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Every rational number p
q

defines a rational base numeration system in which every integer has a unique finite repre-
sentation, up to leading zeroes. This work is a contribution to the study of the set of the representations of integers.
This prefix-closed subset of the free monoid is naturally represented as a highly non-regular tree. Its nodes are the
integers, its edges bear labels taken in {0, 1, . . . , p− 1}, and its subtrees are all distinct.

We associate with each subtree (or with its root n) three infinite words. The bottom word of n is the lexicographically
smallest word that is the label of a branch of the subtree. The top word of n is defined similarly. The span-word of n
is the digitwise difference between the latter and the former.

First, we show that the set of all the span-words is accepted by an infinite automaton whose underlying graph is
essentially the same as the tree itself. Second, we study the function that computes for all n the bottom word associated
with n+ 1 from the one associated with n, and show that it is realised by an infinite sequential transducer whose
underlying graph is once again essentially the same as the tree itself.

An infinite word may be interpreted as an expansion in base p
q

after the radix point, hence evaluated to a real number.
If T is a subtree whose root is n, then the evaluations of the labels of the branches of T form an interval of R. The
length of this interval is called the span of n and is equal to the evaluation of the span-word of n. The set of all spans
is then a subset of R and we use the preceding construction to study its topological closure. We show that it is an
interval when p 6 2q− 1, and a Cantor set of measure zero otherwise.

Keywords: Rational base numeration systems, Real-representation tree, Infinite words, Infinite transducers, Cantor
sets, Hausdorff measure
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1 Introduction
The purpose of this work is a further exploration and a better understanding of the set of infinite words
that appear in the definition of rational base numeration systems. These numeration systems have been
introduced and studied by Akiyama, Frougny, and Sakarovitch (2008), leading to some progress and re-
sults in a number theoretic problem related to the distribution modulo 1 of the powers of rational numbers
and usually known as Mahler’s problem (Mahler, 1968). Besides these results, these systems raise many
new and fascinating problems.

We give later the precise definition of rational base numeration systems and of the representation of
numbers (integers and reals) in such systems. But one can hint at the results established in this paper
by just looking at the figure showing the ‘representation tree’ in a rational base numeration system (Fig-
ure 1(b) for the base 3

2 ) and by comparison with the representation tree in a integer base numeration
system (Figure 1(a) for the base 3). In these trees, nodes are the natural integers, and the label of the
path from the root to an integer n is the representation of n in the system, whereas the label of an infinite
branch gives the representation in the system of a real number, indeed, and because the trees are drawn in
a fractal way, of the real number which is the ordinate of the point where the branch ends.
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Fig. 1: Representation trees in two number systems
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The first striking fact is that the representation language, that is, the set of representations of integers,
in a rational base numeration system does not fit at all in the usual classifications of formal language
theory. It looks very chaotic and defeats any kind of iteration lemma. Nevertheless, these representation
languages hide a certain kind of regularity and we have shown (Marsault and Sakarovitch, 2017) that they
are so to speak characterized by their periodic signatures, that is, if one of these languages is drawn as a
tree and traversed breadth-first, the degrees of the nodes are periodic.

If we now turn to the infinite branches of the trees, we first find that every subtree in the tree of Fig-
ure 1(a) is the full ternary tree, whereas every subtree in the tree of Figure 1(b) is different from all other
subtrees. With the hope of finding some order or regularity within what seems to be close to complete
randomness (which, on the other hand, is not established either and would be a very interesting result) we
consider the minimal words, that we rather call bottom words, originating from every node of the tree.

In the case of an integer base, this is perfectly uninteresting: all these bottom words are equal to 0ω . In
the case of a rational base these words are on the contrary all distinct, none are even ultimately periodic
(as the other infinite words in the representation tree). In order to find some invariant of all these distinct
words, or at least a relationship between them, we have studied the function ξ that maps the bottom
word w−n associated with n onto w−n+1, the one associated with n+ 1. This function ξ is easily seen to be
online and realtime, that is, the knowledge of the first i digits of the input is enough to compute the first i
digits of the output, and hence ξ is computable by an infinite sequential letter-to-letter transducer.

The computation of such a transducer in the case the base 3
2 , and more generally in the case of a

base z = p
q with p = 2q− 1, leads to a surprising and unexpected result. The transducer, denoted by Dz ,

is obtained by replacing in the representation tree, denoted by Tz , the label of every edge by a set of pairs
of letters that depends upon this label only. In other words, the underlying graphs of Tz and Dz coincide,
and Dz is obtained from Tz by a substitution from the alphabet of digits into the alphabet of pairs of
digits, in this special and remarkable case.

The general case is hardly more difficult to describe, once it has been understood. In the special case,
the canonical digit alphabet has p= 2q−1 elements; in the general case, we still consider a digit alphabet
with 2q− 1 elements denoted by Dz , either by keeping the larger 2q− 1 elements of the canonical digit
alphabet, when p is is greater than 2q − 1, or by enlarging the canonical alphabet with enough negative
digits, when p is smaller than 2q− 1; in both cases, p− 1 is the largest digit.

From Tz and with the digit alphabet Dz , we then define another ‘representation graph’ denoted by Sz :
either by deleting the edges of Tz labelled by digits that do not belong to Dz in the case where p > 2q−1
or, in the case where p < 2q − 1 by adding edges labelled with the new negative digits. Then, Dz is
obtained from Sz exactly as above, by a substitution from the alphabet of digits into the alphabet of pairs
of digits. This construction of Dz , and the proof of its correctness yields:

Theorem I.
Let p, q be two coprime integers such that p > q > 1 and z = p

q . Then Dz realises ξ.

In the original article (Akiyama et al., 2008), the tree Tz , which is built from the representations of
integers, is used to define the representations of real numbers: the label of an infinite branch of the tree
is the development ‘after the radix point’ of a real number and the drawing of the tree as a fractal object
— like in Figure 1 — is fully justified by this point of view. The same idea leads to the definition of the
(normalised(i)) span of a node n of the representation tree: it is the difference between the real numbers
(i) The classical definition of span of the node n is, in the fractal drawing, the width of the subtree rooted in n. This value is obviously
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represented respectively by the top and the bottom words originating in the node n and let us denote
by Spanz the set of spans for all integers and by c`(Spanz) its topological closure.

Again, this notion is totally uninteresting in the case of a numeration system with an integer base p: the
span of every node n is always 1. And again, the notion is far more richer and complex in the case of a
rational base p

q since we establish the following.

Theorem II. Let p, q be two coprime integers such that p > q > 1 and z = p
q .

(a) If p 6 2q− 1, then c`(Spanz) is an interval.
(b) If p > 2q− 1, then c`(Spanz) is a Cantor set of measure zero.

As different they may look, Theorems I and II have a common root in the construction of the automa-
ton Sz . The trivial relationship between the bottom word originating at node n + 1 and the top word
originating at node n leads to the connexion between the construction of the transducer Dz and the de-
scription of the set of spans Spanz . The digitwise difference between top and bottom words is written
on the alphabet Dz , and all these ‘difference words’ are infinite branches in the automaton Sz . This is
explained in Section 4. Theorem I is then established in Section 5 and Theorem II in Section 6. The
second case of Theorem II is completed with an upper bound for the Hausdorff dimension of c`(Spanz).
This paper is meant to be self-contained and starts, in particular, with all necessary definitions concerning
rational base number systems in Section 3. We conclude the paper with an open problem on minimal
words which indeed was the motivating force of all this work, and with a conjecture on the Hausdorff
dimension of c`(Spanz).

The present article is a long version of a work (Akiyama et al., 2013) presented at the 9th International
Conference on Words. Most of the results are also part of the thesis of the second author (Marsault, 2016).

2 Preliminaries and notation
2.1 On words and numbers
An alphabet is a finite set of symbols, called letters. A word (resp. an ω-word) is a finite (resp. infinite)
sequence of letters and a language (resp. an ω-language) is a set of words (resp. ω-words). The set of the
words (resp. ω-words) over an alphabetA is denoted byA∗ (resp.Aω). Subsets ofA∗ are called languages
over A and those of Aω are called ω-languages over A. For the sake of clarity, we use the standard math
font for letters and words: a, b, c, d, u, v, w. . . and a bold sans-serif font for ω-words: u, v,w. . . The length
of a word u is denoted by |u| and the concatenation of two words u and v is denoted simply by uv.

If w = uv (resp. w = uv), then u is called a prefix of w (resp. of w); note that the prefixes of word or
of ω-words always are words. We denote by PRE the function A∗ ∪Aω → P(A∗) that maps a word or
an ω-word to the set of all its prefixes; PRE is naturally lifted to languages and ω-languages, that is, to a
function P(A∗)∪P(Aω)→ P(A∗). A language L is said prefix-closed if PRE(L) = L.

