a very stable property for languages, as expressed by the
following properties.

Lemma 3. (i) Every finite language is BLIP.
(ii) Any finite union of BLIP languages is BLIP.
(iii) Any intersection of BLIP languages is BLIP.
(iv) Any sublanguage of a BLIP language is BLIP.

6

Of course, BLIP languages are not closed under complementation, star or
transposition.

The bounded left iteration property can be expressed with the more classical
notion of IRS language (for Infinite Regular Subset) that has been introduced
by Sheila Greibach in her study of the family of context-free languages ([4],
cf. also [2]). A language is IRS if it does not contain any infinite rational
sublanguage. For instance, the language {an | n is a prime number} is IRS (but
not BLIP).

It is immediate that a BLIP language is IRS; even that a BLIP language
contains no infinite context-free sublanguage. However the converse is not true
as seen with the above example. More precisely, the following statement holds:

Proposition 3. A language L is BLIP if, and only if, Pref (L) is IRS.

Proof.

Pref (L) is not IRS ⇐⇒ Pref (L) contains a sublanguage of the form uv∗w

⇐⇒ uv∗ is a sublanguage of Pref (L)

⇐⇒ for infinitely many i, uvi is prefix of a word of L

⇐⇒ L is not BLIP

Proposition 3 shows that BLIP and IRS are equivalent properties on prefix-
closed languages, which means that IRS is indeed a very strong property for
prefix-closed languages.

Even though the purpose of this work is to prove Theorem 1, we actually
prove a stronger version of it:

Theorem 2. The set of the p
q
-representations of any finitely generated additive

submonoid of V p

q
is a BLIP language.

This is not a minor improvement, as it shows that every language representing
a finitely generated monoid is basically as complex as L p

q
.

5 The Incrementer

The purpose of this section is to build a letter-to-letter sequential right
transducer Ap → Ap realising a constant addition: given as parameter a word w
of A∗

p it would perform the application u 7→ v, such that π(v) = π(u)+π(w). This
transducer is based on the converter defined in [3] that we recall in Definition 5,
below.

Theorem 3 ([1],[3]). Given any digit alphabet An, there exists a finite letter-
to-letter right sequential transducer C p

q
,n from An to Ap such that for every w

in An
∗, π

(

C p

q
,n(w)

)

= π(w).

7

Definition 5. For every integer n, the converter C p

q
,n = 〈N, An, Ap, 0, δ, η, ω 〉,

is the right transducer with input alphabet An, output alphabet Ap, and whose
transition and output functions are defined by:

∀s ∈ N , ∀a ∈ An s
a|c

−−−→ s′ ⇐⇒ q s+ a = ps′ + c ,

and final function by: ω(s) = 〈s〉 p

q
, for every state s in N.

Definition 5 describes a transducer with an infinite number of states, but
its reachable part is finite (cf [1, Proposition 13] or [3, Section 2.2.2]). In
particular, if n = 2p − 1, the converter is in fact an additioner: given two
words u = an · · · a2 a1 and v = bn · · · b2 b1 over Ap, the digit-wise addition
yields the word (an+bn) · · · (a1+b1) over A2p−1 which is transformed by C p

q
,2p−1

into 〈π(u)+π(v)〉 p

q
. The converter from A5 to A3 in base 3

2 is shown at Figure 2.

0

1

2

ε

2

21

0|0 1|1 2|2

3|0
4|1 0|2

1|0
2|1
3|2

4|0
0|1
1|2

2|0 3|1 4|2

Fig. 2: The converter C 3
2 ,5

For every word w of Ap
∗, we define a letter-to-letter sequential right

transducer R p

q
,w which increments the input by w, that is, given a word u

as input, it outputs the p
q
-representation 〈π(u) + π(w)〉 p

q
. It is obtained as a

specialisation of C p

q
,2p−1.

