
Graph Pattern Matching in GQL and SQL/PGQ
Alin Deutsch

deutsch@cs.ucsd.edu
UCSD & TigerGraph

USA

Nadime Francis
nadime.francis@univ-eiffel.fr
U Gustave Eiffel, CNRS, LIGM

Marne-la-Vallée, France

Alastair Green
alastair@acm.org
LDBC & Birkbeck

UK

Keith Hare
keith@jcc.com

JCC Consulting & Neo4j
USA

Bei Li
bei@google.com

Google
USA

Leonid Libkin
libkin@ed.ac.uk

U Edinburgh & ENS-Paris
UK & France

Tobias Lindaaker
tobias.lindaaker@datastax.com

DataStax
Sweden

Victor Marsault
victor.marsault@univ-eiffel.fr
U Gustave Eiffel, CNRS, LIGM

Marne-la-Vallée, France

Wim Martens
wim.martens@uni-bayreuth.de

University of Bayreuth
Germany

Jan Michels
jan.michels@oracle.com

Oracle
USA

Filip Murlak
f.murlak@uw.edu.pl
University of Warsaw

Poland

Stefan Plantikow
stefan.plantikow@neo4j.com

Neo4j
Germany

Petra Selmer
petra.selmer@neo4j.com

Neo4j
UK

Oskar van Rest
oskar.van.rest@oracle.com

Oracle
USA

Hannes Voigt
hannes.voigt@neo4j.com

Neo4j
Germany

Domagoj Vrgoč
domagojvrgoc@gmail.com

PUC Chile & IMFD
Chile

Mingxi Wu
mingxi.wu@tigergraph.com

TigerGraph
USA

Fred Zemke
fred.zemke@oracle.com

Oracle
USA

ABSTRACT
As graph databases become widespread, the International Organi-
zation for Standardization (ISO) and International Electrotechni-
cal Commission (IEC) have approved a project to create GQL, a
standard property graph query language. This complements the
SQL/PGQ project, which specifies how to define graph views over
a SQL tabular schema, and to run read-only queries against them.

Both projects have been assigned to the ISO/IEC JTC1 SC32
working group for Database Languages, WG3, which continues to
maintain and enhance SQL as a whole. This common responsibility
helps enforce a policy that the identical core of both PGQ and GQL
is a graph pattern matching sub-language, here termed GPML.

TheWG3 design process is also analyzed by an academicworking
group, part of the Linked Data Benchmark Council (LDBC), whose

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3526057

task is to produce a formal semantics of these graph data languages,
which complements their standard specifications.

This paper, written by members of WG3 and LDBC, presents the
key elements of the GPML of SQL/PGQ and GQL in advance of the
publication of these new standards.

CCS CONCEPTS
• Information systems→Query languages for non-relational
engines; Graph-based database models; • General and reference
→ Computing standards, RFCs and guidelines.

KEYWORDS
Graph database, Property graph, Query Language, Pattern match-
ing, Standardization, GQL, SQL

ACM Reference Format:
Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid
Libkin, Tobias Lindaaker, Victor Marsault, Wim Martens, Jan Michels, Filip
Murlak, Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt,
Domagoj Vrgoč, MingxiWu, and Fred Zemke. 2022. Graph PatternMatching
in GQL and SQL/PGQ. In Proceedings of the 2022 International Conference on
Management of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3514221.3526057

1

https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1145/3514221.3526057

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Deutsch et al.

1 INTRODUCTION
Graph databases are becoming widely used [39]. Many applications
require graph-structured data for analysis: they are found in a
variety of scientific domains, such as biology and chemistry[25].
Machine learning increasingly centres on graph networks [22, 29].
Business transaction records, and derived metrics and control data,
are viewed as graphs to detect fraud patterns, understand market
trends and customer behaviours, and to model data lineage and
complex access control rules.

Graphs appeal to many kinds of users because the graph data
model is akin to conceptual models, which reflect our intuitive view
of information as the properties of entities and their relationships.
Human knowledge, when gathered incrementally as linked data
items, naturally falls into the shape of a graph: this is visible in
open-source knowledge graphs, such as Wikidata and DBpedia,
and in the internal knowledge bases that big tech companies build
in order to inform their decision and service-oriented tasks.

Two of the most popular ways of representing graphs are the
Resource Description Framework (RDF) [15], and property graphs [3].
In RDF, the data is modelled as a directed edge-labelled graph. On
the other hand, property graph models the data as a mixed (that is,
partially directed) multigraph. Both nodes and edges can be labelled,
and also attributed (that is, associated with property/value pairs).
In this paper we focus on property graphs.

The property graph data model has gained adoption in many
commercial database systems. Examples include AgensGraph, Ama-
zon Neptune, ArangoDB, CosmosDB, DataStax Enterprise Graph,
HANA Graph, IBM Db2 Graph, JanusGraph, Neo4j, Oracle Server
and PGX, RedisGraph, Sparksee, Stardog, and TigerGraph. Unlike
RDF with its query language SPARQL [23], which is a W3C stan-
dard, property graph systems possess disparate storage models and
querying facilities, present either in the form of APIs like Gremlin,
or, since 2010, in the form of declarative graph query languages
including Cypher from Neo4j [20], GSQL from TigerGraph [40],
and PGQL from Oracle [26], as well as industry/academia proto-
types such as G-CORE [2]. Pre-existing property graph data lan-
guages overlap substantially in core features, but each has also
introduced unique innovations. The 2015 openCypher project has
led to awidening industrial use of Cypher as a language for property
graphs, but did not succeed on its own in establishing a standard.