Words and ω-words will later be evaluated using a rational base numeration system (defined in Sec-
tion 3). It is then convenient to have a different index convention for words and ω-words: we index (finite)
words from right to left and use 0 as the rightmost index (as in ak · · · a1a0), while ω-words are indexed
from left to right, starting with index 1 (as in a1a2 · · · ).

decreasing (exponentially) with the depth of the node n, hence the span of two nodes cannot be easily compared. In this work, we
only consider the normalised span which is the span multiplied by ( p

q
)k , where k is the depth of the node n.
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In this article, letters always are (relative) integers and we use digit as a synonym for letter. Moreover,
alphabets always are integer intervals, that is, sets of consecutive integers. In particular, our alphabets are
totally ordered, which implies that any set of words is equipped with two total orders: the radix order and
the lexicographic order:

Definition 1. Let u and v be words over A and w their longest common prefix.

(a) u 6lex v if
• either u = w, that is, u is a prefix of v,
• or u = wax and v = wby with a, b in A and a < b.

(b) u 6rad v if
• either |u| < |v|
• or |u| = |v| and u 6lex v.

Let u and v be ω-words over A.

(c) u 6lex v if
• either u = v,
• or, ifw (inA∗) is their longest common prefix, u =wax and v =wby with x, y inAω and a, b

in A such that a < b.

The set of ω-words is classically equipped with the product topology which can also be defined with a
distance.

Definition 2. Let u, v be two infinite words. The distance between these two words is

d(u, v) =


0 if u = v

2−|w| where w is the longest common prefix of u and v, other-
wise.

2.2 On trees, automata and transducers
In this article we consider infinite, directed graphs of a special form. First, there is a special initial vertex
called the root and indicated by an incoming arrow in figures. Second, the edges are labelled over a finite
alphabet. Third, they are deterministic: there is never two different edges originating from the same vertex
and labelled by the same letter. Such graphs are represented by quadruple 〈A, V, i, δ〉 where A is the finite
alphabet, V is the (infinite) vertex-set, δ is a function V ×A→ V is the set of edges. We call such graphs
automata and we use terminology of automata theory; in particular we use state rather than vertex, and
transition rather than edge.

A transition is denoted by s a−−−−A s′, where s, s′ are states and a is a letter. We will consider finite
and infinite paths in these graphs. We refer to infinite paths as branches and refer to finite paths simply as
paths. A branch is thus denoted by s w−−−−A · · · and a path by s u−−−−A s′, where s, s′ denote states, w
an ω-word and u a word. We call dead-end a state with no outgoing transitions; in this article, automata
will have no dead-end.

A run refers to a path starting from the root. The run of u is the unique run labelled by u as a label, if
it exists; in which case u is said to be accepted by the automaton. The language accepted by A, denoted
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by L(A) is the set of the words accepted by A. The notions of ω-run and accepted ω-language (denoted
by Λ(A)) are defined similarly. If A has no dead-end, then L(A) = PRE(Λ(A)).

We call tree an automaton in which every state is reached by exactly one run.
A transducer is an automaton where the labels are taken in a product alphabet A×B; A is the input

alphabet andB the output alphabet. All the transducers we consider are input-deterministic: if s (a,b)−−−−A t
and s (a,b′)−−−−−A t′ then b = b′ and t = t′. They are interpreted as computing functions: the first component
is the input and the second is the output. If (u, v) labels a run of a transducer T , then we say that v is the
image by T of u; by abuse of language, this run will be called the run of u.

With the usual definition of automata and transducers (as for instance in Sakarovitch, 2009) what we call
automaton is indeed an infinite deterministic automaton with all states final and what we call transducer
is indeed an infinite letter-to-letter pure-sequential transducer.

Let us conclude this section with a statement linking the language and the ω-language accepted by an
automaton (more details on the subject in Perrin and Pin, 2004).

Lemma 3. Let A be an automaton with no dead-end and S an ω-language. It holds L(A) = PRE(S) if
and only if Λ(A) = c`(S).

Proof: Forward direction. Let w be an ω-word. The following sequence of equivalences holds.

w ∈ Λ(A) ⇐⇒ PRE(w) ⊆ L(A) ⇐⇒ PRE(w) ⊆ PRE(S)

⇐⇒ ∀u ∈ PRE(w) , ∃su ∈ S u ∈ PRE(su) ⇐⇒ w ∈ c`(S) .

Backward direction. Let u be a word. The following sequence of equivalences holds.

u ∈ L(A) ⇐⇒ ∃w ∈ Λ(A) u ∈ PRE(w) (no-dead-end hypothesis)
⇐⇒ ∃w ∈ c`(S) u ∈ PRE(w) (backward-dir. hypothesis)
⇐⇒ ∃w′ ∈ S u ∈ PRE(w′) (closure definition)
⇐⇒ u ∈ PRE(S) .

3 Rational base numeration systems
In this section, we recall the definition of rational base numeration systems that have been introduced
by Akiyama, Frougny, and Sakarovitch (2008), and the properties of the representation trees that were
established in this paper.

Notation 4. We denote by p and q two co-prime integers such that p > q > 1, and by z the rational
number z = p

q . They will be fixed throughout the article.

Note that the numeration system in base p
q we are about to describe is not the β-numeration where β = p

q .
Indeed, in the latter, the representation of a number is computed by a left-to-right algorithm (called greedy,
cf. Lothaire, 2002, Chapter 7), the digit set is

{
0, 1, . . . ,

⌊
p
q

⌋}
and the weight of the i-th leftmost digit
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is (p
q )i. Meanwhile, in base p

q , the representations are computed by a right-to-left algorithm (Equation (1)),
digits are taken in {0, 1, . . . , (p− 1)} and the weight of the i-th digits is 1

q (p
q )i.
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Fig. 2: The language L 3
2

represented as a tree

3.1 Representation of integers

Given a positive integer N , let us define N0 = N and, for all i > 0,

qNi = pN(i+1) + ai ,

where ai and N(i+1) are the remainder and the quotient of the Euclidean division of qNi by p. Hence ai
belongs to the alphabet Ap = {0, 1, . . . , p− 1}. Since p > q, the sequence (Ni)i∈N is first strictly de-
creasing until it reaches 0: there is an integer k such that N0 > N1 > · · · > Nk > Nk+1 = 0. The
word ak · · · a1a0 of Ap

∗ is denoted by 〈N〉z . Equation (1), below, gives a compact definition of the same
algorithm.

〈0〉z = ε (1a)
∀m > 0 〈m〉z = 〈n〉z a where n ∈ N , a ∈ Ap and qm = pn + a (1b)

If 〈N〉z = akak−1 · · · a0, then it holds

N =

k∑
i=0

ai
q

(
p

q

)i

.
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The evaluation function πz is derived from this formula. The value of any word akak−1 · · · a0 over Ap,
and indeed over any alphabet of digits, is defined by

πz(akak−1 · · · a0) =

k∑
i=0

ai
q

(
p

q

)i

. (2)

A word u in Ap
∗ is called a p

q -expansion of an integer n, if πz(u) = n. Since p
q -expansions are unique

up to leading 0’s (cf. Akiyama et al. 2008, Theorem 1), u is equal to 0i〈n〉z for some integer i and 〈n〉z is
called the p

q -representation of n. The set of the p
q -representations of integers is denoted by Lz :

Lz = {〈n〉z | n ∈ N} . (3)

It follows from (1b) that Lz is prefix-closed and right-extendable. As a consequence, Lz can be rep-
resented as a tree with no dead-end (cf. Figures 2, 3 and later on 6). The node set is N, the root is 0, and
there is an arc n a−−−−A m if 〈n〉za = 〈m〉z .
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Fig. 3: The language L 7
3

represented as a tree

Moreover, the base p
q is the “abstract numeration system” (cf. Lecomte and Rigo, 2001, 2010) built

from Lz , a property that may be stated as follows:

Proposition 5 (Akiyama et al., 2008, Proposition 11). ∀n,m∈N n 6 m ⇐⇒ 〈n〉z 6rad 〈m〉z .

or, equivalently as:

∀u, v ∈ Lz πz(u) 6 πz(v) ⇐⇒ u 6rad v . (4)
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It is known that Lz is not a regular language (not even a context-free language). In fact, it even possesses a
“Finite Left Iteration Property” which essentially says that Lz cannot satisfy any kind of pumping lemma.
Lemma 11, later on, is a consequence of this fact.

Definition 6. (a) Let τz : N×Z→ N be the (partial) function defined by:

∀n ∈ N , ∀a ∈ Z τz(n, a) =

(
np + a

q

)
if (np + a) is divisible by q. (5)

(b) We denote (ii) by Tz the infinite automaton: Tz = 〈Ap, N, 0, τz 〉.

