
Logical Methods in Computer Science
Volume 15, Issue 3, 2019, pp. 8:1–8:30
https://lmcs.episciences.org/

Submitted Aug. 25, 2017
Published Jul. 31, 2019

AN EFFICIENT ALGORITHM TO DECIDE PERIODICITY OF

b-RECOGNISABLE SETS USING LSDF CONVENTION ∗

VICTOR MARSAULT

LIGM, Université Paris-Est Marne-la-Vallée, ESIEE Paris, École des Ponts ParisTech, CNRS,
France

Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh,
United Kingdom

Department of Mathematics, Université de Liège, Belgium †

IRIF, Université Paris-Diderot, France

e-mail address: victor.marsault@u-pem.fr

Abstract. Let b be an integer strictly greater than 1. Each set of nonnegative
integers is represented in base b by a language over {0, 1, . . . , b−1}. The
set is said to be b-recognisable if it is represented by a regular language. It
is known that ultimately periodic sets are b-recognisable, for every base b,
and Cobham’s theorem implies the converse: no other set is b-recognisable in
every base b.

We consider the following decision problem: let S be a set of nonnegative in-
tegers that is b-recognisable, given as a finite automaton over {0, 1, . . . , b−1},
is S periodic? Honkala showed in 1986 that this problem is decidable. Later
on, Leroux used in 2005 the convention to write number representations with
the least significant digit first (LSDF), and designed a quadratic algorithm
to solve a more general problem.

We use here LSDF convention as well and give a structural description of
the minimal automata that accept periodic sets. Then, we show that it can
be verified in linear time if a minimal automaton meets this description. In
general, this yields a O(bn log(n)) procedure to decide whether an automaton
with n states accepts an ultimately periodic set of nonnegative integers.

Key words and phrases: integer-base systems; automata; recognisable sets; periodic sets: least significant
digit first encodings.
∗ An early version of this work was published in the proceedings of the DLT conference [MS13]; most of

the results are also part of the of the Ph.D thesis of the author [Mar16].
† While the author was affiliated with the University of Liège, he was supported by a Marie Sk lodowska-Curie

fellowship, partially funded by the European Union.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(3:8)2019
c© V. Marsault
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

8:2 V. Marsault Vol. 15:3

1. Introduction

Let b be a fixed integer strictly greater than 1, called the base. Every nonnegative integer n
is represented (in base b) by a word u over the digit alphabet Ab = {0, 1, . . . , b−1}, and
representation is unique up to leading 0’s. Hence, subsets of N are represented by languages
of Ab

∗. Depending on the base, a given subset of N may be represented by a simple or
complex language: the set of powers of 2 is represented in base 2 by the regular language 10∗;
whereas it is represented in base 3 by a language that is not context-free.

A subset of N is said to be b-recognisable if it is represented by a regular (or rational, or
recognisable) language over Ab. On the other hand, a subset of N is said recognisable if it
is, via the identification of N with a∗ (n↔ an), a regular language of a∗. A subset of N is
recognisable if and only if it is ultimately periodic (u.p.) and we use the latter terminology
in the sequel as it is both meaningful and more distinguishable from b-recognisable.

It is common knowledge that every u.p. set (of nonnegative integers) is b-recognisable for
every b. However, a b-recognisable set for some b is not necessarily u.p., nor c-recognisable
for some other c; the set of all powers of 2, previously discussed, is an example of these
two facts. It is a simple exercise to show that if b and c are multiplicatively dependent
(that is, if there exist positive integers k and ` such that bk = c`), then every b-recognisable
set is a c-recognisable set as well. A converse of these two properties is the theorem of
Cobham [Cob69]: a set of numbers that is both b- and c-recognisable, for multiplicatively
independent b and c, is u.p. It is a strong and deep result whose proof is difficult (see
also [BHMV94, DR11]).

After Cobham’s theorem, another natural question on b-recognisable sets is the decid-
ability of periodicity. It was positively solved in 1986:

Theorem (Honkala [Hon86]). It is decidable whether an automaton over Ab accepts an
ultimately periodic set.

The complexity of the decision procedure is not an issue in the original work. Neither
are the properties or the structure of automata accepting u.p. sets. Given an automaton A,
Honkala shows that there are bounds on the parameters of the potential u.p. set accepted
by A. The property is then decidable as it is possible to enumerate all automata that accept
sets with smaller parameters and check whether any of them is equivalent to A.

As detailed below, subsequent works on automata and number representations brought
some answers regarding the complexity of the decision procedure, explicitly or implicitly. In
the present article, we follow the convention that number representations are written least
significant digit first (LSDF convention) and show the following.

Theorem 1.1. Let b > 1 be an integer. We assume that number representations are written
in base b and with the least significant digit first. Given a minimal DFA A with n states, it
is decidable in time O(bn) whether A accepts an ultimately periodic set.

Corollary 1.2. Given a DFA A with n states, it is decidable in time O((bn) log n) whether A
accepts an ultimately periodic set.

On the order of digits. Honkala’s problem gives birth to two different problems when
one writes either the least or the most significant digit first (LSDF or MSDF, respectively).
These two problems are not polynomially equivalent. In order to transform an instance A of
one of the problem into an instance of the other, one must run on A a transposition and

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:3

then a determinisation. This potentially leads to an exponential blow-up of the number
of states. This event occurs for the problem at hand for example with the language Ln =
1 (0 + 1)n 1 (0 + 1 + ε)n0∗ and its mirror Kn. The number of states in the minimal automaton
accepting Ln (resp. Kn) grows linearly (resp. exponentially) with n. Evaluating Ln as LSDF
encodings or Kn as MSDF encodings yields the same finite (thus u.p.) set.

A recent work by Boigelot et al. [BMMR17] gives a quasi-linear algorithm to solve
Honkala’s problem when number representations are written MSDF. As noted above, this
result cannot be used to solve efficiently the problem using LSDF convention, which is the
object of the present paper.

Related work in the multidimensional setting. New insights on Honkala’s problem
were obtained when stating it in a higher dimensional space. Let Nd be the additive monoid
of d-tuples of nonnegative integers. Every d-tuple in Nd can be represented in base b by a
d-tuple of words over Ab of the same length, as shorter words can be padded by 0’s without
changing the corresponding value. Such d-tuples can be read by (finite) automata over (Ab

d)
∗

— automata reading on d synchronised tapes — and a subset of Nd is b-recognisable if the
set of the b-representations of its elements is accepted by such an automaton.

On the other hand, the recognisable and rational subsets of Nd are defined in the classical
way. A subset of Nd is recognisable if it is saturated by a congruence of finite index, and
is rational if it may be expressed by a rational expression. If d = 1, then Nd = N is a free
monoid and the family of rational sets is equal to the family of recognisable sets; in this case,
they are typically called regular languages via the identification of N with a∗. Otherwise, Nd
is not a free monoid and the two families do not coincide (cf. [Sak09]).

It is also common knowledge that every rational set of Nd is b-recognisable for every b,
and the example in dimension 1 is enough to show that a b-recognisable set is not necessarily
rational. Semenov showed a generalisation of Cobham’s theorem (cf. [Sem77, BHMV94,
DR11]): a subset of Nd which is both b- and c-recognisable, for multiplicatively independent b
and c, is rational. The generalisation of Honkala’s theorem went as smoothly.

Theorem (Muchnik [Muc03]). It is decidable whether a b-recognisable subset of Nd is
rational.

Theorem (Leroux [Ler05]). Assuming that number representations are written LSDF, it is
decidable in polynomial time whether a b-recognisable subset of Nd is rational.

Muchnik’s algorithm is triply exponential while Leroux’s is quadratic. This improvement
is based on sophisticated geometric constructions that are detailed in [Ler06]. Note that
Leroux’s result, restricted to dimension d = 1, readily yields a quadratic procedure for
Honkala’s original problem. The improvement to quasilinear complexity that we present
here (Corollary 1.2) is not due to a natural simplification of Leroux’s construction for the
case of dimension 1.

Rational sets of Nd have been characterised by Ginsburg and Spanier [GS66] as sets
definable in Presburger arithmetic (that is, definable by a formula of the first order logic
with addition, denoted by FO[N,+]). On the other hand, the Büchi-Bruyère theorem
(cf. [Büc60, Bru85, BHMV94]) characterises b-recognisable subsets of Nd: A subset of Nd
is b-recognisable if and only if it is definable by a formula of FO[N,+, Vb]. (The function
Vb : N→ N maps each n to the greatest power of b that divides n.)

8:4 V. Marsault Vol. 15:3

Using these two results, one may see that Muchnik’s problem can (and was indeed)
stated in terms of logic: decide whether a formula of FO[N,+, Vb] has an equivalent formula
in FO[N,+]. However, the two statements are not equivalent for complexity issues. Using
the Büchi-Bruyère Theorem to build an automaton from a formula may give rise to a
multi-exponential blow-up of the size.

Related work in non-standard numeration systems. Generalisation of base p by
nonstandard numeration systems gives an extension of Honkala’s problem, best expressed in
terms of abstract numeration systems. Given a totally ordered alphabet A, any language L ⊆
A∗ defines an abstract numeration system (a.n.s.) SL in which the integer n ∈ N is represented
by the (n+1)-th word of L in the radix order (cf. [LR10]). The a.n.s. is said to be regular
if L is. A subset of N is called SL-recognisable if its representation in the a.n.s. SL is a
regular language. It is known that every u.p. subset of N is SL-recognisable for every regular
a.n.s. SL. The extended Honkala’s problem takes as input an SL-recognisable set X and
consists in deciding whether X is u.p.

