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Abstract. Let p
q

be a rational number. Numeration in base p
q

is defined by a function

that evaluates each finite word over Ap = {0, 1, . . . , p− 1} to a rational number. We let Np
q

denote the image of this evaluation function. In particular, Np
q

contains all nonnegative

integers and the literature on base p
q

usually focuses on the set of words that are evaluated

to nonnegative integers; it is a rather chaotic language which is not context-free. On the
contrary, we study here the subsets of (Np

q
)d that are p

q
-recognisable, i.e. realised by finite

automata over (Ap)d. First, we give a characterisation of these sets as those definable in a
first-order logic, similar to the one given by the Büchi-Bruyère Theorem for integer base
numeration systems. Second, we show that the natural order relation and the modulo-q
operator are not p

q
-recognisable.

1. Introduction

Let p and q be two coprime integers such that p > q > 1, hence p
q is an irreducible

fraction greater than 1. The base-pq (numeration system) was introduced in [AFS08].

The study of such rational base numeration systems have enabled progress to be made
in solving deep problems from number theory (Josephus and Mahler problems [Aki08]).
Like other numerations systems, base p

q gives a way to represent numbers by words, and

to evaluate words to numbers. Here, we consider only finite words over the canonical
alphabet Ap = {0, 1, . . . , p− 1}; it is the smallest digit-set X such that all nonnegative
integers have representations using only digits from X.

One paradox of base p
q is that simple number-sets are represented by complicated lan-

guages and that simple languages are evaluated to complicated number sets. For instance, N
is represented by a rather chaotic language, L p

q
, that does not fit well in the usual hierarchy

of formal languages. On the other hand, the evaluations of all words over Ap form a set of
numbers, N p

q
, which is hard to describe arithmetically.
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Literature on base p
q mostly focuses on L p

q
. It is not a context-free language [AFS08] and

even defeats any kind of iteration lemma [MS13]. However, there is a very simple periodic
procedure to generate L p

q
that is similar to a breadth-first search [MS17]. Some effort have

also been made to study L p
q

from the perspective of combinatorics on words (frequency of

patterns, sum-of-digit function, etc. [MST13, EOvA17, Dub09]).
On the contrary, there has been little work on N p

q
. Here, we start exploring this area by

studying the subsets of
(
N p

q

)
d that are realised by finite automata reading synchronously

on d tapes. We call such sets p
q -recognisable. In the original article introducing base p

q

[AFS08], it is shown that addition is p
q -recognisable (in fact, normalisation of representations

from any finite alphabet). This is a strong property which, in the case of integer base b
leads to the following characterisation of b-recognisable sets.

Theorem 1.1 (Büchi–Bruyère Theorem [BHMV94]). A subset of Nd is b-recognisable if
and only if it is definable in the first-order logic FO [N,+, Vb], where Vb is the function that
maps n to the greatest power of b that divides n.

Similar statements are also known for other numeration systems (e.g. Pisot U-systems,
Pisot β-numerations) and in other settings (e.g. characterising the sets of infinite words
realised by Büchi automata) [Cha18]. In the present article, we show such a logic characteri-
sation of p

q -recognisable sets, stated below.

Theorem 1.2. A subset of
(
N p

q

)
d is p

q -recognisable if and only if it is definable in the

first-order logic FO
[
N p

q
,+, V p

q

]
, where V p

q
is the function N p

q
→ N p

q
that maps x to the

greatest power of p
q that one may divide x by and obtain a quotient in N p

q
.

It could seem strange that in our case, the universe is N p
q

instead of N. However,

since L p
q

is not a regular language, the classical generalisation of Theorem 1 to rational

base would clearly not hold. Note also that something is hidden in this statement. In
most numerations systems, natural order may be expressed using addition (y 6 z may be
expressed by ∃x, x+ y = z) and the proofs of the logic characterisations (e.g. the one of
Theorem 1.1) rely on this fact. On the contrary, this is not true in base p

q (see below) and

we introduce another pre-order relation (denoted by E) in our proof.

Very little is known about the expressive power of automata with respect to base p
q . In

section 4, we begin to investigate this area. First, we show that the natural order relation
over N p

q
is not p

q -recognisable. This is quite surprising since 1) the contrary is true in almost

all numeration systems, and 2) the natural order relation over N is recognised by a trivial
finite automaton, provided that we are ensured that input words belong to L p

q
.

Second, we consider the modulo-n operator, where n is an integer constant. This class
of operators is related to the periodic subsets of N which, since the work of Cobham, have a
particular place within the study of numeration systems. In fact, most numeration systems S
are such that 1) N is “S-recognisable”, and 2) periodic subsets of N are S-recognisable.
(These properties hold if S belongs to the very large class of regular abstract numeration
systems [LR10].) In base p

q , neither Item 1 nor 2 hold; it is not surprising since the relevant

set of numbers is N p
q

rather than N. By definition, the set N p
q

is p
q -recognisable, and the

last part of this work is about adapting Item 2.
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If n is coprime with q, then the modulo-n operator is easy to generalise as a function
N p

q
→ Z/nZ and we show that it is p

q -recognisable (Corollary 4.7). On the other hand, when n

is not coprime with q, no generalisation of the modulo-n operator is obvious. Nevertheless,
we show that there is no p

q -recognisable set that separates qN from its complement in N
(Proposition 4.8). It follows that no generalisation of the modulo-n operator would be
p
q -recognisable if n is a multiple of q (Corollary 4.10).

2. Preliminaries

2.1. Words, automata. An alphabet A is a finite set of symbols, called indifferently letters
or digits. A word over A is a finite sequence u = ak−1 · · · a1a0 of letters from A. We let |u|
denote the length of u, that is |u| = |ak−1 · · · a1a0| = k. For each i, 0 6 i 6 |u|, we denote the
prefix of u of length i by Prefi(u) that is Prefi(u) = ak−1 . . . ak−i; similarly Suffi(u) =
ai−1 . . . a0 denotes the suffix of u of length i. We denote the set of all words over A by A∗ and
subsets of A∗ are called languages over A. The set A∗ is endowed with the concatenation,
usually denoted implicitly as in uv, or explicitly by a middle dot when it helps readability,
as in u · v.

A (deterministic) automaton A is defined by a 5-tuple A= 〈A, QA, iA, δA, FA〉, where A
is an alphabet, QA is a finite set of states, iA ∈QA is the initial state, δA : QA×A→ QA is
the (partial) transition function and FA ⊆ QA is a set of final states. As usual, we extend δA
as a function QA×A∗ → QA by δA(q, ε) = q and δA(q, au) = δA(δA(q, a), u). We call the
run of u, if it exists, the sequence of states reached during the execution of A on u, namely,
the finite sequence (δA(iA,Prefi(u)))06i6|u|; in particular, the phrase the run of u reaches

state s means that δA is defined on (iA, u) and that δA(iA, u) = s. A word u is said to
be accepted by A if its run exists and reaches a final state; the accepted language of A,
denoted by Lang(A) is the set of the words accepted by A. An automaton is complete if its
transition function is total.