Remark 7. • The function τz is defined on N × Z instead of N × Ap in anticipation of future
developments.
• The automaton Tz is not quite a tree. Indeed, the state 0 (that is, the root) holds a loop labelled by

the digit 0 since τz(0, 0) = 0.

The transitions of Tz are characterised by the following.

∀n,m ∈ N , ∀a ∈ Ap n a−−−−ATz m ⇐⇒ qm = pn + a (6)

Comparing (1) and (6) shows how the difference between Lz and Tz is mostly a question of formalism.
It holds L(Tz) = 0∗Lz and next lemma gives a more precise statement.

Lemma 8. Let u be in L(Tz). Then, πz(u) is in N and 0 u−−−−ATz πz(u) .

Lemma 8 implies that the tree representation of Lz , as in Figures 2, 3 and 6, augmented by an additional
loop labelled by 0 onto the root 0 becomes a representation of Tz . Moreover, since Lz is right-extendable,
the next statement holds.

Lemma 9. Tz has no dead-end.

We now state a few properties of Tz . They are the translations of results due to Akiyama et al. (2008)
into the formalism we use here.

Lemma 10 (Akiyama et al., 2008, Lemma 6). Let n, n′ be two integers. Let k be another integer.

(a) If n and n′ are congruent modulo qk, then for every word u of length k, the following are equivalent.

• There exists an integer m such that n u−−−−A m.
• There exists an integer m′ such that n′ u−−−−A m′.

(b) If there exist two integers m,m′ and a word u of length k such that n u−−−−A m and n′ u−−−−A m′,
then n et n′ are congruent modulo qk.

Lemma 11. Let n w−−−−A · · · be a branch of Tz . If w is periodic, then n = 0 and w = 0ω .

(ii) In Akiyama et al. (2008), Tz denotes an infinite directed tree. The labels of the (finite) paths starting from the root precisely
formed the language 0∗Lz , as is L(Tz) in our case.
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Proof: The hypothesis implies that there is a word u such that n u−−−−A m uω−−−−A · · · is a branch of Tz .
From Lemma 10(b), n and m are congruent modulo q|u|×i for every integer i. Hence n = m. The only
circuit in Tz is 0 0−−−−A 0, hence the statement.

For every integer k let us define the (total) function fk : N → Ap
k in the following way. Equation (6)

implies that every state of Tz (incuding 0) has exactly one incoming transition, hence, by induction on k,
exactly one incoming path of length k: for every integerm, fk(m) = u where u is the label of this unique
path of length k ending in m.

Lemma 12 (Akiyama et al., 2008, Proposition 10). Let m, m′ be two integers. For every integer k, m
and m′ are congruent modulo pk if and only if fk(m) = fk(m′).

Lemma 13. For every integer k, fk is a bijection between any integer interval S of cardinal pk and Ap
k.

Proof: Two integers m,m′ in S are necessarily in different residue classes modulo pk, hence from
Lemma 12, satisfy fk(m) 6= fk(m′). It follows that fk(S) is of cardinal pk.

Applying Lemma 13 to every integer k yields the following.

Lemma 14. Every word in Ap
∗ is the label of some path of Tz .

3.2 Representation of real numbers
Let us define a second evaluation function ρz . It evaluates an ω-word after the radix point (for short a.r.p.)
hence computes a real number. The a.r.p. value of an ω-word w = a1a2 · · · over the alphabet Ap, or
indeed over any digit alphabet, is

ρz(a1a2 · · · ) =
∑
i>1

ai
q

(
p

q

)−i
. (7)

Proposition 15. The function ρz is uniformly continuous.

Let us stress that the function ρz is not order-preserving. Since for every (non integer) rational base p
q ,

q > 2 and p > 3 hold, the following inequalities hold

0(p − 1)0ω <lex 10ω and ρz(0(p − 1)0ω) =
q (p − 1)

p2
>

1

p
= ρz(10ω) .

However, ρz is order-preserving on the ω-language accepted by Tz (Proposition 17 below).

Definition 16. We denote by Wz the ω-language accepted by Tz , that is, Wz = Λ(Tz) .

For instance, Figures 10 and 11(a) (pages 21 and 28) are representations of W 3
2

and W 7
3

as fractal
trees. In these figures, consider a path from the root to a node X labelled by a word u. The node X is
then at the ordinate ρz(u0ω) and is labelled by πz(u). The abscissa has no particular meaning except
that it grows with the length of u. For example, in Figure 10, there is a path starting from the root and
labelled by u = 21; the endpoint of this path is a node labelled by πz(21) = 2 and positioned at the
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ordinate ρ 3
2

(210ω) = 0.888 · · · . Similarly, the run of u = 210 reaches a node labelled by πz(210) = 3

and whose ordinate is also ρ 3
2

(2100ω) = ρ 3
2

(210ω) = 0.888 · · · .

Proposition 17 (Akiyama et al., 2008, Lemma 34). ∀u, v∈Wz ρz(u) 6 ρz(v) ⇐⇒ u 6lex v .

As figures suggest, the set Wz , when projected to R by ρz , produces an interval, as stated below.

Theorem 18 (Akiyama et al., 2008, Theorem 2). The image of Wz by ρz is an interval.

3.3 Bottom and top words
Lemma 9 states that every state n of Tz is the root of an infinite subtree. We now turn our attention to the
ω-words that are the frontiers of these subtrees. Let us first call lower alphabet, and denote by Bz , the set
of the smallest q integers: Bz = {0, 1, . . . , q− 1}.

Definition 19. (a) We call bottom word(iii) of n, and denote by w−n , the smallest ω-word that labels a
branch of Tz originating from n.

(b) Let Botz denote the set of the bottom words: Botz = {w−n | n∈N}.

Example 20. One reads on Figure 2 some bottom words in base 3
2 :

w−1 = 1011000 · · · , w−3 = 11000 · · · and w−4 = 00101 · · ·

Bottom words are characterised by the alphabet they are written on:

Property 21. Botz = Wz ∩Bω
z .

This property will be used under the following form.

Property 22. Let n be in N and u in B∗z . If n u−−−−ATz m , then u is a prefix of w−n .

From Lemma 14 and Property 21 follows the next statement.

Lemma 23. The set Botz is dense in Bz
ω .

Symmetrically, we denote by w+
n the top word (iv) of n, by Topz the set of the top words and call

upper alphabet the alphabet Cz = {p− q, p− q+ 1, . . . , p− 1}. Statements much similar to Property 21,
Property 22 and Lemma 23 could be made about the top words and the upper alphabet.

Example 24. One reads on Figure 2 some top words in base 3
2 :

w+
1 = 1221112 · · · , w+

3 = 11212 · · · and w+
4 = 21112 · · ·

(iii) Bottom words were called minimal words in Akiyama et al. (2008).
(iv) Top words were called maximal words in Akiyama et al. (2008).
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The bottom word of (n+ 1) and the top word of n are related by the function µ : Cz → Bz defined by

µ(c) = c − (p − q) , (8)

and extended to a (letter-to-letter) morphism from Cz
∗ to Bz

∗, and from Cz
ω to Bz

ω .

Lemma 25. For every integer n, w−n+1 = µ(w+
n ).

Proposition 26. Let n,m be two integers and let a be a letter ofAp such that n a−−−−ATz m and n a+ q−−−−ATz
m+

1. Then, ρz
(
(a+ q)w−m+1

)
= ρz(aw+

m).

4 Span-words
The notion of span-word will be central in the proof of both Theorems I and II via the construction of a
new automaton denoted by Sz and obtained from Tz by enlarging, or restricting, the alphabet.

Definition 27. LetDz denote the set of the differences between letters from the upper alphabet and letters
from the lower alphabet:

Dz = Cz − Bz = {d ∈ Z | ∃c ∈ Cz, ∃b ∈ Bz d = c − b} .

The alphabetDz is the integer interval whose cardinal is the odd integer (2q−1), whose largest element
is (p− 1). Its ‘central element’, called middle-point, is p− q:

Dz = {p − (2q − 1), . . . , (p − 1)} .

Property 28. (a) Cz ⊆ Dz .
(b) If p = (2q− 1), then Dz = Ap.
(c) If p < (2q− 1), then Dz ) Ap and contains negative digits.
(d) If p > (2q− 1), then Dz ( Ap; more precisely, Dz is the set of the largest (2q− 1) digits of Ap.

Definition 29. We denote by ⊕ and 	 the digitwise addition and subtraction of words of the same length
respectively, that is,

(ak · · · a1a0) ⊕ (bk · · · b1 b0) = (ak + bk) · · · (a1 + b1)(a0 + b0) ;

(ak · · · a1a0) 	 (bk · · · b1 b0) = (ak − bk) · · · (a1 − b1)(a0 − b0) .