It was observed in [ARS09, CRS12] that, for a subset of N the property of being u.p.
is definable by a formula of the Presburger arithmetic. Hence, if SL is a regular a.n.s. in
which addition is realised by a finite automaton, then the extended Honkala’s problem is
decidable. In particular, this approach solves the case where the numeration system is a
Pisot U-system (cf. [FS10]). On the other hand, with a proof similar to the one from the
original Honkala’s paper, the problem was also shown to be decidable for a large class of
U-systems [BCFR09, Cha09]. This class is incomparable with the class of Pisot U-systems.
Finally, it is shown in [RM02, LR10] that the extended Honkala’s problem is equivalent to
deciding whether an HD0L sequence is periodic (cf. [AS03]). Since then, this latter problem
has been shown to be decidable [Dur13, Mit11]. Hence, the extended Honkala’s problem is
also decidable in general.

These extensions were mentioned for the sake of completeness. The present article is
focused on solving the original problem of Honkala when using LSDF convention.

Outline. As it is often the case, the linear complexity of our algorithm is obtained as
the consequence of a structural characterisation. After preliminaries, Section 3 defines
and study the class UP of the minimal automata that accept u.p. sets. Then, we describe
in Section 4 a set of structural properties about the shapes and positions of the strongly
connected components (s.c.c.’s) and show that these properties characterise the class UP
(Theorem 4.3). Finally, Section 5 gives the linear algorithm underlying Theorem 1.1, which
decides whether a given minimal automaton accepts a u.p. set. The delicate part is to obtain
a linear complexity in the special case where the input automaton is strongly connected.

2. Preliminaries

2.1. On automata. An alphabet A is a finite set of symbols, or letters; in our case, letters
will always be digits and the term digit will be used as a synonym of letter. We call word
over A a finite sequence of letters taken in A; the empty word is denoted by ε and the length
of a word u = a0a1 · · · ak−1 by |u| = |a0a1 · · · ak−1| = k. The set of words over A is denoted
by A∗, and a subset of A∗ is called a language over A.

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:5

In this article, we consider only automata that are deterministic and finite. Thus, an
automaton is denoted by A = 〈A,Q, i, δ, F 〉, where A is the alphabet, Q is the finite set
of states, i ∈ Q is the initial state, F ⊆ Q is the set of final states, and δ : Q×A→ Q is
the transition function. As usual, δ is extended to a function Q× A∗ → Q by δ(q, ε) = q
and δ(q, ua) = δ(δ(q, u), a). When the context is clear, δ(s, u) will also be denoted by s · u.
A transition in A is an element (s, a, t) in Q × Ab × Q such that δ(s, a) = t; it is usually
denoted by s a−−−−AA t or simply s a−−−−A t when A is clear from context. A path in A is a

sequence of transitions s0
a0−−−−AA s1 · · · ak−−−−AA sk+1 which is also denoted by s0

u−−−−AA sk+1
where u = a0 · · · ak, and we call s0 the origin, u the label and sk+1 the destination of this
path. Note that this path exists if δ(s0, u) = sk+1.

We call run any path originating from the initial state, and the run of a word u refers to
the run labelled by u if it exists; this path is well defined since our automata are deterministic.
A word u in A∗ is accepted by A if its run ends in a final state, that is, if (i · u) exists and
belongs to F . The language accepted by A is denoted by L(A). If every word has a run, A
is said to be complete. A state r is said reachable from another state s if there exists a path
from r to s, and simply reachable if it is reachable from the initial state. An automaton is
said reachable if all its states are reachable.

Drawing Convention. In figures, most automata will be over two-letter alphabets ({0, 1}
or {0, g }). For the sake of clarity, we omit labels in such cases: transitions labelled by 1
will be drawn with a thick line, those labelled by 0 with a thin line, and those by g with a
double line.

Definition 2.1. Let A and M be two automata over the same alphabet A

(i) An (automaton) morphism is a surjective function ϕ : QA → QM that meets the
following three conditions.

ϕ(iA) = ϕ(iM) (2.1a)

ϕ−1(FM) = FA (2.1b)

∀a ∈ A, ∀s ∈ QA ϕ(s · a) = ϕ(s) · a (2.1c)

(ii) If ϕ denotes a morphism, we say that two states s and s′ are ϕ-equivalent if they have
the same image by ϕ.

(iii) If there exists a morphism A →M, we say that M is a quotient of A.

Given a regular language L, it is classical (cf. [Sak09], for instance) that there exists a
minimal automaton M that accepts L: it is the complete automaton accepting L with the
minimal amount of states. Moreover, given an automaton A that accept L, M may be
computed in quasi-linear time from A and M is a quotient of A.

Definition 2.2. The transition monoid T of an automaton A is the set of the functions
induced by all words in A∗ on the states of A:

T =

{
fu : QA −→ QA

q 7−→ q · u

∣∣∣∣ u ∈ A∗} .

Note that in the previous definition, since QA is finite, there is a finite number of
functions QA → QA hence T is always finite.

Definition 2.3. An automaton A over an alphabet A is called a group automaton if every
state of A has a unique incoming and a unique outgoing transition labelled by each letter
of A.

8:6 V. Marsault Vol. 15:3

It follows from Definition 2.3 that an automaton is a group automaton if and only if its
transition monoid is a group. Moreover, that property is stable by quotient:

Property 2.4. Every quotient of a group automaton is a group automaton.

2.2. On strongly connected components. Two states s, s′ of an automaton A are
strongly connected if A contains a path from s to s′ and a path from s′ to s. This defines an
equivalence relation whose classes are called the strongly connected components (s.c.c.’s) of A.
Every state s of A then belongs to a unique s.c.c. Note that an s.c.c. does not necessarily
contains a circuit. Indeed the s.c.c. of an isolated state s (that is, a state that do not belong
to any circuit), is the singleton {s} and is said trivial. Figures 1a and 1b show an automaton
and its s.c.c.’s.

A

B

C

D

E

F

G

a
a

a

b

c

a

b

c

b
c

b

(a) An automaton A1

A

B

C

D

E

F

G

a
a

a

b

c

a

(b) The s.c.c.’s of A1, and their internal transitions

{

A
}

{

B,C
}

{

D,E, F
}

{

G
}

b

c

b, c

b

a

a

a, b, c

(c) CG(A1), the component graph of A1

Figure 1. An automaton, its s.c.c.’s and its component graph.

The component graph CG(A) of a an automaton A is the labelled d.a.g. (directed
acyclic graph) that results from contracting each s.c.c. into a single vertex. For instance,
Figure 1c shows the component graph of A2. We say that an s.c.c. X is a descendant of
another s.c.c. Y if X is a successor of Y in the component graph that is, if there is x ∈ X
and y ∈ Y such that x a−−−−A y, for some letter a. It is classical that the component graph
can be computed efficiently (cf. [CLRS09]), as stated below.

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:7

Theorem 2.5. The component graph of an m-transitions automaton can be computed in
time O(m).

2.3. On integer base numeration system. Let b be an integer strictly greater than 1
called the base. It will be fixed throughout the article. We briefly recall below the definition
and elementary properties of base-b numeration systems. Note that we represent numbers
with the Least Significant Digit First (LSDF) a convention used with some success in the
past, for instance by Leroux [Ler05, Ler06].

Given two positive integers n and m, we denote by n÷m and n%m respectively the
quotient and the remainder of the Euclidean division of n by m, i.e. n = (n÷m)m+ (n%m)
and 0 6 (n%m) < m. We index the letters of a word u from left to right: u = a0a1 · · · an.

Given a word u = a0a1 · · · an over the alphabet Ab = {0, 1, . . . , b−1}, its value (in
base b), denoted by u , is given by the following expression.

u = a0a1 · · · an =

n∑
i=0

ai b
i (2.2)

Words whose values are equal to some integer k are called b-expansions of k. Exactly one
among them does not end with the digit 0; it is called the b-representation of k, and is
denoted by 〈k 〉. We recall below formulas for evaluating concatenations of words; they
follow from (2.2).

∀a ∈ Ab, v ∈ Ab∗ av = a+ v b (2.3)

∀a ∈ Ab, u ∈ Ab∗ ua = u + ab|u| (2.4)

∀u, v ∈ Ab∗ uv = u + v b|u| (2.5)

In this article, we are interested in the set of the values of the words accepted by
automata over Ab. For the sake of consistency, we will only consider automata A that
accept by value that is, such that A accepts either all words of value k, or none of them.
This acceptance convention is generally more practical than the other one (accepting by
representation): considered automata are usually smaller, proofs are more elegant, and in the
multidimensional settings (which we do not consider here) it makes operations like projection
much more efficient. In practice, it means that all automata we consider are such that the
successor by 0 of a final state exists and is final while the successor by 0 of a non-final state
is non-final, if it exists. Thus, we may say without ambiguity that an automaton accepts S,
where S is a subset of N; indeed, it means that A accepts the language 〈S〉0∗.

3. Automaton accepting an arbitrary periodic set

The purpose of this section is to define and study the minimal automaton that accepts an
arbitrary ultimately periodic set of nonnegative integers. Similar results and constructions
were used in the literature in other contexts, for instance when considering automata for
linear constraints (cf. [BC96]).

First, let us introduce some terminology and notation.

8:8 V. Marsault Vol. 15:3

S a ∆(S, a)

{0, 3, 4} 0 7−→ {0, 2}
{0}+ 2N 0 7−→ {0}+ N
{0}+ 3N 0 7−→ ∅+ N
{0} ⊕ ({0, 1, 2, 4}+ 5N) 0 7−→ {0} ⊕ ({0, 1, 2, 3}+ 5N)
{0} ⊕ ({0, 1, 2, 4}+ 5N) 1 7−→ {0, 2, 3, 4}+ 5N

Table 2. A few values of function ∆ in base 2

Definition 3.1.