It is sometimes more convenient to have an automaton read number representations
most significant digit first (MSDF), and sometimes least significant digit first (LSDF). Since
the position of a digit is meaningful for evaluation, we try to keep consistent the indexing
of words throughout the article, hence we want to avoid mirroring words and languages.
Thus, we say that an automaton is left-to-right if it reads its input in a normal fashion, and
right-to-left if it reads its input from right to left. Since we usually represent numbers MSDF
(cf. Section 2.3), left-to-right automata work on MSDF representations, while right-to-left
automata work on LSDF representations. In a right-to-left automaton, the function δA is
actually generalised as δA(q, ua) = δA(δA(q, a), u), and the run of a word u refers to the
state sequence (δA(iA,Suffi(u)))06i6|u|.

We will always consider automata in relation with a rational base numeration system,
hence automata will all be over the alphabet (Ap)

d for some number d of tapes. (Rational

bases and the digit set Ap are defined in Section 2.3.) A word u in
(
A d
p

)∗
may be divided

component-wise as u = (u0, u1, . . . , ud−1) where u0, u1, . . . , ud−1 are words in (Ap)
∗ that are

of equal length.
The digit 0 always belongs to Ap and when d is clear from context, we let 0 denote the

letter (0, . . . , 0) which is part of A d
p . Moreover, we say that a d-tape automaton is padded if

for every word u in
(
A d
p

)∗
, u is accepted by A if and only if 0 ·u is also accepted. Intuitively,
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a padded automaton accepts words by value; indeed, the i-th component of u and of 0 ·u
have the same value. In the following, we will exclusively consider automata that are padded.

2.2. First-order logic. We briefly recall the definition of first-order formulas. Let X be
a countable set of variables. Let Ω be a set called the domain, let

(
fi
)
i∈I be a family of

functions, let
(
Rj
)
j∈J be a family of relations on Ω, and

(
ck
)
k∈K be a family of constants

in Ω. We let

FO
[
Ω,
(
fi
)
i∈I ,

(
Rj
)
j∈J , (ck

)
k∈K

]
(2.1)

denote the logic in which terms and formulas are defined recursively as follows.

• Each constant ck, with k∈K, and each variable x∈X is a term.
• If fi is a n-ary function and t0, . . . , tn−1 are terms, then fi(t0, . . . , tn−1) is a term.
• If t and t′ are two terms, then t = t′ is a formula.
• If Rj is a n-ary relation and t0, . . . , tn−1 are terms, then Rj(t0, . . . , tn−1) is a formula.
• If ϕ is a formula, then ¬ϕ is a formula.
• If ϕ and ψ are formulas, then ϕ ∧ ψ, ϕ ∨ ψ and ϕ→ ψ are formulas.
• If ϕ is a formula and x is a variable, then ∃x ϕ and ∀x ϕ are formulas

A variable x is called free in a formula ϕ if it appears outside the scope of any quantifier ∃x
or ∀x. If a formula ϕ has d free variables, we usually make them explicit by writing ϕ
as ϕ(x0, x1, . . . , xd−1).

We do not define in all generality the interpretation of relations, functions and formulas
since we will always use the straightforward interpretations. Hence we assume that it is
clear what it means for a closed formula to be true and we say that a subset S of Ωd is
defined by the formula ϕ if the following holds.

S =
{
z ∈ Ωd

∣∣∣ ϕ(z) is true in Ω
}

(2.2)

2.3. Rational base numeration systems. Let p and q be two coprime integers such
that p > q > 1; they will be fixed throughout the article. Note that p

q is thus an irreducible

fraction greater than 1. We define below base-pq (numeration system) ; for more details

see [FS10, Mar16]. Let us stress that it is not the special case of a β-numeration where β is
a rational number.

2.3.1. Evaluation. The canonical alphabet associated with base p
q , denoted by Ap, is the

set Ap = {0, 1, . . . , p−1}. The evaluation function maps every word u = ak−1 · · · a1a0
in (Ap)

∗ to a rational number as follows.

Val(u) = Val(ak−1 · · · a1a0) =

k−1∑
i=0

ai
q

(
p

q

)i
(2.3)

The number Val(u) is called the value of u. Note that the value of a word may be computed
recursively: for every u,w∈ (Ap)

∗, the following holds.

Val(uw) = Val(u0|w|) + Val(w) (2.4a)

= Val(u)

(
p

q

)|w|
+ Val(w) (2.4b)
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Figure 1. N 3
2
, built by successive refinements

Notation 2.1. We let N p
q

denote the image of the evaluation function: N p
q

= Val ((Ap)
∗).

The set N p
q

is hard to describe in another way than its definition, and in general little is

known about it. Of course, Equation (2.3) implies that N p
q

contains only rational numbers

that have for denominator a power of q. Moreover, one may show that for a given power qk,
only finitely many numbers in N

qk
do not belong to N p

q
(see [MS13] or Lemma 4.3, later on).

Example 2.2. Figure 1 gives an intuition of the content of N p
q

for base 3
2 : the k-th line

represent N p
q
∩ N
qk

and each number n
qk

in N p
q

is represented by a black segment of length 1
qk

centred around abscissa n
qk

; in each line, the highlighted segment always represents the

number 5. The figure highlights the fact that as we refine the approximation of N p
q
, more

and more holes appear in a seemingly chaotic fashion.

2.3.2. Representation. Given a number x, we call expansion of x any word u in (Ap)
∗ such

that Val(u) = x. By definition, each number in N p
q

has at least one expansion, and it is

known that it is unique up to leading 0’s:

Theorem 2.3 [AFS08]. If two words u and v in (Ap)
∗ are such that Val(u) = Val(v) and

|u| 6 |v|, then 0iu = v for some nonnegative integer i.

We call representation of x and let Rep(x) denote the unique expansion that does not
start by the digit 0. Similarly, a d-tuple x = (x0, . . . , xd−1) in

(
N p

q

)
d is represented by the
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unique word Rep(x) = u = (u0, . . . , ud−1) in
(
A d
p

)∗
that does not start by 0 and such that

every ui belongs to 0∗Rep(xi).
Every integer belongs to N p

q
and its representation may be computed by the following

right-to-left algorithm.1

Rep(0) = ε (2.5a)

∀m ∈ N, m > 0 Rep(m) = Rep(n) · a where

{
n ∈ N, a ∈ Ap
qm = pn + a

(2.5b)

Notation 2.4. We let L p
q

denote the set of the representations of nonnegative integers, that

is L p
q

= Rep(N)

As briefly recalled in the introduction, L p
q

has been well studied; in the present work we

will use only the following two properties: L p
q

is prefix-closed (follows from (2.5)) and it is

not a regular language (cf. [FS10, Mar16]). Note that 0∗L p
q

is also a prefix-closed language

that is not regular.