Digitwise addition and subtraction of ω-words are defined similarly.

Property 30. For any w in Dz
∗, there exist u in Bz

∗ and v in Cz
∗ such that w = v 	 u.

Definition 31. (a) We call span-word(v) of n, and denote by s(n), the ω-word w+
n 	 w−n .

(b) We denote by Spwz the set of all span-words: Spwz = {s(n) | n∈N} .
(v) The denomination span-word comes from the a.r.p. value of those ω-words, and will be explained in Section 6 (Definition 55).
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Example 32. In base 3
2 , it reads:

s(1) = w+
1 	 w−1 = (1221112 · · · ) 	 (1011000 · · · ) = 0210112 · · ·

s(3) = w+
3 	 w−3 = (11212 · · · ) 	 (11000 · · · ) = 00212 · · ·

s(4) = w+
4 	 w−4 = (21112 · · · ) 	 (00101 · · · ) = 21011 · · ·

Since bottom words belong to Bz
ω and top words to Cz

ω , it follows:

Property 33. Spwz ⊆ Dz
ω .

Definition 34. Let Sz be the automaton defined by

Sz = 〈Dz, N, 0, τz 〉 ,

where τz is defined by Equation (5) with domain restricted to N×Dz .

The transitions of Sz are characterised by:

∀n,m ∈ N , ∀a ∈ Dz n a−−−−ASz m ⇐⇒ qm = pn + a . (9)

Using (9), it is a routine to show that Lemma 8 extends to Sz .

Lemma 35. Let u be in L(Sz). Then, πz(u) is in N and 0 u−−−−ASz πz(u) .

Example 36. (a) The base 3
2 satisfies p = (2q− 1), hence D 3

2
= A3. In this case, S 3

2
is simply equal

to T 3
2

.

(b) The base 4
3 satisfies p < (2q− 1), hence D 4

3
contains A4 plus some negative digits (here only

one: −1). Transitions are added to T 4
3

in order to build S 4
3

. These transitions are drawn with a
thick line in Figure 7 (page 18).

(c) The base 7
3 satisfies p > (2q− 1), hence D 7

3
is a strict subset of A4. The transitions labelled by the

smallest two letters of A4 are deleted from T 7
3

in order to produce S 7
3

. These transitions are dashed
in Figure 4.

The main result of the section states that Sz accepts the span-words, and more precisely reads as
follows.

Theorem 37. Λ(Sz) = c`(Spwz)

The proof essentially boils down to the linearity of τz (the transition function of Tz and Sz) as expressed
by the next lemma, which follows immediately from (6) and (9).

Lemma 38. Let n,m in N and x, y in Z and suppose that τz(n, x) is defined. Then, τz(m, y) is defined
if and only if τz(n+m, x+ y) is defined.

In this case moreover, τz(n+m, x+ y) = τz(n, x) + τz(m, y).
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Fig. 4: Construction of S 7
3

from T 7
3

, that is, deletion of the transitions labelled by the letters 0 and 1

Proposition 39. Let u be in Bz
∗ and n and m in N such that n u−−−−A m in Tz . Let v be in Cz

∗ of the
same length as u and i and j in N. Then:

(n + i) v−−−−ATz (m + j) ⇐⇒ i v	u−−−−ASz
j . (10)

Proof: First, the statement holds if |u| = |v| = 1: u is then reduced to one letter b of Bz , v to one letter c
of Cz , and v	 u to the letter (c− b) which belongs to Dz . By hypothesis, τz(n, b) is defined and equal
to m, and Lemma 38 yields exactly Equation (10).

The case u = v = ε is trivial. Let us suppose that u = bu′, v = cv′ and that

n b−−−−ATz n′ u′−−−−ATz m .

If i c−b−−−−ASz i′ v′	u′−−−−−ASz
j then n+ i c−−−−ATz n′+ i′ and n′+ i′ v−−−−ATz m+ j , and hence

n+ i cv′−−−−ATz m+ j . And Conversely, if n+ i c−−−−ATz n′+ i′ v′−−−−ATz m+ j then i c−b−−−−ASz i′ and

i′ v	u−−−−ASz
j , and hence i cv′	bu−−−−−−ASz

j .

Theorem 40. Let i be an integer and w a word in Dz
∗. The following are equivalent.

(a) There exists an integer j such that i w−−−−A j is a path of Sz .
(b) There exists an integer n such that w is a prefix of w+

n+i 	 w−n .

Proof: (a)⇒(b). Let u in Bz
∗ and v in C∗z such that w = v 	 u (Property 30).

Since every word inAp
∗ labels a path of Tz (Lemma 14), there exist n andm in N such that n u−−−−A m.

By hypothesis, the path i w−−−−A j is in Sz , and by the choice of u and v, Proposition 39 yields that
(n+ i) v−−−−A (m+ j). Since u is in Bz

∗, it is a prefix of w−n (Property 22). Similarly, v is a prefix
of w+

n+i. Hence, w = v 	 u is a prefix of w+
n+i 	 w−n .
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(b)⇒ (a). Let w be a prefix of w+
n+i 	 w−n . We write u and v for the prefixes of length |w| of w−n

and w+
n+i respectively. Hence it holds w = v 	 u (and v = u ⊕ w). We denote by m and m′ the

endpoints of the paths n u−−−−A m and (n+ i) v−−−−A m′ of Tz . Since (n+ i) > n, it holds m′ > m and
we write j = m′−m. Proposition 39 yields the existence of the path i w−−−−A j in Sz .

Corollary 41. For every n and i in N, the ω-word u = w+
n+i 	 w−n is the label of a branch of Sz

originating in state i.

Theorem 37 is the direct consequence of Theorem 40 with i = 0, together with Lemma 3.

5 On the successor function for bottom words
We now consider the function ξ that maps the bottom word of n to the bottom word of n+1. This function
is related to span-words by the following.

• The span-word of n is the digitwise difference of the top word of n and bottom word of n. In some
sense, it is a way to transform the later into the former.
• The letter-to-letter morphism µ (previously defined in (8)) maps, for all n, the top word of n to the

bottom word of n+ 1.

Using these facts, we define in Section 5.2 a label-replacement function ψ, which we apply to Sz and
obtain a transducer Dz . Finally we show Theorem I, restated below.

Theorem I. Let p, q be two coprime integers such that p > q > 1. The infinite transducer Dz realises the
continuous extension of ξ.

5.1 The function ξ
Definition 42. Let ξ : Botz → Botz be the function that maps w−n onto w−n+1 for every n.

The function ξ is “letter-to-letter”, or “on-line” and “real-time”, as stated by the following.

Lemma 43. Let n and m be two integers. For every integer i, the prefixes of length i of w−n and of w−m
are equal if and only if the prefixes of length i of ξ(w−n ) and of ξ(w−m) are.

Proof: Let u and v be the prefixes of length i of w−n and w−m respectively, and u′ and v′ those of w−(n+1)

and w−(m+1). These four words belong to Bz
∗.

If u= v, then (n ·u) and (m ·u) both exist (in Tz). It follows from Lemma 10(b) that n ≡ m [qi], hence
also (n+ 1) ≡ (m+ 1) [qi]. Moreover, by definition of u′, ((n+ 1) ·u′) exists. Applying Lemma 10(a)
then yields that ((m+ 1) ·u′) exists as well. Since u′ is over the lower alphabet Bz , it is a prefix of w−n+1

(Property 22) hence u′ = v′

Showing that u′ = v′ implies u = v is similar.

Recall that Botz is dense in Bz
ω (Lemma 23). Then, it follows from Lemma 43 that ξ may be extended

by continuity to a bijection Bz
ω → Bz

ω . We still denote this function by ξ. Lemma 43 states that the
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knowledge of the first i letters of an ω-word w is enough to compute the first i letters of ξ(w). In other
words, ξ is realised by an (infinite, letter-to-letter and sequential) transducer.

5.2 Definition of the transducer Dz
Recall that µ : Cz → Bz is the function defined by µ(c) = c− (p− q), for every c in Cz .

Definition 44. We denote by ψ the function from Dz into P(Bz ×Bz) defined by:

ψ(d) =
{ (

b, µ(c)
) ∣∣∣ b ∈ Bz , c ∈ Cz , c − b = d

}
.

The function ψ may be given a more self-contained definition: the function µ extended toDz computes
the (signed) distance µ(d) = d− (p− q) of d to the middle-point of Dz and the set ψ(d) is the set of all
pairs (b, b′) in Bz×Bz whose difference, b′− b, is equal to this distance.