(i) A set of integers S ⊆ N is said to be purely periodic if it may be written as S = R+ pN,
for some positive integer p and R ⊆ {0, . . . , p−1}.

Moreover, we say that S is canonically written as R + pN if there is no integer p′,
0 < p′ < p, and R′ ⊆ {0, . . . , p′−1} such that S = (R′ + p′N).

(ii) Given two sets S and S′, we denote by S ⊕ S′ their symmetric difference: an element
belongs to S ⊕ S′ if it is in S or in S′ but not in both.

(iii) A set S ⊆ N is said to be ultimately periodic (u.p.) if it may be written as S = I ⊕ S′,
where I is a finite subset of N and S′ is purely periodic.

Moreover we say that S is canonically written as I ⊕ (R + pN) if S′ is canonically
written as R+ pN.

(iv) If S denotes a u.p. subset of N canonically written as S = I ⊕ (R+ pN), then we call
p the period of S; R the remainder set of S; I the mismatch set of S; and m the
preperiod of S, where m = max(I) + 1 if I 6= ∅, and m = 0 otherwise.

For instance, let us consider the set S = {0, 6} ∪
(
{4, 5}+ 4N

)
. It is canonically written

as S = {1, 6} ⊕
(
{0, 1}+ 4N

)
. Hence, the period of S is 4; its remainder set is {0, 1};

its mismatch set is {1, 6}; and its preperiod is 7. Similarly, the period of the empty set
(resp. of N) is 1 and its remainder set is ∅ (resp. {0}).

3.1. The function ∆. In Section 3.1, we take interest in the function ∆ that later on will
be used as the common transition function of all minimal automata that accept u.p. subsets
of N. We denote by P(X) the set of the subsets of X.

Definition 3.2. Let ∆ be the function ∆ : (P(N)×Ab)→ P(N) defined by:

∀S ⊆ N, ∀a ∈ Ab ∆(S, a) = {n ∈ N | (nb+ a) ∈ S } . (3.1)

As usual, ∆ is extended as a function (P(N)×Ab∗)→ P(N).

Table 2 gives a few instances of the function ∆ in base 2. Given a letter a in Ab, the
function S 7→ ∆(S, a) corresponds to reading the letter a, as highlighted by the next equation
(which follows from (2.3) and (3.1)).

∀S ⊆ N, ∀u ∈ A∗b , ∀a ∈ Ab au ∈ S ⇐⇒ u ∈ ∆(S, a) . (3.2)

First, let us prove that the function ∆ is stable over u.p. subsets of N.

Lemma 3.3. If S denotes a set of nonnegative integers, then the following are equivalent.

(i) S is u.p.

(ii) For every a in Ab, ∆(S, a) is u.p.

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:9

Proof. (i) =⇒ (ii). We canonically write S as S = I ⊕ (R+ pN) and we denote by m the
preperiod of S. Moreover, we write

m′ =

⌈
m− a
b

⌉
and p′ =

p

gcd(p, b)
(3.3)

Let n > m′ be an integer. From (3.3), we have (nb+ a) > m and p | (p′b). The proof of the
forward direction is concluded by the following equivalences:

n ∈ ∆(S, a) ⇐⇒ (nb+ a) ∈ S ⇐⇒ (nb+ a+ bp′) ∈ S
⇐⇒ (n+ p′)b+ a ∈ S ⇐⇒ (n+ p′) ∈ ∆(S, a)

(ii) =⇒ (i). From (3.1) and the properties of Euclidean divisions, it holds that

S =
⋃
a∈Ab

(b×∆(S, a) + a) .

Since multiplication, addition and finite union preserves ultimate periodicity, S is u.p.

While showing the forward direction of Lemma 3.3, we also showed the following
properties.

Properties 3.4. Let S be a u.p. subset of N and a be a letter. Let p be the period and m
the preperiod of S. Let p′ and m′ be the period and preperiod of ∆(S, a).

(i) p > p′

(ii) m > m′

(iii) If p is not coprime with b, then p > p′

(iv) If m > 1, then m > m′

(v) If m > 0 and a 6= 0, then m > m′

We conclude our preliminary study of ∆ by two technical statements that will be useful
later on.

Property 3.5. Let I and P be subsets of N such that I is finite and P is purely periodic.
For every letter a in Ab, ∆(I ⊕ P, a) = ∆(I, a)⊕∆(P, a).

Proof. Let u be a word in Ab
∗.

u ∈ ∆(I ⊕ P, a) ⇐⇒ au ∈ I ⊕ P
⇐⇒ au ∈ I or au ∈ P but not both

⇐⇒ u ∈ ∆(I, a) or u ∈ ∆(P, a) but not both

⇐⇒ u ∈
(
∆(I, a)⊕∆(P, a)

)
Lemma 3.6. If S denotes a u.p. subset of N, then the following hold.

∀u ∈ Ab∗ u ∈ S ⇐⇒ ∆(S, u) 3 0 (3.4)

S = { u ∈ Ab∗ | ∆(S, u) 3 0 } (3.5)

Sketch. Equation (3.4) is shown with an induction based on Equation (3.2) while (3.5) is a
reformulation of (3.4).

8:10 V. Marsault Vol. 15:3

e h5(e, 0) h5(e, 1)

0 0 2
1 3 0
2 1 3
3 4 1
4 2 4

Table 3. The function h5

{0, 1, 2, 4}

{0, 1, 2, 3}

{0, 1, 3, 4}

{0, 2, 3, 4}

{1, 2, 3, 4}

Figure 4. The automaton U({0,1,2,4}+5N)

3.2. The class UP. In the following, we manipulate sets of sets of nonnegative integers
(i.e., subsets of P(N)). For the sake of clarity, we denote such objects with a bold font.

If S and T denote two subsets of N, we say that T is ∆-reachable from S if there is
a word u in Ab

∗ such that ∆(S, u) = T . If S is u.p., Lemma 3.3 yields that T is also u.p.
Moreover, Properties 3.4(i) and 3.4(ii) ensure that the period and preperiod of T are smaller
than the ones of S. Hence, finitely many sets are ∆-reachable from S.

Definition 3.7. Let S be a u.p. subset of N and let Q ⊆ P(N) be the set of all sets
∆-reachable from S. We denote by US the automaton defined by:

US =
〈
Ab, Q, S, ∆|Q, F

〉
,

where ∆|Q is the restriction of ∆ to Q×Ab and F = {T ∈ Q | T 3 0 }.

Then, the next proposition follows directly from Lemma 3.6.

Proposition 3.8. For every u.p. set S ⊆ N, the automaton US is the minimal automaton
that accepts S.

Definition 3.9. We denote by UP the class of all minimal automata that accept u.p. subsets
of N: UP = {US | S is a u.p. subset of N } .

Now, let us translate Lemma 3.3 in terms of automata for future reference.

Lemma 3.10. Let A = 〈Ab, Q, i, δ, F 〉 be an automaton. The following are equivalent.

(i) A belongs to UP,

(ii) For every letter a ∈ Ab, the automaton Ba belongs to UP, where Ba is the reachable part
of 〈Ab, Q, δ(i, a), δ, F 〉.

3.3. Atomic automata. In this subsection, we take interest in some automata from UP,
that we call atomic.

Definition 3.11. An automaton US in UP is said atomic if S is a purely periodic and its
period is coprime with b. For short, we say that an automaton is UP-atomic if it belongs to
UP and is atomic.

Next, we work towards an explicit definition of UP-atomic automata. For every positive
integer p coprime with b, we denote by hp the function (Z/pZ×Ab)→ Z/pZ defined by

∀e ∈ Z/pZ, ∀a ∈ Ab hp(e, a) = (e− a)b−1 , (3.6)

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:11

{0, 1}

{0, 3}

{0, 2}

{1, 2}

{0, 4}

{2, 3}

{2, 4}

{1, 4}

{3, 4} {1, 3}

Figure 5. The automaton U({0,1}+5N).

where b−1 denotes the inverse of b in Z/pZ. For instance, Table 3 gives the explicit
definition of h5. Let us denote by Pk(Z/pZ) the set of the subsets of Z/pZ that have
cardinal k. Note that for each letter a, the function e 7→ hp(e, a) is a permutation of Z/pZ.
Hence, when k is fixed, we may lift hp to a function (Pk(Z/pZ) × Ab) → Pk(Z/pZ) as
usual: hp(E, a) = {hp(e, a) | e ∈ E }.

Proposition 3.12. Let R+ pN be a purely periodic subset of N. The automaton U(R+pN)
is isomorphic to the reachable part of

〈Ab, Pk(Z/pZ), R, hp, F〉 ,
where k = Card(R), F = {E ∈Pk(Z/pZ) | E 3 0 }, and R is naturally lifted to an element
of Pk(Z/pZ).

Proof. We denote by B the reachable part of the automaton described in the statement. It
is a routine to check that the function

∀E ∈ Pk(Z/pZ) f(E) = E + pN
is an isormorphism B → U(R+pN).

For instance, Figures 4 and 5 show respectively the automata U({0,1,2,4}+5N) and
U({0,1}+5N), as defined in Proposition 3.12 (function h5 is given in Table 3).

Lemma 3.13. Let A be an automaton in UP. The following are equivalent.

(i) A is atomic.

(ii) A is a group automaton.

(iii) A is strongly connected.

Proof. (i) =⇒ (ii). Since A is atomic, it may be defined as per Proposition 3.12. As noted
before, for each letter a, the function e 7→ hp(e, a) is a permutation of Z/pZ, hence the
function E 7→ hp(E, a) is a permutation of Pk(Z/pZ).

(ii) =⇒ (iii). Reachable group automata are always strongly connected.