As graph data management has expanded as a product cate-
gory, the lack of a standard query language (and associated sub-
languages for schema definition) for property graphs has been felt
more strongly. The situation resembles the early days of the re-
lational/tabular data model, which led to the standardization of
SQL, a hugely successful lingua franca. In 2019 the Joint Technical
Committee 1 of ISO/IEC, which defines information technology
standards for the International Organization for Standardization,
and International Electrotechnical Commission, approved a project
to create GQL, a standard property graph query language with
full CRUD (create/read/update/delete) and catalog capability. GQL
builds on prior graph languages, as well as a new part 16 of SQL,
in development since 2017, called SQL/PGQ. PGQ (short for prop-
erty graph queries) specifies how to define graph views over a SQL
tabular schema, and to run read-only queries over such views, that
can be projected by a SQL SELECT statement.

GQL and SQL/PGQ share a common data model, and a com-
mon graph pattern matching language, called GPML throughout the
paper. Both language projects have been assigned to the ISO/IEC
JTC1 SC32 (Subcommittee 32) Working Group for Database Lan-
guages (WG3) which continues to be responsible for maintaining
and enhancing SQL as a whole. This structure serves a policy that
GPML be kept identical in GQL and SQL/PGQ. The common GPML
sublanguage is the central subject of this paper.

Graph query languages extract data from a graph that matches a
graph pattern. In GPML a graph pattern is a tuple of path patterns,
which when applied to a property graph, results in a set of path
bindings, each mapping variables in the expression to graph ele-
ments (node and edges) forming a path in the graph. These variable
bindings can be used to refer to the graph elements and the values
of their properties. The way in which path bindings are projected
to produce query results varies between SQL/PGQ and GQL, but
the set of path bindings matching a path pattern for a given graph
(prior to result projection) will be the same for both languages.

The standards process for both languages is governed by WG3,
whose expert members represent the national standards bodies of
China, Denmark, Finland, Germany, Japan, Korea, the Netherlands,
Sweden, the UK, and the USA. In addition WG3 has a liaison rela-
tionship with Linked Data Benchmark Council (LDBC). LDBC is a
consortium of industrial companies, research institutes, academic
researchers and consultants. LDBC defines benchmark standards for
graph data workloads, but also supports the work of WG3 on GQL
and SQL/PGQ by adding the expertise of its members to suggest
improvements, or new ideas that may ultimately be incorporated
in the official standards (for example, the Property Graph Schema
Working Group in LDBC). As part of this process, an academic
group was created under the auspices of LDBC, called FSWG (For-
mal Semantics Working Group). Members of this group previously
provided a complete formal semantics of Cypher features [20]. The
group’s goal was to scrutinize and comment on the design of the
GPML sublanguage, and to suggest improvements.

This paper gives an accessible summary of the GPML of GQL and
SQL/PGQ. It does so before these two standards are published, and
before vendors (including those which are represented in the author
list) have released implementations of the features of GPML—but
at an advanced stage of consensus on its scope and design.

The paper is organized as follows. In Section 2 we review the
property graph model and in Section 3 we give a brief overview of
pattern matching facilities in existing languages and survey related
work. Section 4 describes the main functionalities of the GPML
of GQL and SQL/PGQ. In Section 5 we explain how the language
ensures finiteness of outputs, as there could be infinitely many
cyclic paths in a graph. Section 6 provides a detailed explanation of
the pattern-matching algorithm by means of an example. Section 7
describes future plans in terms of the Standard release, industrial
implementations, and new research questions that the GPML poses.

2 PROPERTY GRAPHS
To describe property graphs, we use a common application scenario
involving banking and financial transactions (used, e.g., for fraud
detection). Figure 1 is an example of a property graph containing
information about bank accounts, their location, their associated

2

Graph Pattern Matching in GQL and SQL/PGQ SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

hp
1

hp2

hp3

hp4

hp5
hp6

li1 li2

li3 li
4

li5

li6

sip
1

sip2

owner: Scott

isBlocked: no

owner: Aretha

isBlocked: no

owner: Mike

isBlocked: no

owner: Jay

isBlocked: yes

owner: Charles

isBlocked: no

owner: Dave

isBlocked: no

Account Account

Account Account

Account Account

a1 a2

a3 a4

a5 a6

date: 1/1/2020

amount: 8M

date: 2/1/2020

amount: 10M

date: 3/1/2020

amount: 10M

date: 4/1/2020

amount: 10M

date: 6/1/2020

amount: 10M

date: 7/1/2020

amount: 4M

date: 8/1/2020

amount: 6M

date: 9/1/2020

amount: 9M

Transfer Transfer Transfer

TransferTransfer

Transfer

Transfer

Transfer

t1 t2 t3

t4

t5

t6

t7

t8
number: 111

isBlocked: no

number: 222

isBlocked: no

number: 333

isBlocked: no

number: 444

isBlocked: no

Phone

Phone

Phone

Phone

p1

p2

p3

p4

number: 123.111

isBlocked: no

number: 123.222

isBlocked: no

IP

IP

ip1

ip2

name: Zembla name: Ankh-Morpork

Country City, Country

c1 c2

Edge labels:

Transfer

isLocatedIn

hasPhone

signInWithIP

Figure 1: A property graph with information on bank accounts, their location, and financial transations.