Property 45. ∀d∈Dz ψ(d) =
{

(b, b′)
∣∣ b′− b = d− (p− q)

}
.

The next property follows immediately.

Property 46. For every pair of distinct d and d′ in Dz , ψ(d)∩ψ(d′) = ∅.

Definition 47. Let Dz be the transducer

Dz = 〈Bz × Bz, N, 0, δ 〉 ,

defined by δ(n, (b, b′)) = τz(n, ((b′ − b) + (p− q))) for every n in N and letters b, b′ of Bz . In other
words,

∀n,m ∈ N , ∀b, b′ ∈ Bz n (b,b′)−−−−ADz
m ⇐⇒ n d−−−−ASz m and (b, b′) ∈ ψ(d) ,

that is, Dz is obtained from Sz by substituting every label d by ψ(d).

The transitions of Dz are then also characterised by:

∀n,m ∈ N , ∀b, b′ ∈ Bz n (b,b′)−−−−ADz
m ⇐⇒ qm = pn + (b′ − b) + (p − q) (11)

Example 48. (a) In base 3
2 , the middle-point of Dz is (p− q) = 1 and it reads:

µ(0) = −1 ψ(0) = { 1 |0 }
µ(1) = 0 ψ(1) = { 1 |1, 0 |0 }
µ(2) = 1 ψ(2) = { 0 |1 }

The transducerD 3
2

is shown in Figure 5. Since p = 2q−1, it has the same underlying graph as Tz .
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Fig. 5: D 3
2

(b) In base 4
3 , the middle-point is 1 as well and it reads:

µ(−1) = −2 ψ(−1) = { 2 |0 }
µ(0) = −1 ψ(0) = { 2 |1, 1 |0 }
µ(1) = 0 ψ(1) = { 2 |2, 1 |1, 0 |0 }
µ(2) = 1 ψ(2) = { 1 |2, 0 |1 }
µ(3) = 2 ψ(3) = { 0 |2 }

Figures 6, 7 and 8 sum up the construction of D 4
3

.

(c) In base 7
3 , D 7

3
= {2, 3, 4, 5, 6}, its middle-point is 4 and it reads:

µ(2) = −2 ψ(2) = { 2 |0 }
µ(3) = −1 ψ(3) = { 2 |1, 1 |0 }
µ(4) = 0 ψ(4) = { 2 |2, 1 |1, 0 |0 }
µ(5) = 1 ψ(5) = { 1 |2, 0 |1 }
µ(6) = 2 ψ(6) = { 0 |2 }

The transducer D 7
3

is shown in Figure 9; its inaccessible part is dashed out.

5.3 Behaviour of Dz
The transducer Dz is locally bijective, as both the underlying input and the underlying output automata
are complete deterministic automata. More precisely:



18 Shigeki Akiyama, Victor Marsault, Jacques Sakarovitch

0 1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

3 2 1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

Fig. 6: The language L 4
3

0 1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

3 2 1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0 −1

−1

−1
−1

−1

Fig. 7: Transforming T 4
3

into S 4
3

0 1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0 |2
0 |1
1 |2

0 |0
1 |1
2 |2

1 |0
2 |1

0 |2

0 |1
1 |2

0 |0
1 |1
2 |2

0 |2

0 |1
1 |2

0 |0
1 |1
2 |2

0 |2

0 |1
1 |2

0 |0
1 |1
2 |2

1 |0
2 |1

0 |2

1 |0
2 |1

1 |0
2 |1

0 |1
1 |2

0 |0
1 |1
2 |2

2 |0

2 |0
2 |0

2 |0

1 |0
2 |1

2 |0

Fig. 8: The transducer D 4
3



On subtrees of the representation tree in rational base numeration systems 19

0 1

2

3

4

6

8

9

10

11

15

16

5

7

12

13

14

1 |0
2 |1

1 |0
2 |1

2 |0

2 |0
1 |0
2 |1

0 |2

0 |1
1 |2

0 |0
1 |1
2 |2

0 |2

0 |1
1 |2

0 |2

0 |0
1 |1
2 |2

Fig. 9: The transducer D 7
3

Lemma 49. For every state n of Dz and every letter x in Bz , there exist:

(a) a unique transition n (b,x)−−−−ADz
m , and (b) a unique transition n (x,b′)−−−−−ADz

m′ .

Proof: (a) From (11), n (b,x)−−−−ADz
m exists if and only if qm = pn+x− b+ p− q , that is, if and only

if
qm + b = pn + x + p − q . (12)

The unicity of the pair (m, b) in (12) follows, since b is in Bz = {0, 1, . . . , q− 1}.
A similar reasoning yields (b).

Corollary 50. For every state n of Dz and every ω-word w in Bz
ω , there exist:

(a) a unique ω-word u in Bz
ω such that n (u,w)−−−−ADz

· · · , and

(b) a unique ω-word v in Bz
ω such that n (w,v)−−−−ADz

· · · .

Corollary 51. The transducer Dz realises a bijection: Bz
ω → Bz

ω .

For every i in N, we define the transducer Dz, i obtained from Dz by changing the initial state 0 into
the state i:

Dz, i = 〈Bz × Bz, N, i, δ 〉 .

Theorem I is the direct consequence of the following more general statement.

Theorem 52. For every integer n, Dz, i accepts the pair (w−n ,w
−
n+i+1).
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Proof: Let us write:

w−n = b1 b2 · · · (an ω-word over Bz)

w+
n+i = c1 c2 · · · (an ω-word over Cz)

w+
n+i 	 w−n = u = a1a2 · · · (an ω-word over Dz)

w−n+i+1 = b′1 b
′
2 · · · (an ω-word over Bz)

By Corollary 41, the ω-word u is the label of a branch of Sz originating from the state i. We write:

i a1−−−−ASz m1
a2−−−−ASz m2

a3−−−−ASz · · ·

For every index k, µ(ck) = b′k (Lemma 25). Hence (bk, b
′
k) = (bi, µ(ck)) satisfies the three conditions:

bk ∈Bz , ck ∈Cz and ak = ck − bk ; in other words, (bk, b
′
k) belongs to ψ(ak) (Definition 44).

It then follows from Definition 47 of Dz that the following branch exists in Dz :

i (b1,b
′
1)−−−−−ADz

m1
(b2,b

′
2)−−−−−ADz

m2
(b3,b

′
3)−−−−−ADz
· · ·

In other words, Dz,i accepts the pair (w−n ,w
−
n+i+1).

In particular, Theorem 52 implies, for i = 0, that Dz accepts every pair (w−n ,w
−
n+1), for n in N.

Since Dz is letter-to-letter (Definition 47), it realises a continuous function; since its domain is Bz
ω

(Corollary 51) and since Botz is dense in Bz
ω (Lemma 23), Dz realises ξ : Bz

ω → Bz
ω . This concludes

the proof of Theorem I.

6 The set of spans
The proof of Theorem I draws the attention to the ω-words s(n) = w+

n 	 w−n and naturally to their
evaluation by the function ρz . For every integer n, let us write un = 〈n〉z; the real number ρz(un s(n)) is
the length of the interval of the real line delimited, so to speak, by the ‘end-points’ of the ω-words unw−n
and unw+

n when the representation trees are drawn in a fractal way, as in the first Figure 1 or in the
following Figure 10.

Of course, this value will decrease exponentially with the length ` of un and a reasonable ‘renormal-
isation’ consists in considering the value ρz(s(n)) instead, which we call the span of n. In the case of
a classical integer base numeration system, this notion is obviously uninteresting as this value is 1 for
every n. And it is as easy to observe, for instance on Figure 10, that in a rational base numeration system,
distinct integers may have distinct spans.

In this section we study the topological structure of the set of spans in a given system, and show that it
depends upon whether z = p

q is larger than 2 or not (Theorem II).

6.1 Span of a node
Notation 53. For every integer n, we denote by Vn the set of all ω-words w such that n w−−−−A · · · is a
branch of Tz:

Vn = 〈n〉z
−1Wz =

{
w
∣∣∣ (〈n〉zw) ∈Wz

}
.
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Fig. 10: Fractal drawing of real number representations in base 3
2

Note that V0 = Wz and that for every integer n, the ω-words w−n and w+
n belong to Vn. Theorem 18

states that ρz(V0) is an interval, and next proposition extends it to any Vn.

Proposition 54. ρz(Vn) =
[
ρz(w−n ), ρz(w+

n )
]

Proof: For readability, we write un = 〈n〉z and let ` = |un|. From the Definition 19 of bottom and top
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words, every word w in Vn satisfies

w−n 6lex w 6lex w+
n hence unw

−
n 6lex unw 6lex unw

+
n .