(iii) =⇒ (i). From Definition 3.7 and Lemma 3.3, each state of A is a subset of N
that is u.p. Since by hypothesis, A is strongly connected, properties 3.4(i) and 3.4(ii) yield
that all the states of A have the same period p and preperiod m. Then Property 3.4(iii)
yields that p is coprime with b and, since moreover A is complete, Property 3.4(v) yields
that m = 0.

8:12 V. Marsault Vol. 15:3

From the Definition 3.7 of automata in UP and the characterisation given in Lemma 3.13,
it follows that the class of UP-atomic automata is stable by modification of the initial state,
as stated below.

Property 3.14. Let A = 〈Ab, Q, i, δ, F 〉 be a UP-atomic automaton. Then, for any q in Q,
the automaton Bq = 〈Ab, Q, q, δ, F 〉 is UP-atomic.

Remark 3.15. Property 3.14 allows to say, by abuse of language, that some s.c.c. is
UP-atomic although it has no initial state.

4. Structural characterisation of the class UP

The purpose of this section is to show a structural characterisation of the class UP (Theo-
rem 4.3). Stating the characterisation first requires a few definitions.

Definition 4.1. We say that an s.c.c. C of an automaton A is embedded in another s.c.c. D
if there exists an embedding function f : C∪D → D, that is a function meeting the following.

(i) For every s in D, f(s) = s.

(ii) For every s in C and letter a, (s · a) exists if and only if (f(s) · a) does.

(iii) For every s in C∪D and letter a such that (s ·a) ∈ C∪D, it holds that f(s ·a) = f(s) ·a.

An embedding function C ∪D → D might be considered an automaton “pre-morphism”, in
the sense that it satisfies (2.1c) but not necessarily (2.1a) or (2.1b).

Definition 4.2. We partition non-trivial s.c.c.’s in two types. The type two contains the
simple circuits labelled only by the digit 0, or 0-circuits. The type one contains the other
s.c.c.’s, that is each s.c.c. with an internal transition labelled by a positive digit.

Theorem 4.3. An automaton A belongs to UP if and only if the following holds, with CG(A)
denoting the component graph of A.

(UP 0) Each state and its successor by the digit 0 are both final or both non-final.
(UP 1) A is minimal and complete.
(UP 2) Every type-one s.c.c. is UP-atomic.
(UP 3) Every type-two s.c.c. has in CG(A) exactly one descendant, and that is a s.c.c. of

type one.
(UP 4) Every type-two s.c.c. is embedded in its descendant in CG(A).

Note that Condition (UP 0) is not specific, it is more of a precondition (hence its number),
which ensures that the automaton accepts by value. Proof of Theorem 4.3 takes the remainder
of Section 4. Backward direction is shown in Section 4.1 and forward direction is shown in
Section 4.2

In the following, we use (UP *) to refer to the conditions (UP 0) to (UP 4).

Example 4.4. Figure 6 shows an automaton A2 that satisfies Conditions (UP *). The
framed s.c.c.’s are, from top to bottom, US1 , US2 and US3 with S1 = ({1, 2} + 3N),
S2 = {0, 1, 2, 4}+ 5N (cf. Figure 4) and S3 = ∅. The three other non-trivial s.c.c.’s
({B2, C2 }, {D2 } and {I2 }) are simple 0-circuits. Embedding functions map each (rel-
evant) node X2 to X, with X in {B,C,D, I }.

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:13

I2

B2

C2

D2

A

B

C

D

E

F

G

H

I

Figure 6. A2, an automaton that satisfies Conditions (UP *)

In order to simplify the proof of both directions of Theorem 4.3, we will use Lemma 4.5,
below. It follows directly from the definition of Conditions (UP *) and states that the
class of automata satisfying Conditions (UP *) possess a property much like the class UP
(cf. Lemma 3.10)

Lemma 4.5. Let A = 〈Ab, Q, i, δ, F 〉 be an automaton. The following are equivalent.

(i) A satisfies Conditions (UP *).

(ii) For every letter a ∈ Ab, the automaton Ba satisfies Conditions (UP *), where Ba is the
reachable part of 〈Ab, Q, δ(i, a), δ, F 〉.

4.1. Backward direction of Theorem 4.3.

Proposition 4.6. An automaton that satisfies Conditions (UP *) belongs to UP.

Proof. Let A = 〈Ab, Q, i, δ, F 〉 be an automaton that satisfies Conditions (UP *). Applying
Lemmas 3.10 and 4.5 allows to reduce the general case to the case where the initial state
of A is part of a non-trivial s.c.c. If A is strongly connected, it is a UP-atomic automaton
and the statement obviously holds. Otherwise, Conditions (UP *) imply that A has exactly
two s.c.c.’s such that:

• the s.c.c. containing the initial state, denoted by C, is a 0-circuit;

8:14 V. Marsault Vol. 15:3

• the other s.c.c., denoted by D, is a UP-atomic automaton;
• C is embedded in D, and we denote by f : (C ∪D)→ D the embedding function.

We write j = f(i) and the automaton
〈
Ab, C, j, δ|C , F ∩ C

〉
is thus UR+pN, for some p ∈ N

coprime with b, and R ⊆ {0, . . . , p− 1}. Let u be a word of Ab
∗ that contains at least

one non-0 digit. Since the initial s.c.c. is a 0-circuit, δ(i · u) is a state in D. Since f is
an embedding function, it holds that δ(i · u) = δ(j · u). In other words, for every u such
that u 6= 0, A accepts u if and only if u ∈ R+ pN. On the other hand, since A is minimal
(from (UP 1)), i and j must have a different final/non-final status. It follows that the set of
numbers accepted by A is {0} ⊕ (R+ pN), hence that A belongs to UP.

4.2. Forward direction of Theorem 4.3.

Proposition 4.7. Every automaton in UP satisfies Conditions (UP *).

Proof. Let US be an automaton in UP which we write US =
〈
Ab, Q, S, ∆|Q, F

〉
(cf. Defini-

tions 3.2 and 3.7). By definition, US satisfies (UP 0) and (UP 1).
We write S canonically as S = I ⊕ (R+ pN). Lemmas 3.10 and 4.5 allow to reduce the

general case to the case where the initial state is part of a non-trivial s.c.c. In other words,
there exists a non empty-word u such that ∆(S, u) = S.

Claim 4.7.1. p is coprime with b.

Proof of Claim 4.7.1. For the sake of contradiction let us assume that p is not coprime
with b. We factorise u as u = av with a in Ab. From Property 3.4(iii), the smallest period
of ∆(S, a) is strictly smaller than p. Hence, from Property 3.4(i) the smallest preperiod
of ∆(∆(S, a), v) = S is strictly smaller than p, a contradiction.

Claim 4.7.2. Either I = {0} or I = ∅.

Sketch. Claim 4.7.2 is proved just as Claim 4.7.1, but using Properties 3.4(iv) and 3.4(ii).

The case I = ∅ implies that US is atomic; hence A obviously satisfies Conditions (UP *).
It remains to treat the case where I = {0}. In the following, we denote by K the set of all
purely periodic subsets of N. We partition Q as C]D where:

• C contains every X (in Q) that is not purely periodic;
• D contains every X (in Q) that is purely periodic.

Note that since I = {0}, every X in C is of the form {0} ⊕ Y , with Y ∈ K.

Claim 4.7.3. C is a type-two s.c.c.

Proof of Claim 4.7.3. From Property 3.4(v), reading any non-0 digit from any state in C
would reach a state in D. On the other hand, from Property 3.4(ii), no state in C is
reachable from any state in D. Since A is reachable, all states in C are reachable from S,
hence it is necessary that C is a 0-circuit.

Let f be the function (C ∪ K) → K defined as follows. For each X in C, there is
a Y ∈ K such that X = {0}⊕Y and we set f(X) = Y . For each X in K, we set f(X) = X.

Claim 4.7.4. f(C) ⊆ D

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:15

Proof of Claim 4.7.4. Let X be an element in C and we write Y = f(X), hence X = {0}⊕Y .
Note that UY is atomic, hence complete and strongly-connected. Thus, there exists
a word w such that: (i) ∆(Y,w) = Y ; and (ii) w does not belong to 0∗. From
(ii), ∆({0} , w) = ∅, hence Property 3.5 yields that ∆(X,w) = Y . In other words, Y is
reachable from X, hence also from S and by definition of US , Y ∈ Q.

Claim 4.7.5. For every X in C and every word u in Ab
∗, f(∆(X,u)) = ∆(f(X), u).

Proof of Claim 4.7.5. The whole statement reduces easily to the case where u is a letter a.
The state X may be written has {0} ⊕ Y for some set Y in K. Hence, the following
concludes the proof of the claim.

f(∆(X, 0)) = f
(
∆({ 0 } ⊕ Y, a)

)
= f

(
∆({ 0 } , a)⊕∆(Y, a)

)
(From Property 3.5)

= ∆(Y, a)

= ∆
(
f({ 0 } ⊕ Y), a

)
= ∆(f(X), a)

We denote by T the purely periodic set T = f(S) (hence such that S = {0} ⊕ T). Note
that, from Claim 4.7.4, T belongs to D.

Claim 4.7.6. The automaton
〈
Ab, D, T, ∆|D, F ∩D

〉
is exactly UT .

Proof of Claim 4.7.6. Note that the states of US that are reachable from T are exactly the
states of UT ; thus, it is enough to show that all states in D are reachable from T . Let X
be a state in D. Since US is reachable, there is a word w in Ab

∗ such that ∆(S,w) = X.
Claim 4.7.5 yields that f(∆(S,w)) = ∆(f(S), w). Since f(S) = T and f(∆(S,w)) =
f(X) = X, it follows that ∆(T,w) = X.