Account
ID owner isBlocked

a1 Scott no
a2 Aretha no
.
.
.

.

.

.
.
.
.

Transfer
ID A_ID1 A_ID2 date amount

t1 a1 a3 1/1/2020 8M
t2 a3 a2 2/1/2020 10M
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Country
ID name

c1 Zembla

CityCountry
ID name

c2 Ankh-Morpork

Figure 2: Excerpts of some of the tables of the tabular representation of the property graph in Figure 1.

phone numbers and IP addresses, and financial transactions be-
tween them. The graph contains nodes, which are connected by
edges. Nodes and edges are identified by node identifiers (a1, . . . ,
a6, c1, c2, p1, . . . , p4, ip1, ip2) and edge identifiers (t1, . . . , t8, li1,
. . . , li6, hp1, . . . , hp6, sip1, sip2), respectively. Furthermore, both
nodes and edges can carry labels (e.g., Account, City, isLocatedIn,
Transfer) and property/value pairs (e.g., owner/Mike, isBlocked/no).
In figures, we depict node information in solid boxes, and edge
information in dashed boxes. We use the umbrella term element to
refer to nodes or edges. When clear from the context, we do not
distinguish node identifiers from nodes (similarly for edges).

In graph-theoretic literature, graphs are usually defined as pairs
⟨𝑉 , 𝐸⟩ of vertices 𝑉 and edges 𝐸 which are either two-element
subsets of 𝑉 for undirected graphs, or pairs of vertices for directed
graphs. In contrast, property graphs are multigraphs (there can be
multiple edges between two endpoint nodes); pseudographs (there
can be an edge looping from a node to itself); they are mixed, or
partially directed: an edge can be undirected, or can have source
and target nodes, in which case it is directed from the source to the
target. They are also attributed: graph elements can have attributes
(a disjoint union of labels and properties).

This is summarized in the following definition. Assume that L,
P, and Val are countably infinite sets, containing labels, property
names, and property values, respectively.

Definition 2.1 (Property Graph). A property graph is defined as a
tuple 𝐺 = (𝑁, 𝐸, 𝜌, 𝜆, 𝜋) where:

• 𝑁 is a finite set of node identifiers;
• 𝐸 is a finite set of edge identifiers; such that 𝑁 ∩ 𝐸 = ∅;
• 𝜌 : 𝐸 → (𝑁 × 𝑁) ∪ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑁 } is a total function
mapping edges to ordered or unordered pairs of nodes;

• 𝜆 : (𝑁 ∪𝐸) → 2L is a total function mapping node and edge
identifiers to sets of labels (including the empty set);

• 𝜋 : (𝑁 ∪𝐸)×P ⇀ Val is a partial function mapping elements
and property names to property values.

We call an edge 𝑒 directed if 𝜌 (𝑒) ∈ 𝑁 × 𝑁 and undirected if
𝜌 (𝑒) ∈ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑁 }. In both cases we say that 𝑒 connects 𝑢
and 𝑣 . Notice that both directed and undirected edges allow𝑢 = 𝑣 , in
which case the edge is a self-loop. Furthermore, the definition allows
both directed and undirected edges to carry labels and data. Indeed,
𝜆 and 𝜋 can be defined for directed and undirected edges. The
definition does not preclude having two different edges connecting
the same nodes. For more details we refer the reader to [21].

A property graph has a graph representation, which is illustrated
in Figure 1, but it also has a tabular representation, which is illus-
trated in Figure 2. In the graph representation, we depicted the
nodes in red and the edges in blue. We depicted the properties
and values associated to elements in grey rounded rectangles and
most of the labels in white rectangles. To avoid clutter however,
we have omitted the labels on some edges (namely isLocatedIn,
hasPhone, and signInWithIP). The tabular representation has
a relation for every combination of labels that appears on some
node or edge in the graph. For instance, every label that appears
in Figure 1 is a relation name in the tabular representation, except
City, which does not appear by itself. It does appear together with
Country (on node c2), so the tabular representation has a relation
named CityCountry, which contains node c2.

A path is an alternating sequence of nodes and edges such that:
(1) it starts and ends with a node; and (2) subsequent nodes are
connected by the edge between them. (As is usual in the graph
database literature [6, 33, 34, 42], we use the term path for what is

3

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Deutsch et al.

called walk in the graph theory literature [9].) We write paths as
path(c1,li1,a1,t1,a3,hp3,p2) indicating a path from node c1
to node p2 that first follows edge li1 in reverse direction, then the
edge t1 in forward direction, and then the undirected edge hp3.

3 GRAPH PATTERN MATCHING TODAY
3.1 Existing Languages
As identified in a recent survey ofmodern graph query languages [3],
when querying graph databases, one usually starts by selecting
atomic graph elements, such as nodes, edges, or paths. Coming
back to our example from Figure 1, basic elements we might want
to select are, for instance:

• All the nodes representing a blocked account;
• All the edges representing a money transfer from a blocked
to a non-blocked account that occurred on a specific date;

• All the paths whose edges represent money transfers, and
that start in a non-blocked account, but end in a blocked one.