2.3.3. p
q -recognisable sets. Let us now define for base p

q a notion analogous to the one

of b-recognisable sets defined in the context of an integer base b [BHMV94].

Definition 2.5. Let d be a positive integer and S a subset of
(
N p

q

)
d.

(a) A d-tape automaton A is said to realise S if Lang(A) =
(
0
)∗
Rep(S).

(b) S is said p
q -recognisable if it is realised by some automaton.

Note that item (a) implies in particular that A is padded and that, since the expansions
of a number are equal up to leading 0’s, A accepts by value: Lang(A) = Val−1(S).

Example 2.6. N p
q

is p
q -recognisable since Val−1(N p

q
) = (Ap)

∗, but N is not since Val−1(N) =

0∗L p
q

is not a regular language.

Theorem 2.7 [AFS08]. Addition is p
q -recognisable.

Since it is central to our logic characterisation, we give without proof the definition
of C p

q
, the 3-tape right-to-left automaton that realises addition in base p

q .

C p
q

=
〈
A 3
p , QC , iC , δC , FC

〉
, (2.6a)

where the state set is QC = {0, . . . ,m} with m= 1 +
⌊
p−2
p−q

⌋
; the initial state is iC = 0; the

final-state set is FC = {0}; and the transition function is defined as follows.

∀s∈QC , ∀(a, b, c)∈A 3
p δC(s, (a, b, c)) = s′ if q s+ a+ b = p s′+ c (2.6b)

For instance, Figure 2 shows C p
q

for base 3
2 .

Note that δC is not a total function. In fact, if s, a and b are fixed, there is exactly
one c in Ap such that δC(s, (a, b, c)) is defined. Hence, for each length i, there is exactly
word ui of length i such that δC

(
s, (0i, 0i, ui

)
is defined. Moreover, if i >m, it may be shown

that δC
(
s, (0i, 0i, ui

)
= 0. In particular, the following holds.

1An algorithm computing Rep(x), for x in N p
q

and beyond, is given in [FK12].
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Figure 2. C 3
2
, a 3-tape right-to-left automaton that realises addition in

base 3
2

Property 2.8. N p
q

is stable by addition : ∀x, y ∈N p
q

x+ y ∈N p
q
.

2.3.4. Different definition of rational bases. In this article, we use the original definition of
rational bases [AFS08]. In [FK12], the author define them differently. Let us stress that the
two definitions are not equivalent, although they define two objects that are close. Each
has properties that the other has not, hence one object is more convenient than the other
depending on the context.

To make things precise, we give below the evaluation of a word u = ak−1 · · · a0 in (Ap)
∗,

as defined in [FK12].

Val[FK12](u) = Val[FK12](ak−1 · · · a0) =
k−1∑
i=0

ai

(
p

q

)i
= q Val(u)

With this definition, the (rather strange) factor 1
q from Equation (2.3) does not appear. The

representation algorithm is modified as follows (the difference is underlined).

Rep[FK12](0) = ε

∀m ∈ N \ {0} Rep[FK12](m) = Rep[FK12](n) · a where

{
n ∈ N, a ∈ Ap
qm = pn + qa
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Finally, note that these changes propagate to other objects such as the one below.

N
[FK12]
p
q

def
= Val[FK12] (Ap)

∗ = qN p
q

( N p
q

L
[FK12]
p
q

def
= Rep[FK12](N) = Rep

(
1

q
N
)

= L p
q
· Ap ) L p

q

The main statements of this article (that is, Theorem 1.2, Proposition 4.5, 4.6, 4.9, and
their corollaries) also hold, mutadis mutandis, for this alternative notion of rational base
numeration systems.

3. Characterisation of p
q -recognisable sets

The purpose of section 3 is to show our main result. We restate it after a few definitions.

Definition 3.1.

(a) We let V p
q

denote the function N p
q
→ N p

q
that maps 0 to 0, and every positive x to

(
p
q

)k
,

where k is the largest exponent such that x
(
p
q

)−k
belongs to N p

q
.

(b) Let d be an integer and S be a subset of
(
N p

q

)
d. We say that S is p

q -definable if it is

defined by some formula in FO
[
N p

q
,+, V p

q

]
.

Theorem 1.2. A set is p
q -recognisable if and only if it is p

q -definable.

The forward direction of Theorem 1.2 is shown in Section 3.2 (Proposition 3.11) and
the backward direction in Section 3.3 (Proposition 3.12). First, we show some preliminary
results in Section 3.1.

3.1. Constants and the length preorder are p
q -definable.

Property 3.2. Let x be a number in N p
q

such that x 6= 0, and let i be a nonnegative integer.

The following are equivalent.

(a) There exists a letter a∈Ap, a 6= 0, such that a0i is a suffix of Rep(x).

(b) It holds V p
q
(x) =

(p
q

)i
= Val(q0i).

Proof. We denote the representation of x by Rep(x) = ua0i with a 6= 0. From (2.4), it

holds Val(ua) = x
(p
q

)−i
; this number thus belongs to N p

q
. On the other hand, if x

(p
q

)−(i+1)
belonged in N p

q
, it would be represented by some word w, and then w0i+1 would be an

expansion of x, a contradiction to the uniqueness of representation (Theorem 2.3). Hence,

V p
q
(x) =

(p
q

)i
. The other direction is similar.

Lemma 3.3. Every constant c in N p
q

is p
q -definable.

Proof. First, let us show that there is a formula that realises the natural order relation
over V p

q
(N p

q
), that is over the image of V p

q
, using the addition relation.

Claim 3.3.1. Let x, y be two numbers in V p
q
(N p

q
). There exists z ∈N p

q
such that x = y+ z

if and only if x > y.
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Proof of the claim.

• The forward direction is immediate.
• Backward direction. The case x = 0 and the case y = 0 are trivial. If x 6= 0 and y 6= 0 the

representations of x and y are respectively written as Rep(x) = q0i and Rep(y) = q0j

for some nonnegative integers i and j. Hypothesis implies that i > j and it may be
verified that z = Val((p− q)i−j0j) satifies x = y+ z.

The number 0 is the neutral element for addition, hence the set {0} is defined by the
following formula.

zero(x) := ∀y x + y = y

Claim 3.3.1 allows us to define the set {1} with the following formula.

one(x) := V p
q
(x) = x ∧ ∀y

(
V p

q
(y) = y → (zero(y) ∨ ∃z x + z = y

)
)

Then, for every other number z in N p
q
, written as z = n

m , the set {z} is p
q -definable by the

following formula.

constantz(x) := ∃y one(y) ∧ y + y + · · · + y︸ ︷︷ ︸
n times

= x + x + · · · + x︸ ︷︷ ︸
m times

(Note that the formula constantz is well formed for any z∈Q. However, if z does not belong
to N p

q
, this formula defines the empty set.)