Claim 4.7.6 implies that D is an s.c.c. of type one and, since it is the only one, that US
satisfies (UP 2). The only other s.c.c. of US is C and it is indeed of type two and has exactly
one descendant (D), hence US satisfies (UP 3). Moreover, Claim 4.7.4 ensures that we may
restrict f to a function (C ∪D) → D. Finally, Claim 4.7.5 yields that f, thus restricted,
indeed embeds C in D, hence that US satisfies (UP 4).

5. Deciding membership in UP

The goal of Section 5 is to describe an algorithm that decides Problem 5.1 and that runs in
time O(bn), where n is the number of states of the input automaton.

Problem 5.1. Given a minimal automaton A, does A satisfy Conditions (UP *)?

The hard part is to obtain a linear time-complexity in the special case where the input
automaton is strongly connected. This algorithm is developed in details in Section 5.1. Then,
the algorithm for the general case poses no particular difficulties and is given afterwards in
Section 5.2.

8:16 V. Marsault Vol. 15:3

5.1. The strongly connected case. From the definition of Conditions (UP *), page 12,
Problem 5.1 is the same as Problem 5.2, below, if the input automaton is strongly connected.

Problem 5.2 (UP-atomic). Given as input a minimal automaton A, is A UP-atomic?

We will see later on (Equation (5.9) and Proposition 5.21) that one can compute in
linear time the only possible period p and remainder set R that could satisfy A = U(R+pN).
In that light, Problem 5.2 reduces to Problem 5.3, below.

Problem 5.3 (Atomic Construction). Given a purely periodic set S, the period of which is
coprime with b, build the automaton US .

Proposition 3.12 gives an explicit construction of U(R+pN). However, the time com-
plexity of this construction is in O(bn× Card(R)), where n is the number of state in US .
Since Card(R) may be up to linear in p, hence in n, this does not achieve the O(bn)
time-complexity we require.

In the following, we use a different route to solve Problem 5.2 in linear time. In particular,
we make great use of the fact that we are provided with the solution (the input automaton A).
Hence, the algorithm developped in the remainder of Section 5.1 does not solve Problem 5.3
in linear time.

The outline of Section 5.1 is as follows. Let R + pN be a purely periodic set such
that p is coprime with b. In Section 5.1.1, we define a special automaton PRp (called Pascal
automaton) that accepts the purely periodic set R + pN. Section 5.1.2 gives the precise
structure of the transition monoid of PRp (which, indeed is a group). In Section 5.1.3, we

consider any strict quotient B of PRp and study the morphism ϕ that realises this quotient.
In particular, we show that one can deduce from the structure of A the values of p, of R and
of a parameter (h, k) that characterises ϕ. Then, Section 5.1.4 gives a way to reconstruct B
in linear time when knowing p, R, and (h, k). Finally, we describe in Section 5.1.5 an
algorithm to decide whether a given automaton C is the quotient of any Pascal automaton:
(1) compute p, R, and (h, k) from the structure of C; (2) use these data to reconstruct the
corresponding B; and (3) check whether C and B are isomorphic. This algorithm also solves
Problem 5.2: the input automaton A of Problem 5.2 is assumed to be minimal, hence A is
isomorphic to U(R+pN) if and only if A is a quotient of PRp .

5.1.1. Pascal automaton: definition and elementary properties. Let us consider a purely
periodic set, canonically written as R+ pN. We moreover assume that p is coprime with b.
In the following, we define a special automaton that accepts R+ pN, called the Pascal
automaton of parameter (p,R) and denoted by PRp . Its principle indeed goes back to the
work of the philosopher and mathematician Blaise Pascal (cf. [Sak09, preface]).

Since p and b are coprime, b is an invertible element of Z/pZ and there exists some
(smallest) positive integer ψ such that

bψ ≡ 1 [p] hence that ∀k ∈ N bk ≡ b(k%ψ) [p] . (5.1)

(In other words, ψ is the order of b in the multiplicative group of the invertible elements
of Z/pZ.)

It follows from (2.4) and (5.1) that the value modulo p of a word ua can be computed
using the length modulo ψ and the value modulo p of the word u:

∀u ∈ Ab∗, ∀a ∈ Ab ua % p ≡ (u % p) + ab|u|%ψ [p] . (5.2)

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:17

In the following, integers will often be used in the place of elements that should belong
to Z/nZ, for some n; in such a case, it is understood that the integer is lifted to its
equivalence class modulo n. This typically occurs when the results of arithmetic operations
are components of states, like in Equation (5.3) for instance.

Definition 5.4. The Pascal automaton of parameter (p,R), denoted by PRp , is the automa-
ton:

PRp = 〈Ab, Z/pZ×Z/ψZ, (0, 0), δ, R× Z/ψZ〉
where R is lifted as a subset of Z/pZ, and the transition function δ is defined by:

∀(s, t) ∈ Z/pZ×Z/ψZ, ∀a ∈ Ab δ((s, t), a) = (s, t) · a = (s+ abt, t+ 1) . (5.3)

0, 0

0, 1

1, 0

1, 1

2, 0

2, 1

Z/pZ

Z
/ψ

Z

Figure 7. The Pascal automaton P{2}3 in base 2

Example 5.5. Let b = 2, p = 3, R = {2}, hence ψ = 2. Figure 7 shows the Pascal

automaton P{2}3 . Recall that transition labels are omitted in figures: transitions labelled
by 1 are drawn with a thick line and transitions labelled by 0 with a thin line. Figure 8

shows P{6}7 ; most transitions are dimmed for the sake of clarity.

Pascal automata have the expected behaviour, as stated below.

Proposition 5.6. The Pascal automaton PRp accepts R+ pN.

Proposition 5.6 is a direct consequence of the Corollary 5.8 of the next lemma, which
characterises the paths in PRp .

Lemma 5.7. Let u be a word in Ab
∗. We write h = u % p and k = |u|%ψ. Then, for every

state (s, t) of PRp ,

(s, t) · u = (s+ hbt, t+ k)

Proof. Induction over the length of u. The case |u| = 0 is trivial. Now we assume that u 6= ε.
We write u = va with a ∈ Ab and v ∈ Ab∗. Moreover, we write h′ = v %p and k′ = |v|%ψ (=
k−1). We apply below induction hypothesis and (5.3).(

(s, t) · va
)

= (s+ h′ bt, t+ k′) · a = (s+ h′ bt + abt+k
′
, t+ k′ + 1)

= (s+ bt(h′ + abk
′
), t+ k)

Equation (5.2) yields the following and concludes the proof.

u = va ≡ v % p+ ab|v|%ψ ≡ h′ + abk
′

[p] .

Corollary 5.8. Let u be a word in Ab
∗. The run of u in PRp ends in the state

(
u, |u|

)
.

8:18 V. Marsault Vol. 15:3

0,0 0,1 0,2

1,0

1,1

1,2

2,0

2,1

2,2
3,0

3,1

3,2

4,0

4,1

4,2

5,0

5,1

5,2

6,0

6,1

6,2

Figure 8. The Pascal automaton P{6}7 in base 2

Much like U(R+pN), every Pascal automaton PRp (and indeed each quotient of PRp) is a
group automaton, as stated next.

Lemma 5.9. Every Pascal automaton is a group automaton.

Proof. Let PRp be a Pascal automaton, (h, k) a state of PRp , and a a letter in Ab. From (5.3),

a state (s, t) is predecessor of (h, k) by a if and only if s ≡ (h− abk) [p] and t ≡ h−1 [ψ];
such a predecessor exists and is unique since p is coprime with b.

Corollary 5.10. Every quotient of a Pascal automaton is a group automaton.

The remainder of Section 5.1 is dedicated to devising an algorithm to decide the following
problem.

Problem 5.11 (Quotient of a Pascal automaton). Given as input an automaton A, is A
the quotient of some Pascal automaton?

Note that Problem 5.11 is more general than Problem 5.2. They become identical if we
add in Problem 5.11 the extra assumption that A is minimal

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:19

5.1.2. Transition monoids of Pascal automata. For a fixed period p, and a variable remainder
set R, the Pascal automata PRp are isomorphic, aside from the final-state set. In particular,
their transition monoids are isomorphic as well. We denote this monoid by Gp in the
following; it is indeed a group from Lemma 5.9. Let us now study the structure of this
group.

We recall that ψ denotes the smallest positive integer such that bψ is congruent to 1
modulo p, and that Z/pZ×Z/ψZ is the state set of PRp .

Proposition 5.12. The group Gp is isomorphic to the semidirect product Z/pZ o Z/ψZ.

The proof of Proposition 5.12 requires additional definitions and properties. By definition
of transition monoid, Gp is the set of the permutations of Z/pZ×Z/ψZ (the state-set of PRp)
induced by words. For every u of Ab

∗, the permutation induced by u, denoted by τu, is
defined below.

τu : Z/pZ×Z/ψZ −→ Z/pZ×Z/ψZ
(s, t) 7−→ (s, t) · u (5.4)

The next property follows directly from Lemma 5.7.

Property 5.13. For every words u, v ∈ Ab∗, the permutations τu and τv are equal if and
only if both u ≡ v [p] and |u| ≡ |v| [ψ].

Hence, the group Gp is isomorphic to the group (Z/pZ×Z/ψZ, �); the operation � is
defined by

(s, t) � (h, k) = (s+ hbt, t+ k) ; (5.5)

and the following function realises the isomorphism.

g : Gp −→ Z/pZ×Z/ψZ
τu 7−→

(
u, |u|

)
= τu

(
(0, 0)

) (5.6)

We may rephrase the same fact by linking the transition function of PRp (cf. Lemma 5.7) to
the � operation.