Definition 6. For every w = bn−1 · · · b1 b0 in Ap
∗, the incrementer

R p

q
,w = 〈N× {0, 1, . . . , n}, Ap, Ap, (0, 0), δ

′, η′, ψ 〉

8

is the (right) transducer with input and output alphabet Ap, and whose transition
and output functions are defined by:

∀s ∈ N , ∀a ∈ Ap ,

∀i < n (s, i)
a|c

−−−→ (s′, i+ 1) ⇐⇒ q s+ (a+ bi) = ps′ + c

(s, n)
a|c

−−−→ (s′, n) ⇐⇒ q s+ a = ps′ + c

and whose final function is defined by:

∀s ∈ N ψ((s, n)) = 〈s〉 p

q
,

ψ((s, i)) = ψ((s′, i+ 1)).c if i < n and (s, i)
0|c

−−−→ (s′, i+ 1)

This last line means that if the input word is shorter than w, then the final
function behaves as if the input word ended with enough 0’s (on the left, since
we read from right to left). Definition 6 describes a transducer with an infinite
number of states but, as in the case of the converter, it is easy to verify that its
reachable part is finite. The incrementer R 3

2 ,121
is shown at Figure 3.

0, 00, 1

1, 1

0, 2

1, 2

2, 2

0, 3

1, 3

2, 3

1, 0

2, 02, 1

21 22

20120

2

ε 1 12 121

0|1

1|2

2|0

0|2

1|0

2|1

0|1

1|2

2|0

0|1

1|2

2|0

1|0

2|1

0|2

0|0, 1|1

2|2

1|2 0|1

0|2

0|0
1|1
2|2

2|0

1|0
2|1

121

0

1

2

ε

2

21

0|0 1|1 2|2

3|0
4|1 0|2

1|0
2|1
3|2

4|0
0|1
1|2

2|0 3|1 4|2

Fig. 3: The incrementer R 3
2 ,121

It is a simple verification that the incrementer has the expected behaviour.

Proposition 4. For every u and w in Ap
∗, v = R p

q
,w(u) is a word in Ap

∗ such

that π(v) = π(u) + π(w) holds.

9

6 Proof of Theorem 2

The core of the proof lies in the next statement.

Proposition 5. For every w in Ap
∗, the image of a left-iterable language

by R p

q
,w is left-iterable.

Proof. Let u and v be in Ap
∗, I ⊆ N an infinite set of indexes and

{yi}i∈I an infinite family of words in Ap
∗. The proof consists in showing

that
{

R p

q
,w(uv

iyi)
∣

∣

∣
i ∈ I

}

is left-iterable.

Since I is infinite, we may assume, without loss of generality, that the
length of the yi’s is strictly increasing hence, that all yi’s have a length greater
than n = |w| but also that the reading of every yi leads R p

q
,w to a same

state (s, 0):

∀s ∈ N , ∀i ∈ I (0, n)
yi|y

′

i−−−−→
R p

q
,w

(s, 0) .

From the definition of the transitions of R p

q
,w:

(s, 0)
a|c

−−−→ (s′, 0) ⇐⇒ q s+ a = ps′ + c ,

follows, since a < p and q < p, that s > s′. Hence, the sequence of (first
component of) states of R p

q
,w in a computation starting in (s, 0) and with

input vi, with unbounded i, is ultimately stationary at state (t, 0).

Without loss of generality, we thus may assume that (0, n)
yi|y

′

i−−−−→ (t, 0) for

every i in I and, since (t, 0)
v|v′

−−−→ (t, 0), it holds that R p

q
,w(uv

iyi) = u′ v′iy′i,

where u′ is the output of a computation starting in (t, 0) and with input u.

The special case of additive submonoids of V p

q
allows us to reverse the

condition from left-iterable to BLIP:

Proposition 6. Let w be a word of Ap
∗, and L be a BLIP language such

that π(L) is an additive submonoid of V p

q
. The language R p

q
,w(L) is BLIP.

Proof. Since π(L) is an additive submonoid of V p

q
, it contains mN for some m

(as it must contains some number m
ql

for some m and l).

Let n and k be the integers such that π(w) = n
qk

= x. From Lemma 2,

it follows that there exists mk such that for every j > mk,
j
qk

is in V p

q
. In

particular, there exists j such that n + j ≡ 0 mod (mqk) and j

qk
is in V p

q
. If

we denote by y = j

qk
, it means that (x + y) is in mN. Hence, π(L) + x + y is

contained in π(L).
Let us denote by u = 〈y〉 p

q
, and L′ = R p

q
,w(L).

10

It follows that π
(

R p

q
,u(L

′)
)

= (π(L)+x+y) ⊆ π(L), hence that R p

q
,u(L

′) is

an infinite subset of L, and as such BLIP (from Lemma 3). If L′ were left-iterable,
so would be R p

q
,u(L

′) by Proposition 5, a contradiction.

Finally we prove a property of finitely generated submonoids of V p

q
.