Since all constants are p
q -definable, in the following, we use in formulas, directly numbers

as terms. For instance we will write ϕ(x, y) := x+ p
q = y instead of ϕ(x, y) := ∃z constant p

q
(z)∧

x+ z = y.

Definition 3.4. We denote the length preorder over N p
q

by E : for every x, y ∈N p
q
, we

write x E y if |Rep(x)| 6 |Rep(y)|.
The remainder of this subsection 3.1 is dedicated to showing that relation E is definable

in FO
[
N p

q
,+, V p

q

]
(Proposition 3.8). The general idea is that 1) the natural order is

p
q -definable if it is restricted to the set of the numbers whose representations use only

the digit (p− 1), and 2) the function that maps a number x ∈N p
q

to (p− 1)|Rep(x)| is

also p
q -definable.

Definition 3.5. Let us define a formula alla(x), for each letter a∈Ap, a 6= 0. Equation (3.1)
defines the case a = (p− q) and Equation (3.2) the other cases.

allp−q(x) := ∃z V p
q
(z) = z ∧ x+ 1 = z (3.1)

alla(x) := ∃y x + x + · · · + x︸ ︷︷ ︸
p−q times

= y + y + · · · + y︸ ︷︷ ︸
a times

∧ allp−q(y) (3.2)

Lemma 3.6. For each a∈Ap, a 6= 0, formula alla(x) defines the set
{
x∈N p

q

∣∣∣ Rep(x)∈ a∗
}

.

Proof.

(1) Case a = p− q. First, note that Equation (3.3), below, is a direct consequence of how
carry is propagated in base p

q . See the definition of the additionner (Equation (2.6));

and recall that the number 1 is represented by the one-letter word q in base p
q .

∀x ∈ N p
q
, n ∈ N Rep(x) = (p − q)n =⇒ Rep(x + 1) = q0n (3.3)



12:10 V. Marsault Vol. 17:3

• Forward direction. Let x be a number in N p
q

such that allp−q(x) holds. Equation (3.1)

implies that the number z = x+ 1 is equal to (pq )i, for some nonnegative integer i,

hence written Rep(z) = q0i. From (3.3), the number x′ = Val((p− q)i) is such that
x′+ 1 = z, hence x = x′. Since p

q -representation is unique up to leading zeroes, it

holds Rep(x) = (p− q)i.
• Backward direction is a direct consequence of (3.3).

(2) Case a 6= p− q (and a 6= 0). Let x be a number in N p
q

and n be a non-negative integer.

The following equivalences conclude the proof.

Rep(x) = an ⇐⇒ x = Val(an) ⇐⇒ p − q
a

x = Val((p − q)n)

⇐⇒ Rep

(
p − q
a

x

)
= (p − q)n (3.4)

(Note that in (3.2), the equality already implies that y is necessarily equal to p−q
a x, if

this number indeed belongs to N p
q
.)

We now define a formula that enables to mask the actual value of a number, but keeps the
length of its representation. Effectively, it replaces each digit by p−1 (that is, by the greatest
digit). This is done in two steps: mask(x, z) is true if there is a word w such that Val(w) = x
and Val(w′) = z, where w′ is the word resulting from replacing every digit in w by p−1;
note that w may contain leading 0’s. We say that z masks x if mask(x, z) is true. Then,
smallest-mask(x, y) is true if y is the smallest mask of x, that is, if it is masked by every
mask of x.

mask(x, z) := allp−1(z) ∧ ∃y x + y = z (3.5)

smallest-mask(x, y) := mask(x, y) ∧ ∀z mask(x, z) → mask(y, z) (3.6)

Now, let us show that mask has the intended behavior.

Lemma 3.7. Let x and y be two numbers in N p
q
.

(a) It holds mask(x, z) if and only if Rep(z) belongs to (p−1)∗ and |Rep(z)| > |Rep(x)|.
(b) It holds smallest-mask(x, y) if and only if it holds y = Val((p−1)n), with n = |Rep(x)|.
Proof.

(a) We write u = Rep(x) and n = |u|.
• Forward direction. Obviously, Rep(z) is equal to (p−1)m for some m; it remains to

show that m > n. The definition of the additioner (Equation (2.6)) implies that no
transition coming in state 0 outputs the digit 0, except the (0, 0, 0) loop. In other
words, the representation of a sum is never shorter than the representation of one of
the operands.
• Backward direction. Let m be the nonnegative integer such that (p−1)m = Rep(z),

hence by hypothesis we have m > n. Let am−1 · · · a1a0 = 0m−nRep(x). For each
integer i, 0 6 i < m, the number (p− 1− ai) belongs to {0, 1, . . . , p−1}, hence is a
digit in Ap. Hence, the word w = (p− 1− am−1) · · · (p− 1− a1)(p− 1− a0) belongs
to (Ap)

∗ and y = Val(w) belongs to N p
q
. It is clear that x+ y = z since no carry will

be risen during this addition; hence y is the witness that mask(x, z) holds.
(b) From Item (a), any number with representation (p−1)n may be reduced to any number

with representation (p−1)m if n > m. The statement follows.
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Now, all is set to show that relation E is p
q -definable.

Proposition 3.8. The relation E is definable in FO
[
N p

q
,+, V p

q

]
.

Proof. Let us show that the following formula defines E.

Φ(x, y) := ∃x′ ∃y′ smallest-mask(x, x′) ∧ smallest-mask(y, y′) ∧ mask(x′, y′)

• Forward direction. Let x, y ∈ N p
q

be two numbers such that Φ(x, y) is true. From

Lemma 3.7b, the following two equations hold.

x′ = Val (p − 1)n with n = |Rep(x)|
y′ = Val (p − 1)m with m = |Rep(y)|

From Lemma 3.7a, since mask(x′, y′) is true, it holds n 6 m, hence x E y.
• Backward direction. Let x, y ∈N p

q
be two numbers such that x E y. We let n and m

denote the length of the representation of x and y, respectively; hence n 6 m. The
numbers x′ = Val((p− 1)n) and y′ = Val((p− 1)m) are the witnesses that Φ true.

3.2. Every p
q -recognisable set is p

q -definable. Section 3.2 is dedicated to the proof

of Proposition 3.11. It is adapted from the proof of Theorem 1.1 given in [BHMV94].
The main idea is to code the run of a d-state automaton, that is a sequence of elements
from {0, 1, . . . , d− 1}, by a d-tuple of numbers in

(
N p

q

)
d. The p

q -representations of the

numbers in the d-tuple contain only 0’s and 1’s, and are the characteristic functions of
the respective state. For instance, with d = 4, the sequence (s0, s1, s2, s3, s4, s5, s6) =
(3, 0, 3, 1, 1, 1, 1) is coded by the 4-tuple (x0, x1, x2, x3)∈

(
N p

q

)
4 defined by the following.

(Rep(x0),Rep(x1),Rep(x2),Rep(x3)) = (10, 1111000, ε, 101) (3.7)

Indeed, the digit at position 0 in Rep(x3) is 1 because s0 = 3; the digit at position 1
in Rep(x0) is 1 because s1 = 0, etc.