∀u ∈ Ab∗, ∀(s, t) ∈ Gp

(
(s, t) · u

)
= (s, t) � (u, |u|) . (5.7)

The next properties conclude the proof of Proposition 5.12. We recall that a subgroup H
of a group G is normal if every x in G is such that xHx−1 ⊆ H.

Properties 5.14.

(i) The set H = Z/pZ× {0} is a normal subgroup of Gp.

(ii) The set K = {0} × Z/ψZ is a subgroup of Gp.

(iii) The group Gp is the internal semi-direct product H oK.

Proof.

(i) Let (h, 0) and (h′, 0) be two elements of H. From (5.5), their product (h, 0) � (h′, 0) =
(h+ h′, 0) is indeed an element of H. Thus, H is a subgroup of Z/pZ×Z/ψZ.

Let (s, t) be an element in Z/pZ×Z/ψZ. It follows from (5.5) that the second

component of its inverse, (s, t)−1, is necessarily −t modulo ψ. Hence, for every

element (h, k) of Z/pZ×Z/ψZ, the second component of
(
(s, t) � (h, k) � (s, t)−1

)
is

equal to k. The case k = 0 yields that H is normal.

(ii) Shown similarly from (5.5).

8:20 V. Marsault Vol. 15:3

(iii) Every element (h, k) of Z/pZ×Z/ψZ may be factorised as (h, 0) � (0, k), hence H �
K = Z/pZ×Z/ψZ. Since moreover H ∩K contains only the neutral element (0, 0),
Z/pZ×Z/ψZ = H oK.

In the following, we identify Gp with Z/pZ×Z/ψZ; we may then write the permuta-
tion (s, t) ∈ Gp. (It is in fact the permutation τu, where u is any word that satisfies u ≡ s [p]
and |u| ≡ t [ψ].)

Since it is a transition monoid, Gp is generated by the permutations induced by the
letters of Ab. On the other hand, it is isomorphic to Z/pZ o Z/ψZ hence is obviously
generated by the elements (0, 1) and (1, 0). The former is the permutation induced by the
digit 0 while the latter is not induced by a letter, but rather by the word 10ψ−1. We define
a new letter g whose action on PRp is defined as the one of 10ψ−1:

∀(s, t) ∈ Z/pZ×Z/ψZ︸ ︷︷ ︸
=Gp

(s, t) g−−−−AA (s+ bt, t)︸ ︷︷ ︸
=(s,t) � (1,0)

. (5.8)

The next statement follows from Equation (5.5).

Property 5.15. For every letter a of Ab, the actions of a and of ga0 are equal.

Thus, the letter g allows to simplify PRp into an automaton over the alphabet {0, g}
without losing information. This ‘equivalent’ automaton, denoted by P ′Rp , is obtained by

adding the letter g (which acts as the word 10ψ−1) and then deleting every letter a ∈ Ab, a 6= 0.

0, 0

0, 1

1, 0

1, 1

2, 0

2, 1

Figure 9. The simplified Pascal automaton P ′{2}3 in base 2

Example 5.16. Figures 9 and 10 show the automata P ′{2}3 and P ′{6}7 respectively. Once
again, labels are omitted; transitions labelled by the digit 0 are drawn with a simple line
while transitions labelled by g are drawn with a double line.

The structure of the transition monoid as a semidirect product is visible in Figure 9.
First, 0 induces a permutation within each column and g induces a permutation within each
row. Second, the action of 0 is the same in each column while the action of g depends on
the line. A similar observation can be made about Figure 10 by replacing columns and rows
by spokes and concentric circles.

Remark 5.17. The element (0, ψ−1) is, in Gp, the inverse of (0, 1). In Section 5.1.5, we
will allow to take transitions backward; the action of g is then identical to the one of the
word 10−1. This word has the advantage to be shorter, and to be independent of ψ (hence
independent of p)

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:21

0,0 0,1 0,2

1,0

1,1

1,2

2,0

2,1

2,2
3,0

3,1

3,2

4,0

4,1

4,2

5,0

5,1

5,2

6,0

6,1

6,2

Figure 10. The simplified Pascal automaton P ′{6}7 in base 2

5.1.3. Properties of a quotient of Pascal automaton. Here, we assume that A denotes a
strict quotient of PRp , and that ϕ denotes the automaton morphism PRp → A. Note that A
is a group automaton (Corollary 5.10).

As we did for PRp in the previous Section 5.1.2, we add in A transitions labelled by a

new letter g whose action is the same as the one of 10−1:

s g−−−−AA s′ ⇐⇒ s · 1 = s′ · 0 . (5.9)

Since A is a quotient of PRp , the next property follows from Property 5.15.

Property 5.18. For every letter a of Ab, the action of a in A is the same as the one of the
word ga0.

In the following, we give a way to compute the parameter (p,R) of the Pascal automaton
by observing the structure of A. It is stated as Proposition 5.21 after two preliminary
lemmas.

Lemma 5.19. For every (s, 0) of Gp distinct from (0, 0), ϕ
(
(s, 0)

)
6= ϕ

(
(0, 0)

)
.

Proof. It follows from (5.8), which defines the transition labelled by g in PRp , that

∀h ∈ N (s, 0) gh−−−−A
PR
p

(s+ h, 0) and (0, 0) gh−−−−A
PR
p

(h, 0) . (5.10)

8:22 V. Marsault Vol. 15:3

For the sake of contradiction, let us assume that ϕ
(
(s, 0)

)
= ϕ

(
(0, 0)

)
; since ϕ is an

automaton morphism it follows from (5.10) that

∀h ∈ Z/pZ ϕ
(
(s+ h, 0)

)
= ϕ

(
(h, 0)

)
.

Since an automaton morphism preserves final states, for every h ∈ Z/pZ, (h, 0) is final
if and only if (h + s, 0) is final. From the Definition 5.4 of Pascal automata (page 17), a
state is final if and only if its first component belongs to R. Hence,

∀h ∈ Z/pZ h ∈ R ⇐⇒ h+ s ∈ R .

In other words, s is a period of R+ pN strictly smaller than p, a contradiction.

Lemma 5.20. Let (s, t) and (h, k) be two distinct elements of Gp. If t = k, then
ϕ
(
(s, t)

)
6= ϕ

(
(h, k)

)
.

Proof. Let (s, t) and (h, k) be two distinct states of PRp such that t = k. We write u = 0ψ−tgs.
This word labels the two following paths:

(s, t) u−−−−A (0, 0) and (h, k) u−−−−A (h− s, 0) .

Since (s, t) and (h, k) are distinct, we necessarily have that (h− s) 6= 0.
It follows from the previous equation, that if ϕ

(
(s, t)

)
and ϕ

(
(h, k)

)
were equal, so would

be ϕ
(
(0, 0)

)
and ϕ

(
(h− s, 0)

)
, a contradiction to Lemma 5.19 above.

Proposition 5.21. Let A be the quotient of a Pascal automaton PRp .

(i) The circuits induced by the letter g in A are all of length p.

(ii) The word gr is accepted by A if and only if r belongs to R.

Proof.

(i) Let k be an element of Z/ψZ. The g-circuit of PRp that contains the state (0, k) is

(0, k) g−−−−A
PR
p

(pk, k) g−−−−A
PR
p

(2pk, k) g−−−−A
PR
p

· · · g−−−−A
PR
p

((n− 1)pk, k) g−−−−A
PR
p

(0, k) .

The image of this circuit by ϕ is:

ϕ
(
(0, k)

)
g−−−−A
PR
p

ϕ
(
(pk, k)

)
g−−−−A
PR
p

· · · g−−−−A
PR
p

ϕ
(
((n− 1)pk, k)

)
g−−−−A
PR
p

ϕ
(
(0, k)

)
.

Since ϕ is not necessarily injective, this last circuit might not be simple. In this case
it would hold ϕ((ipk, k)) = ϕ((jpk, k)) for some distinct i, j ∈ Z/pZ, a contradiction to
Lemma 5.20 above. Since every g-circuit of A is necessarily the image of a g-circuit

of P ′Rp , item (i) holds.

(ii) The run of the word gr ends in P ′Rp the state (0, r) which by definition is a final state if

and only if r belongs to R. Since A is a quotient of P ′Rp , they accept the same language.

Thus, gr is accepted by A if and only if it is accepted by P ′Rp , concluding the proof.

Next, we give a method to characterise the automaton morphism ϕ : PRp → A with data
observable in A. Indeed, the morphism is entirely determined by the class of ϕ-equivalence
of the state (0, 0) of PRp and in particular by the element (h, k) of this class such that k is
the smallest but still positive.

This ϕ-equivalence class is characterised by the following lemma; it is a consequence of
the definition of the letter g in PRp .

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:23

Lemma 5.22. Let (s, t) be in Gp. The run of the word gs0t in A reaches the initial states
if and only if ϕ((s, t)) = ϕ((0, 0)).

Let (h, k) be an element of Gp. We denote by γ(h,k) the permutation of Gp induced
by the multiplication by (h, k) on the left (whereas τu corresponds to the multiplication
by (u, |u|) on the right):

∀(s, t) ∈ Gp γ(h,k)
(
(s, t)

)
= (h, k) � (s, t) = (h+ sbk, k + t) . (5.11)

We moreover write σ(h,k) the permutation resulting from the projection of γ(h,k) to its first
component, Z/pZ:

∀s ∈ Z/pZ σ(h,k)(s) = h+ sbk . (5.12)

In the following we will always consider the permutations γ(h,k) and σ(h,k) parametrised
by a special element (h, k), called by abuse of language the smallest state ϕ-equivalent
to (0, 0), and defined as the unique1 element satisfying the two following conditions:

• ϕ((h, k)) = ϕ((0, 0));
• every element (s, t) ∈ Gp such that (s, t) 6= (0, 0) and ϕ((s, t)) = ϕ((0, 0)) necessarily

meets k < t.