In an abstract sense, we could represent these elements as pat-
terns shown in Figure 3. In addition to standard elements of a
property graph, these graph patterns also attach variables 𝑥 , 𝑦, 𝑒 ,
etc. to different parts of the patterns. To match such a pattern in a
property graph, we need a mapping that links the node patterns
to nodes in the graph, and similarly with edge and path patterns.
For instance, the pattern (a) from Figure 3 matches to an Account
node such that the value of the property isBlocked is set to yes.
Similarly, the pattern (b) of Figure 3 matches the node variables 𝑥
and 𝑦 to two accounts (the first one blocked, and the second one
not), while 𝑒 matches an edge of type Transfer connecting these
two nodes, with the value of date set to 3/1/2020.

The most interesting pattern, shown in Figure 3(c), specifies a
path of arbitrary length. Starting from [32], specifying paths via
regular expressions over edge types has been well established both
in the research community [3, 6, 12, 42] and in the industry [20, 26,
36, 40]. Several ways of defining valid paths (simple, arbitrary, etc.)
have been proposed [20, 33]; we discuss them in later sections.

With these basic building blocks at hand, we can define more
complex graph patterns. For instance, assume that in the property
graph from Figure 1, we want to identify all pairs of owners with
accounts that are located in Ankh-Morpork, and are connected by a
path of (arbitrarily many) money transfers. Additionally, we might
want to stipulate that the first account is blocked, while the second
one is not blocked. Following our graphical representation, one can
visualize this query as the graph pattern in Figure 4. Notice that
the pattern only specifies what we want to match in the graph, not
what we want to output (the owners of x and y).

In general, a graph pattern specifies a set of nodes and their
connections via edges and paths, filtered according to labels and
values of some of their properties. Such a graph-shaped query gets
matched to the graph database to obtain a (collection of) result(s).
Graph patterns form the core of most existing graph query lan-
guages, and have been present in academic research (under the
name of conjunctive regular path queries, or CRPQs [6, 11, 42]), in
W3C recommendations (e.g. SPARQL [36]), and in existing prop-
erty graph engines [20, 26, 34, 40]. We next summarize the support
for graph patterns in SPARQL, Neo4j’s Cypher, Oracle PGQL, and
TigerGraph’s GSQL. For historical reasons, we begin with SPARQL.

The SPARQL standard [36] prescribes graph pattern matching on
edge-labeled graphs represented as a single ternary relation. Neither
labels nor properties are present in SPARQL, and matching is done
only between nodes and constants. Path queries are supported by
means of property paths [23] that permit full 2RPQs [12] under
arbitrary path semantics. In order to avoid infinite results when
cycles are present, SPARQL prescribes that one can only check for
the existence of a path between a pair of nodes, but cannot count
the number of such paths, or try to reconstruct them [5, 28]. Amuch
simplified version of the query from Figure 4 in SPARQL (assuming
cities are identified by their names), would be the following:

SELECT ?x, ?y

WHERE { ?x isLocatedIn "Ankh−Morpork".

?y isLocatedIn "Ankh−Morpork".

?x Transfer+ ?y }

The most common query language for property graphs is Cypher
[20] that originated at Neo4j and has since been implemented by
vendors such as Amazon, Agens Graph, Katana Graph, Memgraph,
RedisGraph, and SAP HANA [35]. The owners of the accounts in
the query from Figure 4 can be found with Cypher as follows:
MATCH (a:Account {isBlocked:'no'})
−[:isLocatedIn]−>(g:City {name:'Ankh−Morpork'})
<−[:isLocatedIn]−(b:Account {isBlocked:'yes'}),
p = (a)−[:Transfer*1..]−>(b)

RETURN a.owner, b.owner

The query first matches the variables a and b to an unblocked and
a blocked account located in Ankh-Morpork, using its “ASCII-art”
syntax for specifying edges. It then matches p to a whole path of
transfers of arbitrary length from a to b, and returns the owners.
Unlike SPARQL, Cypher allows returning paths: we can return p

simply by including it in the RETURN clause.
Cypher’s pattern matching has multiple other features. It per-

mits label disjunctions and inline predicates in variable-length path
patterns: MATCH (a)−[:X|Y*{weight:1}]−>(b). It supports test-
ing for the presence or absence of a path relative to an element
specified in a match: MATCH (a:Person)−>(:Cat) WHERE NOT
(a)−>(:Dog). Cypher also allows additional operations onmatched
paths such as returning a single shortest or all shortest paths, re-
turning all nodes or edges in a path, the length of a path, as well as
the number of paths found.

PGQL (Property Graph Query Language) [41] is a SQL-like graph
pattern matching query language that is open-sourced by Oracle.
Where features overlap, PGQL follows SQL’s syntax and semantics,
such as in SELECT, WHERE, GROUP BY, HAVING, and ORDER BY, as
well as for functions, aggregations, predicates, existential, and scalar
subqueries. The core of a PGQL query is the graph pattern, which
is spread over multiple MATCH clauses that are syntactically placed
inside the FROM clause. The owners of the accounts of the query in
Figure 4 can be found as follows.
SELECT x.owner AS A, y.owner AS B

FROM MATCH (x:Account)−[:isLocatedIn]−>(g:City)
<−[:isLocatedIn]−(y:Account),

MATCH ANY (x)−[e:Transfer]−>+(y)
WHERE x.isBlocked='no' AND y.isBlocked='yes'