Definition 3.9, below, gives a few relations and functions that will be useful in the proof
and Lemma 3.10 shows that they are p

q -definable. In particular, it gives the formula that

computes the digit at a given position in the representation of a given number. First, let
us clarify what we mean by position in a representation. Let x be a number in N p

q
, the

representation of which we write Rep(x) = an−1 · · · a1a0. For every nonnegative integer i,
the digit at position i in Rep(x) refers to ai if i < n, and to 0 otherwise.

Definition 3.9.

(a) Let W p
q

be the function N p
q
→ N p

q
that maps 0 to 0 and every positive x to Val(10i),

where i is the integer such that Rep(x) = ua0i, with a 6= 0.
(b) We write β(x) if x if the representation of x belongs to the language 10∗.
(c) Similarly to x E y, we write x C y if |Rep(x)| < |Rep(y)|.
(d) For each digit a∈Ap, we let ∗a(y, z) denote the multiplication-by-a-digit relation: it

holds ∗a(y, z) and z = a× y.
(e) For each digit a∈Ap, let digita(x, y) be the relation that holds if β(y) and if a is the

digit at position i in Rep(x), where i is the position of the unique digit 1 in Rep(y).

Lemma 3.10. Functions and relations from Definition 3.9 are all p
q -definable.
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Proof.
(a) W p

q
(x) = z := V p

q
(x) = z+ · · ·+ z︸ ︷︷ ︸

q times

If x = 0, the above formula is obviously correct. Otherwise, from Property 3.2, it holds

V p
q
(x) =

(p
q

)i
and z = 1

q

(p
q

)i
. Equation (2.3) yields that z = Val(10i).

β(x) := W p
q
(x) = x ∧ ¬(x = 0)(b)

x C y := x E y ∧ ¬(y E x)(c)

∗a(y, z) := z = y + · · · + y︸ ︷︷ ︸
a times

(d)

It is a routine to show that the formula defined by (b), (c) and (d) are correct.

(e) digita(x, y) :=

β(y)︸︷︷︸
(i)

∧ ∃` ∃m ∃r

( (ii)︷ ︸︸ ︷
x = ` + m + r ∧

(iii)︷ ︸︸ ︷
∗a(y,m)

∧
(
` = 0 ∨ y CW p

q
(`)
)

︸ ︷︷ ︸
(iv)

∧ r C y︸ ︷︷ ︸
(v)

)

Assume that digita(x, y), as defined by (e) is true. Term (i) implies that there is an
integer i such that Rep(y) = 10i. The variable `, m and r will contain the left, mid-
dle and right parts of x where the split is done at position i of the representation of x.
Term (iii) ensures that Val(a0i) = m. Term (iv) ensures that there is a word u∈ (Ap)

∗ such
that Val(u0i+1) = `. Term (v) ensures that Rep(r) = v for some word v such that |v| 6 i.
Then, (ii) implies that

x = Val(u0i+1) + Val(a0i) + Val(v) = Val(ua0jv) where j = i − |v| .
Hence, the digit at position i in Rep(x) is a.

Conversely, let x be any number in N p
q

and y be a number in N p
q

such that y = 1
q

(p
q

)i
for some integer i. For k great enough, we factorise 0kRep(x) as uav where u and v are
two words in (Ap)

∗ such that |v| = i, and a is a letter in Ap. The values ` = Val(u),
m = Val(a0i) and r = Val(v) will be the witnesses that digita(x, y), as defined by (e) is
true.

Now, let us show the forward direction of Theorem 1.2, restated below.

Proposition 3.11. Every p
q -recognisable set is p

q -definable.

Proof. Let S be a subset of
(
N p

q

)
d that is p

q -recognisable, hence realised by a d-tape

automaton A. We let m denote the number of states in A. Without loss of generality, we
assume that A is right-to-left, complete, that the state-set is {0, 1, . . . ,m− 1} and that the
initial state is 0. We moreover denote by F the set of final states and by δ the transition
function. In summary, A = 〈A d

p , {0, 1, . . . ,m− 1}, 0, δ, F 〉 .

Let x = (x0, x1, . . . , xd−1) be a d-tuple of numbers. The formulas will describe the run
of the word u = Rep(x). First, we introduce a variable k equal to Val(10K) where K is
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the length of u. Hence, K is equal to the max of the lengths |Rep(x0)|, . . . , |Rep(xd−1)|.
Second, we introduce one variable per state of A, denoted by s0, s1, . . . , sm−1. The proof
consists in proving that, for every integer n, 0 6 n 6 |u|,

∀i, 0 6 i < m,

the digit at position n in Rep(si) is

{
1 if the run of Suffn(u) reaches state i
0 otherwise

where Suffn(u) is the suffix of u of length n. (3.8)

Equation (3.9), below, gives the formula Λ(···) that defines k.

Λ(x0, x1, . . . , xd−1, k) :=

β(k) ∧

(
d−1∧
i=0

xi C k

)
∧

(
∀j

(
β(j) ∧ j C k

)
→

d−1∨
i=0

j E xi

)
(3.9)

Claim 3.11.1. The formula Λ(x0, x1, . . . , xd−1, k) is true if and only if k = 1
q

(
p
q

)K
, where

K = max
{
|Rep(xi)|

}
06i<d.

Proof of the claim. It is a routine to establish the following equivalence.

• The formula β(k) is true if and only k = 1
q

(
p
q

)K′
, where K ′ = (|Rep(k)| − 1).

• The formula
∧d−1
i=0 (xiC k) is true if and only if it holds |Rep(k)| > |Repxi|, for each i,

0 6 i < d.

• The formula
(
∀j

(
β(j) ∧ jC k

)
→
∨d−1
i=0 (jExi)

)
is true if and only if, for each J < K,

there exists i such that |Rep(1q (pq )J)| 6 |Rep(xi)|.
Claim 3.11.1 immediately follows.

Equation (3.10), below, defines ξ(···) expressing that 0 is the initial state.

ξ(s0, s1, . . . , sm−1) := digit1

(
s0,

1

q

)
∧

m−1∧
i=1

digit0

(
si,

1

q

)
(3.10)

Claim 3.11.2. The formula ξ(s0, . . . , sm−1) is true if and only if Equation (3.8) holds
for n = 0.

Proof of the claim. Recall that 1
q = Val(1). Hence ξ(s0, s1, . . . , sm−1) is true if and only if

both

• the digit at position 0 in Rep(s0) is 1, and
• for each i, 0 < i < m, the digit at position 0 in Rep(si) is 0.

This concludes the proof of Claim 3.11.2 since 0 is the initial state.

Provided that k is of the form k = 1
q

(
p
q

)K
, Equation (3.11), below, defines Φ(···) which is

true if the run of SuffK(u) reaches a final state. (Recall that F is the set of final states.)