Conversely, since the prefix of length ` of any ω-words v such that unw−n 6lex v 6lex unw
+
n is un, it

holds:
unVn =

{
v ∈Wz

∣∣ unw−n 6lex v 6lex unw
+
n

}
.

Since ρz preserves order on Wz (Proposition 17), it follows that ρz(unVn) is an interval since ρz(Wz) is
an interval.

For any ω-word v, it holds:

ρz(unv) = ρz(un0ω) +

(
p

q

)−`
ρz(v) hence ρz(v) =

(
p

q

)`

ρz(unv) −
(
p

q

)`

ρz(un0ω) .

It follows that ρz(Vn) is the image of the interval ρz(unVn) by an affine transformation, hence an interval.

Definition 55. (a) For every integer n, we call span of n, and denote by σ(n), the length of the inter-
val ρz(Vn): σ(n) = ρz(w+

n )− ρz(w−n ) = ρz(s(n)) .
(b) We denote by Spanz the set of spans: Spanz = {σ(n) | n∈N} = {ρz(s(n)) | n∈N} .

Since the function ρz is continuous, and Λ(Sz) = c`(Spwz) (Theorem 37), the next statement holds.

Theorem 56. ρz(Λ(Sz)) = c`(Spanz).

The topological properties of the set c`(Spanz) ⊂ R depend on whether p is smaller or greater
than 2q− 1.(vi) Before stating the result, let us recall a definition. A bounded closed set that is nowhere
dense and has no isolated point is called a Cantor set. The classical ternary Cantor set is of measure zero,
but it is not necessarily the case of all Cantor sets (cf. Kechris, 1995).

Theorem II. Let p, q be two coprime integers such that p > q > 1 and z = p
q .

(a) If p 6 2q− 1, then c`(Spanz) is equal to the interval ρz(Wz).
(b) If p > 2q− 1, then c`(Spanz) is a Cantor set of measure zero.

The two parts of Theorem II are shown independently in Section 6.2 and Section 6.3.
Beforehand, we give a characterisation of c`(Spanz) that holds in all cases but the status of which lies

in between the two parts of Theorem II. For small bases, its proof uses a result from the next Section 6.2
and, this part of the statement is never applied in the following. For large bases, the proof is easy but
will be used in the proof of Theorem II(b) later on. Recall that Dz is the integer interval whose length
is 2q− 1 and whose largest element is p− 1 (Definition 27).
(vi) It could seem simpler to write: ‘whether z is smaller or greater than 2’ which is logically equivalent since z = 2 defines an

integer base rather than a rational base. But this would hide that the true border case is when p = 2q− 1 and this case behaves
sometimes like p < 2q− 1 — as here in Theorem II — and sometimes like p > 2q− 1 — as in Theorem 3 in Akiyama et al.
(2008). Note also that p and q coprime and p > 2q− 1 imply p > 2q+1.
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Proposition 57. c`(Spanz) = ρz(Wz ∩ Dz
ω)

Proof: If p 6 2q − 1, then Ap ⊆ Dz (Properties 28(c) and (b)), hence Wz ⊆ Ap
ω ⊆ Dz

ω . It follows
that Wz ∩Dz

ω = Wz . We will see in the next Section 6.2 (Proposition 60) that ρz(Λ(Tz)) = ρz(Λ(Sz)).
Finally, Theorem 56 concludes the proof in this case:

c`(Spanz) = ρz(Λ(Sz)) = ρz(Λ(Tz)) = ρz(Wz) = ρz(Wz ∩ Dz
ω) .

If p > 2q−1, Sz is built from Tz by deleting the transitions labelled byAp \Dz . An ω-word w ofAp
ω

is accepted by Sz if and only if 1) it is accepted by Tz and 2) every digit of w belongs to Dz . In other
words:

Λ(Sz) = Wz ∩ Dz
ω .

Since by Definition 16, Wz = Λ(Tz), Theorem 56 concludes the proof.

6.2 The span-set in small bases ( p 6 2q− 1 )
First, we show that the shortest run reaching a given state n has the same length in Tz and in Sz , that is,
the fact that in this case Sz is obtained from Tz by adding new transitions does not allow nevertheless any
‘shortcuts’.

Lemma 58. Let u be in L(Sz) and m = πz(u). If p 6 2q− 1, then |〈m〉z| 6 |u|.

Proof: By induction over the length of u. The case u = ε is trivial. Let u = u′d be a non-empty
word over Dz that is accepted by Sz . If πz(u) = 0, then the lemma holds; we assume in the following
that πz(u) > 0.

We denote the run of u as follows:

0 u′−−−−ASz n d−−−−ASz m .

Lemma 35 yields that n = πz(u′) and m = πz(u) > 0. From induction hypothesis, it holds

|〈n′〉z| 6 |u′| . (13)

Since z is a small base,Ap is included inDz . The remainder of the proof depends on whether d belongs
to Ap or to Dz \Ap.

Case 1: d ∈ Ap. Then, the transition n d−−−−A m exists in Tz (in addition to existing in Sz). Since
moreover m 6= 0, it follow that

〈m〉z = 〈n〉z d and hence |〈m〉z| = |〈n〉z d| 6 |u′ d| = |u| .

Case 2: d /∈ Ap. The digit d belongs to Dz \Ap, hence is negative (Property 28(c)). We apply the Eu-
clidean division algorithm tom (Equation (1b) sincem> 0): there exists a unique pair (n′, a) in (N×Ap)
such that 〈m〉z = 〈n′〉za. Thus, the state m has in Sz the two incoming transitions n′ b−−−−A m and
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n a−−−−A m. Hence from Equation (9), qm is both equal to n′p+ b and np+ a. Since a is negative and b
is not, n′ < n. Moreover, since representation in base p

q preserves order (Proposition 5)

〈n′〉z 6rad 〈n〉z hence, |〈n′〉z| 6 |〈n〉z| . (14)

Finally, we conclude Case 2 by applying in succession the definition of (n′, a), and Equations (14) and
(13):

|〈m〉z| = |〈n′〉z a| = |〈n′〉z| + 1 6 |〈n〉z| + 1 6 |u′| + 1 = |u| .

Corollary 59. For every u in L(Sz), there exists v in L(Tz) such that

πz(u) = πz(v) and |u| = |v| .

Proof: With notation of Lemma 58, let v = 0i〈m〉z with the suitable number i of 0’s.

Next, we show that although Sz accepts more ω-words than Tz , the extra accepted ω-words do not
bring new a.r.p. values.

Proposition 60. If p 6 2q− 1, then ρz(Λ(Tz)) = ρz(Λ(Sz)).

Proof: Since p 6 2q− 1, Ap is included in Dz . It follows that every transition of Tz also appears in Sz
and every ω-word of Λ(Tz) thus belongs to Λ(Sz) hence ρz(Λ(Tz)) ⊆ ρz(Λ(Sz)).

Let w be an ω-word in Dz
ω that is accepted by Sz . For every integer i, we denote by wi the prefix

of w of length i. From Corollary 59, there exists a finite word vi accepted by Tz such that |vi| = i
and πz(vi) = πz(wi). Since Tz has no dead-end (Lemma 9), there exists an ω-word ui ∈ Λ(Tz) that
features vi as prefix.

For every integer i, the ω-words w and ui have respective prefixes of length i with the same value. It
follows that

Abs (ρz(w) − ρz(ui)) <

∞∑
n=i+1

Card(Ap) + Card(Dz)

q

(
p

q

)−i
.

Hence, (ρz(ui)) tends to ρz(w) when i tends to infinity. Besides, since ρz(Λ(Tz)) is a closed set
(Theorem 18), ρz(w) belongs to ρz(Λ(Tz)). In other words, there exists an ω-word v in Λ(Tz) such
that ρz(v) = ρz(w). Hence, ρz(Λ(Tz)) ⊇ ρz(Λ(Sz)).

Proof of Theorem II (a): Theorem 56 and Proposition 60 imply

c`(Spanz) = ρz(Λ(Sz)) = ρz(Λ(Tz)) , (15)

and ρz(Λ(Tz)) is a closed interval by Theorem 18.
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6.3 The span-set in large bases ( p > 2q− 1 )
In order to prevent any misinterpretation in case of cursory reading, we repeat the hypothesis p > 2q−1
in every statement. The proof is divided in two parts: Proposition 64 and Proposition 69. Let us recall
first that the set c`(Spanz) is closed and bounded and then the following two properties that hold in large
bases.

Property 61. We assume p > 2q− 1.

(a) Every state n of Tz has at least
⌊
p

q

⌋
outgoing transitions.

(b) The digits of Dz are strictly positive.

Lemma 62. We assume p> 2q−1. For every integer n, it holds 0<γz 6 σ(n)6 ωz , where ωz = ρz(w+
0 )

and γz = ρz(qw−1 ).