AND g.name='Ankh−Morpork'

4

Graph Pattern Matching in GQL and SQL/PGQ SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

isBlocked = yes

𝑥 : Account

(a) Node pattern

isBlocked = yes

𝑥 : Account

isBlocked = no

𝑦 : Account

date = 3/1/2020

𝑒 : Transfer

(b) Edge pattern

isBlocked = no

𝑥 : Account

isBlocked = yes

𝑦 : Account

:Transfer
+

(c) Path pattern

Figure 3: Graphical representation of a node pattern, an edge pattern and a path pattern

name = Ankh-Morpork

:City

isBlocked = no

𝑥 : Account

:isLocatedIn

isBlocked = yes

𝑦 : Account

:isLocatedIn

:Transfer
+

Figure 4: Pattern of fraudulent accounts in Ankh-Morpork.

We can return the whole path of Transfer edges between x and y
by replacing the first line of the query with SELECT x.owner AS A,
y.owner AS B, LISTAGG(e.ID, ’, ’), assuming that e.ID is the
ID of edge e. Here, the variable e is treated as a group variable that
matches subsequent edges of the path and can be used to aggregate
data along paths of variable length. For example, one can compute
the length of the path using COUNT(e), or filter out paths with re-
peated edges using WHERE COUNT(e) = COUNT(DISTINCT e). The
aggregate LISTAGG(e.ID, ’, ’) produces a comma-separated
list of values encoded as a single string of characters. ANY is used
to obtain an arbitrary single path from x to y. PGQL supports also
ANY SHORTEST, ALL SHORTEST, TOP k SHORTEST, ANY CHEAPEST,
and TOP k CHEAPEST, allowing for retrieving multiple paths be-
tween a pair of nodes. ALL gives all paths but requires an upper
bound on the path length, e.g., {1,4} instead of +.

The design philosophy behind TigerGraph’s GSQL (Graph SQL)
language [16, 40] is to flatten the learning curve for the largest com-
munity of potential adopters, namely SQL programmers. Like PGQL,
GSQL supports SQL-style SELECT, WHERE, GROUP BY, HAVING,
LIMIT and ORDER BY clauses, aggregation, and graph patterns
in the FROM clause. The running example query from Figure 4 is
expressed in GSQL as follows, using table T to hold the result.

SELECT x.owner AS A, y.owner AS B INTO T

FROM Account:x −(isLocatedIn>)− City:g

−(<isLocatedIn)− Account:y,

:x −(Transfer>+)− :y

WHERE x.isBlocked='no' AND y.isBlocked='yes'

AND g.name='Ankh−Morpork'

GROUP BY A, B

GSQL’s default semantics is ALL SHORTEST, hence there is no upper
bound on the + quantifier. While supporting group and path vari-
ables is on the near-future roadmap for GSQL, this is merely amatter
of adding syntactic sugar as they are currently expressible using a
GSQL-specific aggregation paradigm based on accumulators. These
are containers that can be attached at query time to the vertices
and written to during the pattern matching phase. Accumulator
inputs are aggregated via pre- or user-defined binary operators.
Accumulator-based aggregation was shown to enjoy expressivity
and efficiency benefits over SQL-style aggregation [17].

3.2 Related Work
GPML is the culmination of a long evolution of graph query lan-
guages, including contributions in research, standards and practice,
too rich to survey comprehensively here. We discuss related work
only in broad strokes and refer the reader to existing surveys [3, 42].

GPML’s graph patterns extend the celebrated language of Con-
junctive Regular Path Queries (CRPQ) introduced in [14] and stud-
ied in a plethora of follow-up work (e.g. [7, 8, 11–13, 19]). In
their first incarnation, CRPQs operated over property-less graphs,
but subsequent work considered graphs with data annotations
(e.g. [27]), which are ancestors of today’s property graphs. Notable
early graph query languages derived from CRPQs include G [14],
StruQL [18], Lorel [1] andWebSQL [31]. Syntactically, GPML graph
patterns extend CRPQs by introducing group variables and vari-
ables binding to entire paths. The latter allows GPML to treat paths
as first-class citizens, as advocated in the G-CORE proposal [2].
Semantically, graph patterns extend CRPQs by supporting a finer-
grained notion of match, which permits binding variables to paths,
using multiplicity-sensitive aggregation such as sum, count, and av-
erage, and restricting the number of possible returned paths. These
features are original contributions of GPML.

GPML patterns share many features with pattern standards de-
veloped for different data models. XML documents [10] correspond
to tree-shaped, vertex-labeled graphs. The XPath [37] World-Wide
Web Consortium (W3C) standard describes patterns that roughly
correspond to GPML path patterns that can be combined into tree-
shaped structures; the use of variables is limited. The XQuery [38]
standard supports comma-separated lists of XPath patterns, stitched
together with node variables. Knowledge Graphs [24] correspond-
ing to the RDF standard [15], also admit pattern-based querying,
for instance using the SPARQL W3C standard query language [23].
Patterns consist once more of variables (binding to the RDF counter-
part of nodes and edges) and regular path expressions. To deal with
cycles, and potentially infinite number of matching paths [5, 30],
SPARQL deploys the “endpoint semantics” of paths, and will only
return start/end point of a path, instead of the matching path itself.