Φ(s0, s1, . . . , sm−1, k) :=
∨
i∈F

digit1(si, k) (3.11)

The following claim immediately follows.
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Claim 3.11.3. The formula (Λ(x0, x1, . . . , xd−1, k) ∧ Φ(s0, s1, . . . , sm−1, k)) is true if and
only if the following two conditions hold.

(a) k = 1
q

(
p
q

)K
, where K = max

{
|Rep(xi)|

}
06i<d

(b) There exists an integer i∈F , such that the digit at position K in si is 1.

Equation (3.12), below, defines ∆(···) that will ensure that Equation (3.8) is inductively
satisfied. (Recall that δ is the transition function of A).

∆(x0, · · · , xd−1, s0, · · · , sm−1, j) :=

∃h

p times︷ ︸︸ ︷
j + · · · + j =

q times︷ ︸︸ ︷
h + · · · + h∧

a=(a0,··· ,ad−1)∈A d
p

06 i<m

((
digit1(si, j) ∧

d−1∧
`=0

digita`(x`, j)
)

→
(
digit1(sδ(i,a), h) ∧

∧
06 g <m
g 6= δ(i,a)

digit0(sg, h)
))

(3.12)

Claim 3.11.4. Let J be a nonnegative integer. We assume that Equation (3.8) holds for
n = J , and we write j = 1

q (pq )J . The formula ∆(x0, · · · , xd−1, s0, · · · , sm−1, j) is true if and

only if Equation (3.8) holds for n = (J + 1).

Proof of the claim. Since Equation (3.8) holds for n = J , there is exactly one integer i
in {0, . . . ,m− 1} such that digit1(si, j) is true; and i is the state reached by the run
of SuffJ(u), the suffix of length J of u. Moreover for each `, 0 6 ` < d, we let b` denote
the digit such that digitb`(x`, j) is true. Finally, we write i′ = δ(i, (b0, . . . , bd−1)), or, in
other words, i′ is the state reached by the run of Suff(J+1)(u).

In this context, ∆(x0, · · · , xd−1, s0, · · · , sm−1, j) is equivalent to the following.

∃h j + · · · + j︸ ︷︷ ︸
p times

= h + · · · + h︸ ︷︷ ︸
q times

∧
(
digit1(si′ , h) ∧

∧
06 g <m
g 6= i′

digit0(sg, h)
)

The first conjunct is true if and only if h = Val(10J+1), hence the whole formula is true if
and only if both

• the digit at position J + 1 in Rep(si′) is 1; and
• the digit at position J + 1 in Rep(sg) is 0 if g 6= i′.

This concludes the proof of Claim 3.11.4.

Finally, Equation (3.13) gives the formula Ω(···) of the logic FO
[
N p

q
,+, V p

q

]
that defines

the set S. We use x and s has shorthand for (x0, x1, . . . , xd−1) and (s0, s1, . . . , sm−1).

Ω(x0, x1, . . . , xd−1) :=

∃k ∃s Λ(x, k) ∧ ξ(s) ∧ Φ(s, k) ∧ ∀j
((
β(j) ∧ j C k

)
→ ∆(x, s, j)

)
(3.13)

It follows from the previous claims that Ω(···) defines the set S, concluding the proof of
Proposition 3.11.
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each (a, 0)
a ∈ Ap

(0, 0)

each (a, q)
a ∈ Ap \ {0}

Figure 3. Right-to-left automaton that realises V p
q

3.3. Every p
q -definable set is p

q -recognisable. The backward direction of Theorem 1.2

is proved in a very classical way. We only give a sketch of the proof. It amounts to showing
that 1) each atomic set or relation of the logic is realised by an automaton 2) the inductive
constructs of first-order formulas preserves p

q -recognisability. For more details, see for

instance [BHMV94].

Proposition 3.12. Every p
q -definable set is p

q -recognisable.

Sketch of proof. Let A be a d-tape complete automaton that realises a d-free-variable for-
mula Φ.

(1) The set defined by the formula ¬Φ(x) is realised by the automaton resulting from
inverting final and non-final states in A.

(2) The set defined by the formula ∃xi Φ(x) is realised by the automaton resulting from
erasing the i-th tape fromA. (Note that the resulting automaton needs to be determinised
and made padded.)

(3) The formula ∀xi Φ(x) is equivalent to ¬
(
∃xi ¬Φ(x)

)
.

(4) Let S be the set of
(
N p

q

)
d+1 defined by

Θ(x0, x1, . . . , xi, y, xi+1, . . . , xd−1) := Φ(x)

that is, where the ”free” variable y is added without being used. S is realised by C defined
as follows. C is a d+ 1-tape automaton and it has the same state set, initial state and
final-state set as A. The transition function of C is defined by, for all appropriate ai’s, b
and s,

δC
(
s, (a0, . . . ai, b, ai+1, . . . , ad−1)

)
= δA

(
s, (a0, . . . , ad−1)

)
. (3.14)

(5) It is a routine to build the automaton that realises the set S defined by

Π(x0, . . . , xi−1, xk, xi+1, . . . , xk−1, xi, xk+1 . . . , xd−1) := Φ(x)

that is, where the variables at positions i and k have swapped positions.

Let B be a second d-tape complete automaton that realises a d-free-variable formulas Ψ.
(Note that we may assume that Ψ and Φ have the same free variables in the same order
thanks to items (d) and (e), above.)

• The set defined by Φ(x) ∧ Ψ(x) is realised by the product automaton A×B.
• The formula Φ(x) ∨ Ψ(x) is equivalent to ¬

(
¬Φ(x) ∧ ¬Ψ(x)

)
It remains to show that equality, addition, and the function V p

q
are all p

q -recognisable.

Since, the p
q -expansions of a number are equal up to leading 0’s, equality is obviously

p
q -recognisable. We previously recalled in Equation (2.6) the definition of the automaton
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that realises addition in base p
q . The function V p

q
is realised by a simple automaton with

two states, the definition of which is given as a prototype in Figure 3.

4. Notable sets that are or are not p
q -recognisable

During the research leading to Theorem 1.2, it became apparent that very little was known
on the expressive power of automata with respect to base p

q . After recalling a few known or

obvious p
q -recognisability results, we show that the natural order relation over N p

q
is not

p
q -recognisable. Then, we study generalisations of the modulo-n operator in Sections 4.3 and

4.4. We show that it is p
q -recognisable if n is coprime with q, and that it is not if n is a

multiple of q. These results are not immediate consequences of Theorem 1.2, although it is
sometimes useful in the proofs.

4.1. A few known results.

Proposition 4.1. The following are p
q -recognisable.

(a) Addition:
{

(x, y, z)∈N p
q

3
∣∣∣ x+ y = z

}
.

(b) Partial subtraction:
{

(x, y, z)∈N p
q

3
∣∣∣ x− y = z

}
(c) Multiplication by a constant:

{
(y, z)∈N p

q

2
∣∣∣ ry = z

}
, where r∈Q.