Proposition 7. Let M be a finitely generated additive submonoid of V p

q
. There

exists a finite family {gi}i∈I of elements of V p

q
such that M is contained

in
⋃

i∈I(gi + N).

Proof. Let {y1, y2, . . . , yh} be a generating family of M . Every yj is in V p

q
and it

is then a rational number
nj

q
kj

for some integers nj and kj . Let k be the largest

of the kj . Hence, every element in M is a rational number whose denominator

is a divisor of qk, and thus M ⊆ V p

q
∩
(

1
qk
N

)

.

Since every number in 1
qk

N can be written as n + i
qk

for some n in N

and some i in {0, 1, . . . , qk − 1}, it follows that 1
qk
N =

⋃

06i<qk(N + i
qk
),

hence M ⊆
⋃

06i<qk(V p

q
∩ (N+ i

qk
)). Besides, for every i in {0, 1, . . . , qk − 1}, we

denote by gi the smallest number in V p

q
∩(N+ i

qk
). Then, and since V p

q
+N = V p

q
,

for every i, V p

q
∩ (N+ i

qk
) = mi + N. Hence M ⊆

⋃

06i<qk(N+mi).

Even though this proposition seems rather weak (it is a poor approximation
from above), it is enough: it indeed reduces Theorem 2 to proving that 〈n+N〉 (or
equivalently R p

q
,w(L p

q
)) is BLIP for any n, which was proven in Proposition 6.

Proof (of Theorem 2). Let M be a finitely generated additive submonoid of V p

q
.

By Proposition 7, there exists a finite family {mi}i∈I of elements of V p

q
such

that M ⊆
⋃

i∈I(mi + N).
Let L = 〈M〉 p

q
the language of the p

q
-representations of the elements of M

and write wi = 〈mi〉 p

q
. Hence, L is contained in (

⋃

i R p

q
,wi

(L p

q
)), and thus BLIP

by Lemma 3.

7 Conclusion and Future Work

In this work, we have defined a new property, in an effort to capture the
structural complexity of L p

q
. This property contradicts any form of pumping

lemma, placing L p

q
outside the scope of classical language theory. Even more

so that every other example of BLIP languages we describe seem to be purely
artificial (cf. Example 1)

Paradoxically, Theorem 2 shows that such examples are very common within
a rational base number system. It seems that every reasonable number set is
represented by a BLIP language and that every simple language represents a
complicated set of numbers.

This work led us to a conjecture about rational approximations of L p

q
:

11

Conjecture 1. Let L be a rational language closed by addition and containing L p

q
.

Then L contains X.A∗
p where X = L p

q
∩A6k

p , for some k.

Any approximation of L p

q
by a rational language L, would only keep a finite

part of the structure: the automaton accepting L would be the subtree of depth k
of L p

q
whose leaves are all-accepting states. Figure 4 gives two examples of

rational approximation of L 3
2
, respectively when the L p

q
is cut at depth k = 2

and k = 5.

0 1 ⊤ 0 1 2

3

4

5

6

7

⊤
2 1

0, 1, 2

2 1
0

2

1

0

2

1

0, 2

1
0, 1, 2

Fig. 4: Two rational approximations of L 3
2

References

1. Shigeki Akiyama, Christiane Frougny, and Jacques Sakarovitch. Powers of rationals
modulo 1 and rational base number systems. Israel J. Math., 168:53–91, 2008.

2. Jean-Michel Autebert, Joffroy Beauquier, Luc Boasson, and Michel Latteux.
Indécidabilité de la condition IRS. ITA, 16(2):129–138, 1982.

3. Christiane Frougny and Jacques Sakarovitch. Number representation and finite
automata. in Combinatorics, Automata and Number Theory, V. Berthé, M. Rigo
(Eds), Encyclopedia of Mathematics and its Applications 135, Cambridge Univ.
Press (2010) 34–107.

4. Sheila A. Greibach. One counter languages and the IRS condition. J. Comput. Syst.
Sci., 10(2):237–247, 1975.

5. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages and Computation. Addison-Wesley, 2000.

6. Pierre Lecomte and Michel Rigo. Abstract numeration systems. in Combinatorics,
Automata and Number Theory, V. Berthé, M. Rigo (Eds), Encyclopedia of
Mathematics and its Applications 135, Cambridge Univ. Press (2010) 108–162.

7. M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002.
8. Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press,

2009. Corrected English translation of Éléments de théorie des automates, Vuibert,
2003.

12