4 GRAPH PATTERN MATCHING LANGUAGE
Recall that we use the acronym GPML to denote the common graph
pattern matching language that is shared by SQL/PGQ and GQL.
In the database domain there is no standard or product by those
initials to our knowledge; it is just a convenient abbreviation for
this paper. This section is devoted to explaining how GPML works.
In general, a GPML pattern is an expression of the form:

MATCH Pattern

where Pattern is a pattern specifying the parts of our input prop-
erty graph we want to explore. The MATCH clause may be optionally
followed by a WHERE clause to filter the results; we discuss it later
in the section. For example, the following expression retrieves all
the accounts in our graph from Figure 1 that are not blocked:

5

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Deutsch et al.

MATCH (x:Account WHERE x.isBlocked='no')

Intuitively, this pattern, which is an example of a node pattern,
binds to x all the nodes in the graph which have the label Account,
and whose isBlocked property has the value no. Another basic
pattern, called the edge pattern extracts edges from our graph. For
instance, the following pattern asks for all the edges which repre-
sent transfers with a value of more than 5 million:

MATCH −[e:Transfer WHERE e.amount>5M]−>

We shall use shorthands such as 5M for readability. The variable
e gets bound to an edge in our graph, giving us access to its data.
We later explain how one can also retrieve the endpoints of the
edge. Generally, node and edge patterns retrieve graph elements
– nodes and edges – and can then be combined in more complex
ways to define paths and patterns present in our graph. In what
follows we specify how all of this is supported in GPML. We start
by expanding on our definition of node and edge patterns.

4.1 Accessing Nodes and Edges
Node patterns. The most basic query pattern allows the user to

fetch nodes inside a property graph. For instance, to extract all of
the nodes of the graph, the user can write the following1

MATCH (x)

The variable x here is called an element variable, since it binds
to a graph element. In the case of x, it will be bound to a node in
the graph, since it is placed inside the () braces, which signify
that we are talking about a node. For instance, if evaluated on the
property graph from Section 2, this query will return bindings that
map x to accounts, cities, phones, and IPs.2

Of course, one rarely wants to obtain all the nodes in a graph,
and usually will want to restrict the obtained results in some way.
A natural way to do this is to look only for nodes with a specific
label. GPML does this via label expressions. For instance, to return
nodes that correspond to accounts, one writes:

MATCH (x:Account)

Here the label is explicitly specified, and only nodes with the label
Account will now be bound to x. More generally, label expressions
allow conjunctions (&), disjunctions (|), negations (!), and grouping
of individual labels by using parentheses. For instance, to capture
all the nodes that are either accounts, or IP addresses, we would
write MATCH (x:Account|IP). There is also a wildcard symbol %
matching any label; e.g., (:!%) matches nodes that have no labels.

Further filters on a node restrict the values of some of its
properties. As seen earlier, if we are interested only in those ac-
counts that are not blocked, the pattern (x:Account) changes
to (x:Account WHERE x.isBlocked='no'). The WHERE clause
can be put outside MATCH to be used as a postfilter for produced
matches:

MATCH (x:Account)
WHERE x.isBlocked='no'

1The ascii art () used for nodes is meant to be suggestive of how nodes are usually
drawn as circles in visual representation of a graph.
2For now we model query evaluation as a process taking a property graph and a
query pattern as input, and producing as output a multiset of bindings from the set of
variables to the set containing graph elements and property values. In Section 6 we
extend this to capture more advanced objects such as arbitrary length paths.

Orientation Edge pattern Abbreviation

Pointing left <−[spec]− <−
Undirected ~[spec]~ ~
Pointing right −[spec]−> −>
Left or undirected <~[spec]~ <~
Undirected or right ~[spec]~> ~>
Left or right <−[spec]−> <−>
Left, undirected or right −[spec]− −

Figure 5: Table of edge patterns.

The WHERE clause can support a host of search conditions, and these
may be combined into logical statements using AND, OR, and NOT.

We note that each of the restricting elements in a node pattern
(e.g. the variable, the label specification, or the WHERE condition) is
optional. That is, any of them can be either present or absent. This
makes the following the simplest possible node pattern: MATCH ().
Since there is no variable, there is no syntax to reference the nodes
bound to this pattern; consequently it is of little use standing alone
as the sole element pattern as in this example. However, below we
explain how such a pattern can be combined with edge patterns in
order to extract paths and patterns in the graph. Intuitively, this
construct will allow us to have a placeholder for any node in the
graph, thus allowing us to link it with other graph elements.

Edge patterns. These let us explore an edge connecting two nodes.
A basic way of doing this is via the pattern3

MATCH −[e]−>

which searches all the directed edges in the graph, and binds them
to the element variable e. That is, the bindings generated by this
pattern will map e to any identifier of a directed edge in the graph.
If we wish to use specific types of edges (e.g. undirected), this can
be done by special symbols used in the edge pattern. For example,
all undirected edges can be recovered by MATCH ~[e]~.

The full specification of possible edge direction restrictions and
their combinations is provided in Figure 5. In the figure, spec is
an optional element of the form e:labelExpr WHERE condition,
where labelExpr and condition are as in node patterns above;
when spec is omitted, the abbreviated version can be used. As an
example, if we want edges that are either undirected, or directed
from right to left, we could write <<<~[e]~.