(d) Interval bounded by constants:
{
z ∈N p

q

∣∣∣ r < z < s
}

, where r and s belong to R.

Item 4.1a is given in Section 2.3. Item 4.1b and 4.1c follows immediately from the fact
that addition is p

q -recognisable (Theorem 2.7). Item 4.1d follows from the fact that such an

interval contains a finite number of elements from N p
q
.

Proposition 4.2. The following are not p
q -recognisable.

(a) Any infinite subset of N.
(b) Any finitely-generated additive submonoid of N p

q
, i.e. of the form x0N + · · · + xnN,

with x0, . . . , xn ∈N p
q
.

Item 4.2a is a consequence of the fact that L p
q

possess the Finite Left Iteration Property,

(cf. for instance [MS17]). Item 4.2b is the main result of a previous work of the author and
Sakarovitch [MS13].

4.2. Natural order. The purpose of this section is to show that the order relation is not
p
q -recognisable (Proposition 4.5). First, we state an elementary property of N p

q
.

Lemma 4.3. For every integer k, there is a bound mk such that n
qk

belongs to N p
q
, for every

integer n > mk.
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Proof. The words 10k−1 and 1 are evaluated to pk−1

qk
and 1

q , respectively; hence, both

numbers belong to N p
q
. Since N p

q
is stable by addition, it contains 1

qk
(pk−1i+qk−1j), for every

nonnegative integers i and j. Since p and q are coprime, when j runs through {0, 1, . . . , pk−1},
then qk−1j runs through all residue classes modulo pk−1. It follows that we may choose
mk = (pq)k−1.

The bound mk given is the proof is far from tight; a better, and seemingly tight, bound
is given by [Mar16, Lemme 5.15]. In the following, we will use Lemma 4.3 under a different
form, given below.

Lemma 4.4. For all real numbers α and β, such that 0 6 α < β, there exist two numbers x, y
in N p

q
such that

α < x − y < β .

Proof. There exist two integers k and h such that α < h
qk
< β. Then, we set x = mk+h

qk

and y = mk

qk
, where mk is the bound given by Lemma 4.3.

Proposition 4.5. The set
{

(x, y)∈N p
q

2
∣∣∣ x < y

}
is not p

q -recognisable.

Proof. Let L=
{

(v, w)∈
(
A 2
p

)∗ ∣∣ Val(v) < Val(w)
}

. The proof amounts to showing that L
is not a regular language. For the sake of contradiction, we assume that L is accepted by
a n-state automaton A that we assume left-to-right, complete and minimal.

We write ` = |Rep(n)|. For every i, 0 6 i 6 n, Lemma 4.4, applied to α = i
(p
q

)−`
and β = (i+ 1)

(p
q

)−`
, yields two numbers x, y in N p

q
and we write (vi, wi) = Rep((y, x)).

We have just defined n+1 words in
(
A 2
p

)∗
such that

∀i, 0 6 i 6 n, i <
(
Val(wi 0

`) − Val(vi 0
`)
)
< i + 1 . (4.1)

Let i and j be integers such that 0 6 i, j 6 n. We write uj =
(
0`−kRep(j), 0`

)
,

with k = |Rep(j)|. It follows that the two components of (vi, wi) · uj are evaluated to(
Val(vi0

`) + j
)

and Val(wi0
`), respectively. Hence, from (4.1), (vi, wi) ·uj belongs to L if

and only if i > j.
Let M = {u1, . . . , un }. The next equation sums up the previous paragraph.

∀i, 0 6 i 6 n,
(
(vi, wi)

−1L
)
∩M = {u1, . . . , ui }

Thus, the languages
(

(vi, wi)
−1L
)
06i6n

are pairwise distinct, hence Card(Q) > n+ 1, where

(Q =
{

(v, w)−1L
∣∣ (v, w)∈

(
A 2
p

)∗}
). On the other hand, since A is minimal and complete,

its state set is precisely Q, hence Card(Q) = n, a contradiction.

4.3. Equivalence modulo n, where n is an integer coprime with q. The function x 7→
(x mod n) classically maps integers to elements of Z/nZ. If n is coprime with q, we may
extend this function to N p

q
→ Z/nZ as follows. We let q−1 denote the element of Z/nZ such

that qq−1 mod n = 1. Let x be a number in N p
q
. There exist integers m, k such that x = m

qk
,

and we set

x mod n =

(
m

qk

)
mod n = m(q−1)k mod n . (4.2)
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It may be verified that this generalised modulo-n operator still distributes over addition
and multiplication. It is then quite elementary to show that the computation of equivalence
classes modulo n is p

q -recognisable.

Proposition 4.6. Let n be an integer coprime with q, and let R ⊆ Z/nZ be a set of

remainders modulo n. Then, the set Pn,R =
{
z ∈N p

q

∣∣∣ (z mod n)∈R
}

is p
q -recognisable.

Sketch of proof. Once again, q−1 denotes the element of Z/nZ such that (qq−1) is equivalent
to 1 modulo n. Let A be the left-to-right automaton defined as follows.

A = 〈Ap, Z/nZ, δA, 0, R 〉 where δA(s, a) = q−1(sp + a) mod n (4.3)

Using Equation (2.4) and (4.3), one may show with an induction over the length of u that, for
every word u in (Ap)

∗ the run of u in A exists and reaches the state
(
Val(u) mod n

)
.

Corollary 4.7. Let n be an integer coprime with q. The following relation is p
q -recognisable.{

(x, y) ∈
(
N p

q

)
2
∣∣∣ x mod n = y mod n ∧ y ∈ { 0, 1, . . . , n − 1 }

}
(4.4)

Proof. For every r in Z/nZ, Proposition 4.6 yields that the set Pn,{r} is p
q -recognisable,

hence it follows from Theorem 1.2, that it is p
q -definable by a formula Ψr(x). The relation

of the statement is definable by the following formula.

Φ(x, y) :=
n−1∨
i=0

(
y = i ∧ Ψi(x)

)
(4.5)

Theorem 1.2 concludes the proof.

4.4. Equivalence modulo q. Unlike in the previous case, it is not obvious to extend the
modulo-q operator to N p

q
. However, as far as p

q -recognisability is concerned, the question is

irrelevant: any such generalisation is not p
q -recognisable. It is the Corollary 4.10 of the next

statement.

Proposition 4.8. Any subset S of N p
q

such that S ∩N = qN is not p
q -recognisable.