Proof: We denote by X the set consisting of the ω-words of Wz that do not start with the digit 0.
Hence w+

0 and qw−1 are respectively the greatest and the least ω-word of X in the lexicographic ordering.
From Proposition 17 then follows that ρz(X) is a subset of [γz, ωz].

On the other hand, it follows from Proposition 57 that σ(n) belongs to ρz(Wz ∩Dz
ω). From Prop-

erty 61(b),Dz does not contain the digit 0, hence Λ(Sz)⊆X and it holds: σ(n)∈ρz(X)⊆ [γz, ωz] .

Lemma 63. We assume p > 2q − 1. For every integer n, there exist in Sz two branches originating
from n that are labelled by ω-words with distinct a.r.p. values.

Proof: We write w = w+
n . Since Cz is included in Dz (Property 28(a)), all the transitions of the

branch n w−−−−A · · · of Tz also exists in Sz .
Since w is the label of a branch of Tz , Lemma 11 yields that it is not equal to (p−q)ω . (Recall that p−q

is the smallest letter ofCz .) Thus, there exists a digit a∈Cz , a > p−q, a prefix u of w and two states n′,m
such that

n u−−−−ASz n′ a−−−−ASz m .

The integer (a− q) is greater than p− (2q− 1) (and smaller than p− 1), hence a letter of Dz . Then, the
definition of Sz (Equation (9)) implies that

n′ a−q−−−−ASz (m − 1)

We denote by v the word v = u(a− q)w+
m−1, which labels a branch originating from n.

Proposition 26 (page 12) implies that the words v = u(a− q)w+
m−1 and uaw−m have the same a.r.p.

value. Hence it holds

ρz(w) − ρz(v) = ρz(uaw+
m) − ρz(uaw−m) =

(
p

q

)−|ua|
σ(m) .

Since z is a large base, every span is positive (Lemma 62) and the lemma holds.
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Proposition 64. If p > 2q− 1, the set c`(Spanz) contains no isolated point.

Proof: Let x be a real number in c`(Spanz). There exists an ω-word w = a0a1 · · · ai · · · accepted by Sz
such that ρz(w) = x. We denote its ω-run in Sz as follows:

0 = n0
a1−−−−ASz n1

a2−−−−ASz n2
a3−−−−ASz · · ·

Let k be a positive integer. We apply the previous Lemma 63 to nk : there exist two ω-words that label
branches originating from nk and that have different a.r.p. values. One of them must have a value distinct
from ρz(ak+1ak+2 · · · ); we denote this ω-word by v. We moreover write vk = a1a2 · · · ak v which then
satisfies the following.

vk ∈ Λ(Sz) (16)
ρz(vk) 6= ρz(w) (17)

vk and w have the same prefix of length k (18)

Theorem 56 yields that ρz(Λ(Sz)) = c`(Spanz) and Equation (16) that ρz(vk) belongs to c`(Spanz).
From (17), ρz(vk) indeed belongs to

(
c`(Spanz) \ {x}

)
.

From (18), the sequence (vk)k∈N tends to w. Finally, since ρz is continuous, (ρz(vk))k∈N is a sequence
of c`(Spanz) \ {x} which tends to ρz(w) = x.

It remains to show that c`(Spanz) is of measure zero. Let us first recall the classical proof that the
Ternary Cantor set K3 has measure 0. The set K3 is obtained from the interval I0 = [0, 1] by successive
refinements. At step n, In is a finite union of intervals Jn,j , every Jn,j is divided in three intervals of
equal length, and In+1 is obtained by subtracting from each Jn,j the (open) middle interval. The measure
of In, that is, the sum of the lengths of the disjoint Jn,j is

(
2
3

)n
. The In form an infinite decreasing

sequence of sets, K3 =
⋂

n∈N In and its measure is the limit of the sequence
(
2
3

)n
, hence 0. The proof

of part (b) of Theorem II follows the same scheme, loaded with some technicalities.

Lemma 65. We assume p > 2q− 1. Let i be an integer such that bzci > 2q. Then, for every integer n,
there exists an integer m and a path n −−−−ATz m in Tz of length i that does not exists in Sz .

Proof: Property 61(a) states that every state has at least bzc outgoing transitions in Tz . Hence every state
is the origin of at least bzci distinct paths of length i.

Let n be a state and S the set of the states reachable from n in i steps. The cardinal of S is greater
than 2q (previous paragraph) and S is an integer interval. Hence S mod p visits at least 2q different
residue classes modulo p. Since the function mapping the residue classes of a state s and the label of
the unique incoming transition of s in Tz . The incoming transitions of the states of S are labelled by at
least 2q distinct letters. At least one of these letters does not belong to Dz (since it is of cardinal 2q− 1);
we denote by a this letter and by m a state of S the incoming transition of which is labelled by a. The last
transition of the path from n to m in Tz is deleted in Sz .

For every finite word u in PRE(Wz) = 0∗Lz , we denote by Zu the set of the ω-words that are accepted
by Tz and that start with u: Zu = u(u−1Wz). It is related to the sets Vn (Notation 53) by the following:

∀u ∈ PRE(Wz) Zu = uVn where n = πz(u) .
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Moreover, we denote by Iu the set of the a.r.p. values of these words: Iu = ρz(Zu). It then follows from
the previous equation and Proposition 54 that

∀u ∈ PRE(Wz) Iu =
[
ρz(uw−n ), ρz(uw+

n )
]

where n = πz(u) . (19)

When the base p
q is large, Iu is never reduced to a single element since (ρz(uw−n )− ρz(uw−n )) is equal

to (p
q )−|u|σ(n), a positive real from Lemma 62. Note also the following properties satisfied by these

intervals:

∀u, v ∈ PRE(Wz) u is a prefix of v =⇒ Iu ⊆ Iv . (20)

∀u, v ∈ PRE(Wz) Iu ∩ Iv is non-trivial =⇒
{

either u is a prefix of v
or v is a prefix of u (21)

∀u ∈ PRE(Wz) Iu =
⋃

a∈Ap

ua∈PRE(Wz)

Iua . (22)

We denote by I the set of all the intervals Iu,

I =
{
Iu | u ∈ PRE(Wz)

}
, (23)

and by refine the function P(I)→ P(I) defined as follows.

∀S ∈ P(I) refine(S) =
{
Iud

∣∣∣ Iu ∈ S , ud ∈ PRE(Wz) and d ∈ Dz

}
(24)

In (24), the variable d is taken in Dz whereas in (22) the variable a is taken in Ap. When z is a large
base, Dz is strictly included Ap, hence refine is a refinement function:

∀S ∈ P(I)

 ⋃
I∈refine(S)

I

 ⊆
⋃
I∈S

I .

Figure 11(b) shows the successive applications of function refine to Iε in the large base z = 7
3 . Hashed

segments contain the points that are removed by the last application of refine.

Lemma 66. We assume that p > 2q − 1. Let S0 = {Iε} and for every integer j, Sj+1 = refine(Sj).
Moreover, for every integer j we write Uj =

(⋃
I∈Sj I

)
. Then, it holds⋂

j>0

Uj = c`(Spanz) .

Proof: Right inclusion. Let x be in c`(Spanz) and w a word in c`(Spwz) such that ρz(w) = x. From
Theorem 37, w∈Λ(Sz). We fix an integer j and denote by u the prefix of length j of w, hence u belongs
to Dz

∗. Inductively applying Equation (24) yields that

Sj = refine j(S0) = {Iv | v ∈ Xj} ,
with Xj =

{
v ∈ Dz

∗ ∩ PRE(Wz)
∣∣ |v| = j

}
.
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It may be verified that u belongs to Xj , hence Iu to Sj . Since by definition Iu = ρz(Zu) and w ∈ Zu,
the number x = ρz(w) belongs to Iu hence to Uj . Since j was taken arbitrarily, it follows that x belongs
to
⋂

j>0 Uj . Hence, it holds ⋂
j>0

Uj ⊇ c`(Spanz) .

Left inclusion. Let x be a real number of
⋂

j>0 Uj . For every integer j, the number x belongs to Uj ,
hence to some interval Iuj

of Sj , where uj ∈Dz
∗ and |uj | = j. Therefore, there exists an ω-word wj

in Wz that starts with uj and that evaluates a.r.p. to x. In particular, note that the first j letters of wj

belong to Dz .
The topology on Ap

ω implies that every infinite sequence has a convergent sub-sequence. We denote
by w the limit of an arbitrary convergent sub-sequence of (wj)j∈N. Since Wz is closed, w is a word
of Wz . Since for every integer j, the first j letters of wj belong to Dz , w also belongs to Dz

ω . Since ρz
is continuous, ρz(w) = x and then, x belongs to ρz(Dz

ω ∩Wz). Finally, Proposition 57 yields that⋂
j>0

Uj ⊆ ρz(Dz
ω ∩Wz) = c`(Spanz) .