Similarly to node patterns, we can restrict which edges we wish
to return by specifying their labels, or using the WHERE clause,
as was shown earlier with the example that restricted Transfer
edges to those with the amount exceeding 5 million. Both label
expressions and the WHERE clause can use the same constructs as in
the case of node patterns. Similarly to node patterns, edge patterns
need not specify an element variable. This will become useful later
on when defining more complex patterns.

4.2 Building Path Patterns by Concatenation
Node and edge patterns can be chained together to form a path
pattern. The most natural way to do this is to ask for edges in
the graph, together with their source and target nodes, as in:

MATCH (x)−[e]−>(y)

3Here again we use the ascii art −[]−> to mimic how one draws an edge in a graph.

6

Graph Pattern Matching in GQL and SQL/PGQ SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

The bindings generated by this pattern will map e to an edge in
the property graph, and x and y to its source and target node, re-
spectively. If we do not specify direction and write (x)−[e]−(y),
then each edge will be returned twice, once for each direction
in which it is traversed. Edge direction, edge (un)directedness, or
any filter on nodes/edges can be used as in the examples above.
For instance, to ask for a source account of every transfer that
reaches an account with the owner equal to Aretha, we write:
MATCH (y WHERE y.owner=Aretha)<−[e:Transfer]−(x)

Even if the edge pattern is ambiguous about the orientation of e,
we may wish to refer to this orientation in a postfilter. We can do
this using the predicates e IS DIRECTED, s IS SOURCE OF e, and
d IS DESTINATION OF e.

One can keep on alternating edge and node patterns to create
more complex path patterns. For instance, the query

MATCH (s)−[e]−>(m)−[f]−>(t)

extracts all directed paths of length two in the graph. Variable s
is bound to the id of the source node of the path, t is bound to
the id of the target node, and m to the middle node. Similarly, vari-
ables e and f are bound to the two edge ids of the path, respectively.
Executed on the graph in Fig. 1, one of the returned bindings is:

s ↦→ a1, e ↦→ t1, m ↦→ a3, f ↦→ t2, t ↦→ a2.

We can still use the constructs previously described (filters, orien-
tation, labels) in each individual edge or node pattern; for example:

MATCH (p:Phone WHERE p.isBlocked='yes')
~[e:hasPhone]~(a1:Account)
−[t:Transfer WHERE t.amount>1M]−>(a2)

It searches for substantial transfers from accounts into which a
login attempt was made from a blocked phone. The query still
extracts paths of length two, but the first edge is undirected and the
second is directed and in forward orientation. Hence, each returned
binding maps p, a1, a2 to nodes 𝑛1, 𝑛2, 𝑛3, and e, t to edges 𝑒1, 𝑒2,
such that 𝑒1 links 𝑛2 and 𝑛1, while 𝑒2 goes from 𝑛2 to 𝑛3.

Moreover, one may use the same variable multiple times in order
to impose topological constraints on the matched paths via an
implicit equi-join on the repeated variable. For instance in the
query below, the variable s is used twice; hence this query finds
"triangles" of accounts involved in money transfers; the reuse of
variable s ensures that one starts and ends in the same node:

MATCH (s)−[:Transfer]−>(s1)−[:Transfer]−>
(s2)−[:Transfer]−>(s)

Path patterns permit the use of path variables: in the returned
bindings, such a path variable is bound to a whole path. In

MATCH p = (s)−[:Transfer]−>(s1)−[:Transfer]−>
(s2)−[:Transfer]−>(s)

the variable p will be bound to paths of length three of Transfer
edges that start and end in the same node. This variable p could be
returned, or used to compute a more complex value, for instance
an aggregate over the bound path.

As in previous examples, the presence of variables in node or
edge patterns is not compulsory. For instance, the query
MATCH (p:Phone)~[:hasPhone]~(s:Account)

−[t:Transfer]−>(d:Account)~[:hasPhone]~(p)

extracts the transfers between accounts that were accessed from the
same phone. Since the hasPhone edges have no additional property,
there is no need to return them. It thus returns two bindings:

p ↦→ p1, s ↦→ a5, t ↦→ t8, d ↦→ a1

p ↦→ p2, s ↦→ a3, t ↦→ t2, d ↦→ a2

4.3 Graph Patterns
Graph patterns combine several path patterns together. As an ex-
ample, consider the fraud detection query looking for substantial
transfers from accounts into which a login attempt was made from
a blocked phone. It could be alternatively written as

MATCH (p:Phone WHERE p.isBlocked='yes')
~[:hasPhone]~(s:Account),
(s)−[t:Transfer WHERE t.amount>1M]−>()

by splitting the path into two edges and reusing the variable s
to indicate that these edges share a node. In general, we can put
arbitrarily many path patterns together. For example, we canmodify
the above query by adding a condition that another login attempt
into an account was made that did not use a phone:

MATCH (s:Account)−[:SignInWithIP]−(),
(s)−[t:Transfer WHERE t.amount>1M]−>(),
(s)~[:hasPhone]~
(p:Phone WHERE p.isBlocked='yes')

This pattern looks for three edges coming out of s which is cum-
bersome to write as a single path. In such graph patterns, each path
pattern produces a set of mappings, which are then joined using
variables that are shared between them.