Proof. For the sake of contradiction, we assume that there exists A0, an automaton realising
a set S ⊆ N p

q
that satisfies S ∩N = qN. Theorem 1.2 yields that there exists, for every

integer i, 0 6 i < q, an automaton Ai = 〈Ap, Qi, δi, ii, Fi〉 that realises S + i. Note in
particular that the Ai’s are correct if the input is the expansion of an integer:

∀i, 0 6 i < q, ∀u ∈ (Ap)
∗ , Val(u) ∈ N,

Ai accepts u ⇐⇒ i = Val(u) mod q . (4.6)

We assume without loss of generality that the Ai’s are complete and left-to-right.
Let B be the left-to-right automaton:

B = 〈Ap, QB, δB, iB, FB 〉
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where the state-set is QB = Q0× · · ·×Qq−1, the initial state is iB = (i0, . . . , iq−1), all states
are final: FB = QB, and δB is defined as follows. Let s = (s0, s1, . . . , sq−1) be a state in QB
and let a be a letter in Ap.

δB(s, a) is defined if and only if si ∈ Fi ,
where i is the integer such that ip + a ≡ 0 [q] (4.7)

In this case, δB(s, a) = (δi(s0, a), δi(s1, a), . . . , δi(sq−1, a)).
The important part of the definition of B is Equation (4.7); it should be compared

with Equation (2.5) (which gives the algorithm to compute the representation of integers).
Intuitively, Equation (4.7) ensures that taking a transition in B preserves the property of
being evaluated to an integer ; it will yield Claim 4.8.2 thanks to a proof by induction. The
rest of the definition of B is simply such that Claim 4.8.1 holds.

Claim 4.8.1. Let u be a word in (Ap)
∗. If the run of u in B exists and reaches the

state (s0, s1, . . . , sq−1), then for every i, 0 6 i < q, the run of u in Ai exists and reaches si.

Proof of the claim. From its definition, the automaton B is the result of two transformation
applied to the classical automaton product A0×A1×· · ·×Aq−1: deleting some transitions
and setting all states as final. Since the Ai’s are all complete, Claim 4.8.1 follows.

Claim 4.8.2. A word u has a run in B if and only if Val(u) is an integer.

Proof of the claim. By induction over the length of u; the case u = ε is trivial.
Let u = va be a non-empty word in (Ap)

∗. Induction hypothesis then rewrites as

v has a run in B (4.8a)

m
Val(v) belongs to N (4.8b)

Note that u has a run in B implies (4.8a), since v is a prefix of u; and that Val(va)∈N
implies (4.8b), since 0∗L p

q
is a prefix-closed language. Hence, in both directions of the

proof, both sides of the equivalence of (4.8) hold.
Then, we let s= (s0, s1, · · · , sq−1) denote the state reached by the run of v in B. Hence,

for every integer i, 0 6 i < q, the run of v in Ai reaches si (Claim 4.8.1). From (4.6),
since Val(v) is an integer, v is accepted by Ak, where k = Val(v) mod q, and rejected by
each Ai such that i 6= k. In other words, sk ∈Fk and for every i 6= k, si /∈ Fi. Then, the
following are equivalent.

u has a run in B
⇐⇒ δ(s, a) = t for some t∈QB
⇐⇒ si ∈Fi and ip+ a ≡ 0 [q] (from (4.7))

⇐⇒ kp+ a ≡ 0 [q] (since necessarily, k= i)

⇐⇒ Val(v)p+ a ≡ 0 [q] (from the definition of k)

⇐⇒ 1
q (Val(v)p+ a)∈N

⇐⇒ Val(va) = Val(u)∈N (from (2.4))

This concludes the proof of Claim 4.8.2.

Since all states in B are final, Claim 4.8.2 yields that the language accepted by B is 0∗L p
q
, a

contradiction.
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The inseparability result stated by Proposition 4.8 may be generalised to every periodic
set whose smallest period is a multiple of q.

Proposition 4.9. Let P be a periodic set of integers, the smallest period of which is a
multiple of q. Then, there is no p

q -recognisable set S such that S ∩N = P .

Proof. Since bounded intervals are p
q -recognisable (Proposition 4.1d), we may assume that P

is purely periodic. First, we assume moreover that the smallest period of P is exactly q. In
this case, there exists a remainder set R ⊆ Z/qZ such that S = R+ qN. Using that q is the
smallest period of P , simple arithmetics shows that the following claim holds.

Claim 4.9.1. An integer i is divisible by q if and only if, for every r in R, (i+ r) mod q
belongs to R

For the sake of contradiction, we assume that there exists a set S as in the statement.
We denote the formula that defines S by Φ(x).

Let ξ(x) :=
∧
r∈R Φ(x+ r) and let X be the set definable by ξ. Claim 4.9.1 yields that

N∩X = qN, From Theorem 1.2, X is p
q -recognisable, a contradiction to Proposition 4.8.

If the period of P is kq, k > 1, a similar ab absurdo reasoning yields a p
q -recognisable

set X such that N∩X = kqN. Then, using Theorem 1.2, it is easy to show that the set
Y = X ∪ (X + q)∪ · · · ∪ (X + (k− 1)q) is also p

q -recognisable and satisfies Y ∩N = qN, a

contradiction to Proposition 4.8.

Corollary 4.10. Let k be a positive integer. Let f be a function N p
q
→ N p

q
such that, for

every integer n, f(n) = n mod kq. The function f is not p
q -recognisable.

In Sections 4.3 and 4.4, we studied the p
q -recognisability of the modulo-n operator

when n is coprime with q (Corollary 4.7) and when n is a multiple of q (Corollary 4.10).
These results do not cover all cases, and in general we conjecture the following.

Conjecture 4.11. Let n be an integer. Let f be a function N p
q
→N p

q
. We assume that, for

every number x
y in N p

q
such that y is coprime with n, then f(xy ) = (xy−1) mod n, where y−1

is the inverse of y in Z/nZ.
Then, the function f is p

q -recognisable if and only if n is coprime with q.

5. Conclusion and future work

In this work, we took a perspective which is classical for other numeration systems (integer
base, U-systems), but quite new in the studies on rational base numeration systems. Instead
of exploring the intricacies of the language L p

q
, we indeed started to determine what may or

may not be computed by automata. It is very encouraging that the logic characterisation
given by Theorem 1.2 is similar to the corresponding statements in other settings [BHMV94,
BH97, Cha18].

This opens for base p
q a lot of questions that have been answered for others numerations

systems. For instance, it is natural to confront p
q -recognisability to sets definable in Presburger

arithmetic. Indeed Cobham Theorem and its generalisations [DR11] showed that a set realised
by automata in “sufficiently different” numerations systems is necessarily definable in that
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logic. In the case of base p
q , the notion needs some adaptation, and Section 4 merely starts

the research in that direction.
Another research direction would be to consider the fact that every real number is

represented in base p
q by an infinite word over Ap. Then, one could study the subsets

of Rd that are realised by d-tape Büchi automata and establish whether there is a logic
characterisation of them, much like what is done in [BRW98] for integer bases. The
considerable advantage would then be that the domain is always R, independently of the
base p

q considered. Comparing p
q -recognisability to r

s -recognisability could then lead to a

statement in the spirit of Cobham Theorem, similar to the result in [BBB10].
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[BR18] Valérie Berthé and Michel Rigo, editors. Sequences, Groups, and Number Theory. Number 135 in
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