The next lemma follows from definitions.

Lemma 5.23. Every ϕ-equivalence class is stable by the permutation γ(h,k) (in Gp).

Proof. Let (s, t) be a state of P ′Rp and u a word such that (u, |u|) = (s, t).

ϕ
(
γ(h,k)((s, t))

)
= ϕ

(
(h, k) � (s, t)

)
= ϕ((h, k)) · u
= ϕ((0, 0)) · u
= ϕ

(
(0, 0) � (s, t)

)
= ϕ((s, t))

Remark 5.24. In [Mar16], a statement stronger than Lemma 5.23 is shown: the ϕ-
equivalence classes are in fact the orbits of γ(h,k).

5.1.4. Construction of the quotient. We keep here the settings of Section 5.1.3. Namely, p
denotes a positive integer coprime with b, A denotes a strict quotient of PRp , ϕ denotes

the automaton morphism PRp → A and (h, k) denotes the smallest state of PRp that is ϕ-
equivalent to (0, 0). The purpose of this section is to show that, given as input p,R, h and k,
one can buildA in linear time (with respect to the size of A).

Definition 5.25. We denote by A(h,k) the automaton

A(h,k) =
〈
{ 0, g } , Q(h,k), δ(h,k), (0, 0), F(h,k)

〉
,

where the state set is Q(h,k) = Z/pZ×Z/kZ (mind that the second operand of the Cartesian
product is Z/kZ and not Z/ψZ); the final-state set is Q(h,k) = R×Z/kZ (idem); the outgoing

1 Uniqueness is a consequence of Lemma 5.20.

8:24 V. Marsault Vol. 15:3

transitions of every state (s, t) ∈ Q are defined as follows.

(s, t) · 0 =

(s, t+ 1) if t < (k−1)

γ −1
(h,k)

(
(s, t+ 1)

)
=

(
s− h
bk

, 0

)
if t = (k−1)

(s, t) · g = (s+ bt, t)

In the remainder of Section 5.1.4, we show that the automaton A(h,k) is isomorphic to A
(Theorem 5.28). The proof of this statement needs preliminary results.

Lemma 5.26. Let (s, t) be an element of Q(h,k) (hence both a state of A(h,k) and of PRp).
Let x be a letter of {0, g }. We let (s′, t′) and (s′′, t′′) denote the successors of (s, t) by x,
respectively in A(h,k) and in PRp . Then, as states of PRp , (s′, t′) and (s′′, t′′) are ϕ-equivalent.

Proof. From the definitions of A(h,k) and PRp , the only case where (s′, t′) and (s′′, t′′) are not
equal happens when a = 0 and t = k−1. In this case however, we have γ(h,k)((s

′′, t′′)) =
(s′, t′). Applying Lemma 5.23 concludes the proof.

Lemma 5.27. Every ϕ-equivalence class contains exactly one state of Q(h,k).

Proof. Existence. We denote by C any ϕ-equivalence class and (s, t) its smallest element
(when ordered by second component); Lemma 5.20 ensures that (s, t) is well defined. If t > k,
then γ(h,k)

−1((s, t)) is equal to (s′, t− k) for some s′ and it holds that 0 6 t− k < t. From
Lemma 5.23, (s′, t − k) is moreover ϕ-equivalent to (s, t), a contradiction to the choice
of (s, t). Hence t < k and (s, t) ∈ Q(h,k).

Uniqueness. Ab Absurdo. Let (s, t) and (s′, t′) two distinct and ϕ-equivalent states
of PRp such that 0 6 t, t′ < k. From Lemma 5.20, t and t′ are not equal; we assume without

loss of generality that t < t′, hence it holds that 0 < t′ − t < k. The state (s′, t′) � (s, t)−1 is
ϕ-equivalent to (0, 0) and equal to (s′′, t′ − t) for some s′′, a contradiction to the definition
of (h, k) as the smallest state ϕ-equivalent to (0, 0).

Now, we establish that A(h,k) is isomorphic to A.

Theorem 5.28. Let PRp be a Pascal automaton and A a non-trivial quotient of PRp . We

write ϕ the automaton morphism PRp → A. Among the states ϕ-equivalent but not equal
to (0, 0), we denote by (h, k) the state with the smallest second component. Then, the
automaton A is isomorphic to A(h,k).

Proof. We define the function ξ.

ξ : QA −→ Q(h,k)

q 7−→ the unique state of ϕ−1(q) ∩Q(h,k)

Lemma 5.27 yields that ξ is well defined. Since the inverse images by ϕ of states of A are
disjoint, ξ is injective. It is also surjective since every state (s, t) of Q(h,k) is the image by ξ
of ϕ((s, t)).

It remains to show that ξ is an automaton morphism A → A(h,k). The state (0, 0) is
necessarily mapped by ϕ to iA, the initial state ofA, and belongs to Q(h,k) hence ξ(iA) = (0, 0)
which is the initial state of A(h,k).

Similarly, ϕ preserves the final and non-final status of states hence so does ξ.

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:25

Finally, let q a−−−−A q′ be a transition of A and let us show that ξ(q) a−−−−A ξ(q′) in A(h,k).

We denote by (s′, t′) and (s′′, t′′) the successors of ξ(q) by x in A(h,k) and PRp , respectively.

Since ξ(q) belongs to ϕ−1(q) and since ϕ is a morphism (s′′, t′′) belongs to ϕ−1(q′). Then,
Lemma 5.26 implies that (s′, t′) belongs to ϕ−1(q′) as well. Since (s′, t′) also belongs to Q(h,k),
it holds that ξ(q′) = (s′, t′).

5.1.5. Decision algorithm. Let A = 〈Q,Ab, δ, i, T 〉 be an automaton fixed in the following.
We will describe here an algorithm to decide whether A is the quotient of a Pascal automaton.

. Step 0 (Requirements). Every quotient of a Pascal automaton is necessarily a group
automaton (Corollary 5.10) and necessarily accepts by value. It may be verified in linear
time whether A satisfies these two conditions. If it does not, reject A. Moreover, we allow
to take transitions (labelled by 0) backwards; computing these transitions may be done in
one traversal of A.

. Step 1 (Simplification). Let B be the alphabet {0, g}. Let us compute an automaton A′
over B. First, the automaton A = 〈Q,Ab, δ, i, F 〉, whose alphabet is Ab, is transformed
in the automaton B = 〈Q,Ab ∪B, δ′, i, F 〉, by adding transitions labelled by g: the transi-

tion s g−−−−A s′ is added in B if and only if s 10−1

−−−−A s′ exists in A. Second, we ensure that
no information is lost in the simplification process. From Property 5.18, if the automaton A
is the quotient of a Pascal automaton, the following equation necessarily holds (if it does
not, reject A):

∀s ∈ Q, ∀a ∈ Ab s · a = s · (ga 0) in automaton B (5.13)

Verifying that this equation is satisfied requires to run one test for every letter a and every
state s, that is one test for each transition of A. It is then sufficient that each test is
executed in constant time in order for the general verification of (5.13) to be run in linear
time. Keeping intermediary results allows to comply to this condition. Third, we delete
from B the transitions labelled by digits other than 0 or g and denote the result by A′.

Running example. We consider an automaton A3 over the alphabet A3 = {0, 1, 2}, hence
the base in b = 3. Figure 11 shows the simplified automaton A3

′. (We did not include a
representation of A3 because it has 30 transitions.)

. Step 2 (Analysis). For the whole step 2, we assume that A′ is the quotient of a Pascal

automaton P ′Rp , in order to compute p, R, ϕ and (h, k). (If it is not the case, these parameters
have no meaning and A will be rejected during Step 3.) We first use Proposition 5.21 to
compute p and R:

• p is the length of the g-circuit containing the initial state;
• R is the set of the exponents r such that gr is accepted by A′.
The order ψ of p in (Z/pZ,×) is computed in the usual way. The parameter (h, k) of the
quotient is computed thanks to Lemma 5.22: we look for the mixed circuit gs0t with the
smallest positive t; then we write (h, k) = (s, t).

Running example. Figure 12 highlights the g-circuit containing the initial state. It has
length 5 (as have all other g-circuits), hence p = 5 and final states are at index 0 and 3,
hence R = {0, 3}. Figure 13 shows the mixed circuit with the smallest number of 0’s (and

8:26 V. Marsault Vol. 15:3

Figure 11. The simplified automaton A3
′

Figure 12. The g-circuit in A3
′

containing the initial state
Figure 13. The smallest
mixed circuit in A3

′

Base b = 3
Period p = 5
Remainder set R = {0, 3}
Parameter of the quotient (h, k) = (3, 2)
Order of b in the group (Z/pZ,×) ψ = 4

Table 14. Summary of the parameters

(i) (s, 0) · 0 = (s, 1)

(ii) (s, 1) · 0 = (4s− 2, 1) = (s−h
pk
, 0)

(iii) (s, 0) · g = (s+ 1, 0) = (s+ p0, 0)
(iv) (s, 1) · g = (s+ 3, 1) = (s+ p1, 1)

Table 15. Transition function of A(h,k)

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:27

in this case it is the only one). Since it is labelled by the word g302, the parameter of the
quotient is (h, k) = (3, 2). Table 14 sums up all relevant parameters.

. Step 3 (Verifications). From Theorem 5.28, if A is the quotient of a Pascal automaton,
it is isomorphic to A(h,k). Hence, build A(h,k) using Definition 5.25 and tests isomorphism
to A′ with a simple traversal.