We denote by ` the Lebesgue measure on R. Then, from (19), it holds

∀u ∈ PRE(Wz) `(Iu) =

(
p

q

)−|u|
σ(n) where n is such that 0 u−−−−ATz n . (25)

Applying Lemma 62 then implies the following.

Lemma 67. If p > 2q− 1, then for every u∈ PRE(Wz), it holds

0 < γz z
−|u| 6 `(Iu) 6 ωz z

−|u| ;

(recall that γz = ρz(qw−1 ) and ωz = ρz(w+
0 )).

By abuse of notation, we use ` on elements of P(I) with the following meaning

∀S ∈ P(I) `(S) = `

(⋃
I∈S

I

)
. (26)

Lemma 68. If p > 2q−1, there exists a positive integer i and a real number α, 0 < α < 1, such that for
every word u∈ PRE(Wz),

`
(

refine i(Iu)
)

6 α`(Iu) .
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Proof: We choose i as in Lemma 65. Let u be a word of PRE(Wz). We denote by k the length of u and
by n the state reached by the run of u in Tz . Then, from (24) and the contrapositive of (21), it holds

`
(

refine i(Iu)
)

= `

( ⋃
w∈X

Iuw

)
=

∑
w∈X

`(Iuw)

where X =
{
w ∈ Dz

∗ ∣∣ |w| = i, uw ∈ PRE(Wz)
}

.

Then, Equation (22) yields that

`
(

refine i(Iu)
)

= `(Iu) −
∑
w∈Y

`(Iuw)

where Y =
{
w ∈ Ap

∗ ∣∣ w /∈ Dz
∗, |w| = i, uw ∈ PRE(Wz)

}
.

Now, we apply Lemma 65 to n : there exists a state m and a word v of length i > 0 such that the
path n v−−−−A m exists in Tz but does not exists in Sz . Hence, v features a digit that belongs to Ap \Dz .
It follows that v belongs to Y , hence that the following holds.

`
(

refine i(Iu)
)

6 `(Iu) − `(Iuv)

6 `(Iu)

(
1 − `(Iuv)

`(Iu)

)
6 `(Iu)

(
1 − z−|uv|γz

z−|u|ωz

)
(Using Lemma 67)

6 α`(Iu) with α = 1 − z−i γz
ωz

Since γz and ωz are positive, then α < 1. Since i is positive and γz 6 ωz , then α > 0.

Proposition 69. If p > 2q− 1, then c`(Spanz) is of measure zero.

Proof: Let (Uj)j∈N be the sequence defined in Lemma 66. Let i, α be the two parameters from Lemma 68.
Applying the later yields

∀k ∈ N `(Uki) < αk `(U0) . (27)

Since the sequence
(
Uj

)
j∈N is decreasing by inclusion, the sequence

(
`(Uj)

)
j∈N is decreasing. Then,

(27) implies that the later sequence tends to 0 when j tends to infinity. Finally, the set c`(Spanz), which
is the limit of the sequence

(
Uj

)
j∈N (Lemma 66), is of measure zero.

Hausdorff dimension One can go further in the comparison between the Cantor sets and the span-
sets, and investigate their Hausdorff dimension which give more accurate information on their topological
structure (cf. Falconer, 2014). It is known that the Hausdorff dimension of the Ternary Cantor set K3

is ln 2
ln 3 . Generalization of the construction that yieldsK3, in which k parts out of n are kept usually results

in sets with Hausdoff dimension ln k
lnn . In the case of c`(Spanz), we keep “in average” 2q− 1 parts out
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of p, and one could expect a Hausdorff dimension of ln(2q−1)
ln p . We show below that this dimension is

indeed strictly smaller.
Given a set F , the d-dimensional Hausdorff measure of F is defined by

Hd(F ) = lim
ε→0

inf

{ ∑
i

ri
d

∣∣∣∣∣ there is a countable cover of F by balls B0, B1, . . .
such that for every i, Bi has radius ri and ri < ε.

}
.

Then, the Hausdorff dimension of F is defined by:

dimH(F ) = inf
{
d > 0

∣∣Hd(F ) = 0
}

.

Proposition 70. If p> 2q−1, then
ln 2

ln p− ln q
is an upper bound for the Hausdorff dimension of c`(Spanz).

Proof: We compute indeed an upper bound for the Minkovski, or box-counting dimension, which is known
to be an upper bound for the Hausdorff dimension. Let r be a positive real number. We denote by N(r)
the minimal number of interval of length r required to cover c`(Spanz). Let d be a positive real number.
The remainder of the proof consists in majoring N(r)rd.

In the process of deleting edges from Tz to build Sz , there are at most two surviving edges coming out
from every node. Hence, at the depth i of Sz , there are at most 2i nodes accessible from the root. We fix i
as follows:

i =

⌈
lnωz − ln r

ln z

⌉
(28)

Note in particular that from Lemma 67, it holds:

∀u ∈ PRE(Wz) , |u| = i `(Iu) < ωzz
−i < r .

Hence, one interval of length r is enough to cover Iu and then

N(r) < 2i 6 2

(
lnωz−ln r

ln z + 1
)

= η
(
r
)− ln 2

ln z with η = 2
ωz+ln z

ln z

Hence, rdN(r) is smaller than a constant times r
(
d− ln 2

ln z

)
. If moreover d > ln 2

ln z , then N(r)rd tends to 0
when r tends to 0. Since for every real r, we may cover c`(Spanz) with N(r) intervals of length r, it
holds

∀d >
ln 2

ln z
Hd(c`(Spanz)) 6 lim

r→0
N(r)rd = 0 .

In all cases different from z = 5
2 , the bound ln 2

ln z is better (smaller) than the bound ln(2q−1)
ln p that was

inspired by the example of Cantor sets. This can be seen by means of some classical (though sometimes
tedious) computations. The case z = 5

2 is dealt with in a very similar way. In this case, every node in Tz
possesses at most 3 surviving paths of length 2 that remains in Sz . This yields a bound ln 3

2 ln 5
2

which is

easily checked to be smaller than the corresponding bound ln 3
ln 5 .
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7 Conclusion
We have seen with Theorem I that the function ξ, which transforms a bottom word of Tz into another one,
is realised by a transducer which is so to speak built upon Tz itself. To tell the truth, we had in mind a
stronger property when we began this work.

All bottom words of Tz are distinct. But we conjecture that they all share something in common, that
they are all of the ‘same kind’. Two infinite words would be considered very naturally to be of the same
kind if they can be mapped one to the other by a finite state machine. It is obviously the case for w−n
and w−m if one is a suffix of the other, that is, if m is a node that is reached from n by its bottom word. We
conjectured it is the case for every pair of integers n and m but were not able to prove it. We thus leave it
as an open problem:

Problem 71. Prove, or disprove, the following statement:
Let p, q be two coprime integers such that p > q > 1 and z = p

q . For every integer n, there exists
a finite letter-to-letter and cosequential transducer En (which depends also on z of course) such that
En(w−n ) = w−n+1 .

Another problem that is left open by this work is the computation of the Hausdorff dimension of the
set c`(Spanz) in the cases where p > 2q − 1, along the line of Proposition 70. We have seen that in
this cases the set c`(Spanz) may be described in a way comparable to the construction of the classical
ternary Cantor set. As a result, both sets have similar topological properties (closed, bounded, empty
interior, no isolated point, Lebesgue-measure zero). This comparison hence suggests that the Hausdorff
dimension of c`(Spanz) could be ln(2q−1)

ln p . We showed an upper bound that is strictly smaller than this
last value. The exact computation of the Hausdorff dimension seems to be more difficult and is the subject
of ongoing work by the authors. The first attempts lead to the following conjecture.

Conjecture 72. If p > 2q− 1, then the Hausdorff dimension of c`(Spanz) is equal to ln(2q−1)−ln q
ln p−ln q .
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V. Berthé and M. Rigo, editors. Combinatorics, Automata and Number Theory. Number 135 in Encyclo-
pedia Math. Appl. Cambridge University Press, 2010.

K. J. Falconer. Fractal geometry: mathematical foundations and applications. Wiley, third edition edition,
2014. ISBN 978-1-119-94239-9.

A. S. Kechris. Classical Descriptive Set Theory. Springer, 1995.

P. Lecomte and M. Rigo. Numeration systems on a regular language. Theory Comput. Syst., 34:27–44,
2001.

P. Lecomte and M. Rigo. Abstract numeration systems, chapter 3, pages 108–162. In Berthé and Rigo
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