Running example. Table 15 gives the transition function of the automaton A(3,2) (cf. Defini-
tion 5.25). Figure 16 shows the verification process, the isomorphism is built by visiting each
transition of A′ and colouring the visited state by the corresponding state of A(3,2).

5.2. Linear algorithm to solve Problem 5.1.

Theorem 5.29. Let A be a minimal automaton with n transitions. It can be decided in
time O(bn) whether A satisfies Conditions (UP *).

Proof. A simple traversal is sufficient to check whether A satisfies (UP 0). Condition (UP 1)
is assumed to be satisfied by A. The verification of the other conditions require to compute
the component graph of A; this can be done in time O(bn) using classical algorithms
(Theorem 2.5). Verifying (UP 2) can be done in linear time thanks to the algorithm previously
presented in Section 5.1. Verifying (UP 3) requires a simple test for each of the affected
s.c.c.’s.

Finally, condition (UP 4) can be verified in the following way. Let C be an s.c.c. of type
one and D the s.c.c. of type two that descends from it. We then define the function f as
follows; it is the only function that may realise an embedding. Every state x in C is mapped
to the unique state f(x) in D such that

x 1−−−−A y and f(x) 1−−−−A y

(since D is a UP-atomic automaton, it is a group automaton, hence y and f(x) are uniquely
defined). Once f has been computed, checking whether f is an embedding function can be
done in time O(bn).

6. Conclusion and future work

The main result of this article is stated again below. It follows directly from Theorems 4.3
and 5.29, shown in Sections 4 and 5.2 respectively.

Theorem 1.1. Let b > 1 be an integer. We assume that number representations are written
in base b and with the least significant digit first. Given a minimal DFA A with n states, it
is decidable in time O(bn) whether A accepts an ultimately periodic set.

Corollary 1.2. Given a DFA A with n states, it is decidable in time O((bn) log n) whether A
accepts an ultimately periodic set.

These results almost close the complexity question raised by Honkala’s problem, when
one writes representations LSDF. Two improvements are natural: getting rid, in Theo-
rem 1.1, either of the condition of minimality, or of the condition of determinism. We
are rather optimistic for a positive answer to the first one, by performing some kind of
partial minimisation (which would run in linear time). For instance, the algorithm given in

8:28 V. Marsault Vol. 15:3

0,0

(a) The initial state is coloured by (0, 0)

1,0

2,0

3,0

4,0

0,0

(b) Applying rule (iii) of Table 15:
(s, 0) g−−−−A (s + 1, 0)

3,1
1,1

4,1

2,1

0,1

1,0

2,0

3,0

4,0

0,0

(c) Applying rule (i) of Table 15:
(s, 0) g−−−−A (s, 1)

3,1
1,1

4,1

2,1

0,1

1,0

2,0

3,0

4,0

0,0

(d) Applying rule (iv) of Table 15:
(s, 1) g−−−−A (s + 3, 1)

3,1
1,1

4,1

2,1

0,1

1,0

2,0

3,0

4,0

0,0

(e) Applying rule (ii) of Table 15:
(s, 1) 0−−−−A (4s− 2, 0)

3,1
1,1

4,1

2,1

0,1

1,0

2,0

3,0

4,0

0,0

(f) Verifying that (s, t) is final if and only if
s ∈ R = {0, 3}

Figure 16. Verifications

Vol. 15:3 DECIDING PERIODICITY OF b-RECOGNISABLE SETS USING LSDF CONVENTION 8:29

Section 5.1 solves (a special case) even if the input automaton is not quite minimal. On the
other hand, devising conditions similar to (UP *) for non-deterministic automata seems to
be much more difficult.

As for extensions, we are fairly confident that an approach similar to what we do here
can be used for non-standard numeration systems, or at least for a family of U-systems to
be identified. It would also be interesting to find an equivalent of Conditions (UP *) for
automata that accept rational subsets of Nd.

The same questions arise in the case where number representations are written with the
most significant digit first. We are hopeful that some of them can be addressed by building
upon the recent work of Boigelot et al. [BMMR17].

Acknowledgments

The author is very grateful to the reviewers for pointing out results that simplified the proofs
to a great extent. The author also warmly thanks Jacques Sakarovitch for suggesting the
subject of this work, and for all the help he provided.

References

[ARS09] Jean-Paul Allouche, Narad Rampersad, and Jeffrey Shallit. Periodicity, repetitions, and orbits of
an automatic sequence. Theoret. Comput. Sci., 410:2795–2803, 2009.

[AS03] Jean-Paul Allouche and Jeffrey Shallit. Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, 2003.

[BC96] Alexandre Boudet and Hubert Comon. Diophantine equations, presburger arithmetic and finite
automata. In Hélène Kirchner, editor, CAAP’96, volume 1059 of Lect. Notes in Comput. Sci.,
pages 30–43. Springer, 1996.

[BCFR09] Jason Bell, Emilie Charlier, Aviezri S. Fraenkel, and Michel Rigo. A decision problem for
ultimately periodic sets in nonstandard numeration systems. IJAC, 19(6):809–839, 2009.

[BHMV94] Véronique Bruyère, Georges Hansel, Christian Michaux, and Roger Villemaire. Logic and p-
recognizable sets of integers. Bull. Belg. Soc. Math., 1:191–238, 1994. Corrigendum, Bull. Belg.
Soc. Math. 1:577 (1994).

[BMMR17] Bernard Boigelot, Isabelle Mainz, Victor Marsault, and Michel Rigo. An efficient algorithm to
decide periodicity of b-recognisable sets using MSDF convention. In 44th ICALP, volume 80 of
LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

[BR10] Valérie Berthé and Michel Rigo, editors. Combinatorics, Automata and Number Theory. Number
135 in Encyclopedia Math. Appl. Cambridge University Press, 2010.

[Bru85] Véronique Bruyère. Entiers et automates finis. Mémoire de fin d’étude, Université de Mons, 1985.
In French.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlag.
Math., 6:66–92, 1960.

[Cha09] Emilie Charlier. Abstract numeration systems: recognizability, decidability, multidimensional
S-automatic sequences, and real numbers. PhD thesis, Université de Liège, 2009.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms (3. ed.). MIT Press, 2009.

[Cob69] Alan Cobham. On the base-dependance of the sets of numbers recognizable by finite automata.
Math. Systems Theory, 3:186–192, 1969.

[CRS12] Emilie Charlier, Narad Rampersad, and Jeffrey Shallit. Enumeration and decidable properties of
automatic sequences. Int. J. Found. Comput. Sci., 23(5):1035–1066, 2012.

[DR11] Fabien Durand and Michel Rigo. On Cobham’s theorem, 2011. HAL-00605375, to appear in
AutoMathA Handbook, (J-E. Pin, Ed.), E.M.S..

[Dur13] Fabien Durand. Decidability of the HD0L ultimate periodicity problem. RAIRO - Theor. Inf.
and Applic., 47(2):201–214, 2013.

8:30 V. Marsault Vol. 15:3

[FS10] Christiane Frougny and Jacques Sakarovitch. Number representation and finite automata, chap-
ter 2, pages 34–107. In Berthé and Rigo [BR10], 2010.

[GS66] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas and languages. Pacif.
J. Math., 16:285–296, 1966.

[Hon86] Juha Honkala. A decision method for the recognizability of sets defined by number systems.
RAIRO Theor. Informatics and Appl., 20:395–403, 1986.

[Ler05] Jérôme Leroux. A polynomial time Presburger criterion and synthesis for number decision
diagrams. In Logic in Computer Science 2005 (LICS’2005), pages 147–156. IEEE Comp. Soc.
Press, 2005. New version at arXiv:cs/0612037v1.

[Ler06] Jérôme Leroux. Least significant digit first presburger automata. Long, unpublished version of
[Ler05]. Available on the website of the author, 2006.

[LR10] Pierre Lecomte and Michel Rigo. Abstract numeration systems, chapter 3, pages 108–162. In
Berthé and Rigo [BR10], 2010.

[Mar16] Victor Marsault. Énumération et numération. PhD thesis, Télécom–ParisTech, 2016.
[Mit11] Ivan Mitrofanov. A proof for the decidability of HD0L ultimate periodicity (in russian). Preprint

arXiv:1110.4780. Last revised 2012-07-17., 2011.
[MS13] Victor Marsault and Jacques Sakarovitch. Ultimate periodicity of b-recognisable sets: a quasilinear

procedure. In DLT 2013, number 7907 in Lect. Notes in Comput. Sci., pages 362–373. Springer,
2013.

[Muc03] Andrei Muchnik. The definable criterion for definability in Presburger arithmetic and its applica-
tions. Theoret. Computer Sci., 290:1433–1444, 2003. Late publication of a preprint (in Russian)
issued in 1991.

[RM02] Michel Rigo and Arnaud Maes. More on generalized automatic sequences. J. of Automata,
Languages and Combinatorics, 7(3):351–376, 2002.

[Sak09] Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009. Corrected

English translation of Éléments de théorie des automates, Vuibert, 2003.
[Sem77] Alexei Semenov. Presburgerness of predicate regular in two number systems. Siberian Math. J.,

18:289–299, 1977.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	On the order of digits
	Related work in the multidimensional setting
	Related work in non-standard numeration systems
	Outline

	2. Preliminaries
	2.1. On automata
	2.2. On strongly connected components
	2.3. On integer base numeration system

	3. Automaton accepting an arbitrary periodic set
	3.1. The function Delta
	3.2. The class UP
	3.3. Atomic automata

	4. Structural characterisation of the class UP
	4.1. Backward direction of Theorem 4.3
	4.2. Forward direction of Theorem 4.3

	5. Deciding membership in UP
	5.1. The strongly connected case
	5.2. Linear algorithm to solve Problem 5.1

	6. Conclusion and future work
	Acknowledgments
	References