4.4 Quantifiers and Group Variables
GPML includes quantifiers similar to those in Perl and other com-
mon “regex” tools. Figure 6 lists the quantifiers of GPML. Quantifiers
are written as postfix operators on either a single edge pattern or a
parenthesized path pattern (a path pattern enclosed in parentheses
or square brackets with an optional WHERE clause). For example, a
path of length 2 to 5 of Transfer edges can be sought as follows:
MATCH (a:Account)−[:Transfer]−>{2,5}(b:Account)

As an example using a parenthesized path pattern, consider
the problem of finding paths of 2 to 5 Transfer edges between
accounts with the same owner:

MATCH [(a:Account)−[:Transfer]−>(b:Account)
WHERE a.owner=b.owner]{2,5}

The pattern does not provide a strict alternation of node and
edge patterns; it will be unrolled two to five times, to obtain a
sequence of bindings of variables a b a b The WHERE clause
here applies to each such pair of a and b bindings separately. As
variables a and b will occur multiple times in such a sequence, the
notion of binding an element variable to a unique node or vertex
is insufficient in this case, and must be expanded to embrace path
bindings in which each variable in that sequence is mapped to a
graph element. In addition, at the transition between groups, the
previous binding of b must be the same as the next binding of a.
More about the exact mechanism of such bindings will follow from
the detailed example in Section 6.

7

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Deutsch et al.

Quantifier Description

{m,n} between m and n repetitions
{m,} m or more repetitions
* equivalent to{0,}
+ equivalent to{1,}

Figure 6: Table of quantifiers

As for a quantifier on a bare edge pattern, this is understood
by supplying anonymous node patterns to its left and right. For
example, if we are interested in pairs of accounts involved in a
chain of large transfers of length between 2 and 5 we could write

MATCH (a:Account)
[()−[t:Transfer]−>() WHERE t.amount>1M]{2,5}

(b:Account)

Variable references are categorized as either singleton or group.
For example, in predicates such as x.isBlocked='yes', the vari-
able x is referenced as a singleton. Intuitively, a reference is group
if you have to cross a quantifier to get from the reference to the
declaration of the variable. To explain this, consider a modification
of the above example where we are only interested in chains of
transfers with the total value over 10 million:

MATCH (a:Account)
[()−[t:Transfer]−>() WHERE t.amount>1M]{2,5}

(b:Account)
WHERE SUM(t.amount)>10M

In this example, the predicate in the edge pattern references t as a
singleton, since one does not have to cross the quantifier {2,5} to
reach its declaration which is in the same edge pattern. The predi-
cate in the final WHERE clause, used here as a postfilter, references t
in the aggregate SUM. In this location one has to cross the quantifier
to reach the declaration of t, making it a group reference.

4.5 Path Pattern Union & Multiset Alternation
In GPML there are two forms of union, called path pattern union
(with set semantics) and multiset alternation (with multiset seman-
tics). Path pattern union is indicated by an infix vertical bar, whereas
multiset alternation uses |+| as its infix operator. An example of
path pattern union is

MATCH (c:City) | (c:Country)

In the sample graph, there are two Country nodes (c1 and c2) and
one City node (c2). Thus the first operand produces two results
c ↦→ c1 and c ↦→ c2 and the second operand produces the single
result c ↦→ c2. Thus the operands produce a duplicate binding to
c2, which will be reduced to a single solution in the final result,
which has one binding to c1 and one binding to c2.

Rewriting this example with multiset alternation, we have
MATCH (c:City) |+| (c:Country)

This pattern returns three results, one result binding c1 and two
results binding c2.

Another example of deduplication using path pattern union is
overlapping quantifiers, as in this example:

MATCH −>{1,5} | −>{3,7}

The two quantifiers overlap between 3 and 5; consequently when
the results are deduplicated the query is equivalent to

MATCH −>{1,7}

Using multiset alternation would not deduplicate the overlap in
the quantifiers.

4.6 Conditional Variables
Consider

MATCH [(x)−>(y)] | [(x)−>(z)]

Node variable x will be bound if either operand of the path pattern
union binds. Variables y and z, on the other hand, are only bound by
one operand but not by the other. We say that x is an unconditional
singleton whereas y and z are conditional singletons.

Implicit equi-joins on conditional singletons are disallowed, be-
cause they lack intuitive semantics. For instance, in the illegal query

MATCH [(x)−>(y)] | [(x)−>(z)], (y)−>(w)

does the fact that ymust bind in the second path pattern imply that
ymust bind in the path pattern union, thereby effectively excluding
the results of the second operand? Implicit equi-joins on conditional
singletons were forbidden in order to eliminate such doubts.

Conditional singletons are also introduced by the question mark
operator, a postfix operator similar to the quantifiers; for example

MATCH (x) [−>(y)]?

In most “regex” tools, the postfix question mark operator is equiv-
alent to the quantifier {0,1}. In GPML the two operators have
almost the same semantics. The difference is that the quantifier
{0,1} exposes all variables as group, whereas the question mark
operator exposes singletons as conditional singletons. This distinc-
tion was made so that query-generating tools can solicit upper
and lower bounds for a quantifier from the user without having to
watch for {0,1} as a special case.

5 ASSURING TERMINATION
Written without any restrictions, GPML queries may not terminate
as they will return infinitely many matches. Consider for example,

MATCH p = (a WHERE a.owner='Dave')
−[t:Transfer]−>*(b WHERE b.owner='Aretha')

It asks for paths with any number of transfers between the account
owned by Dave and the account owned by Aretha. If evaluated
over the graph of Figure 1, this query would have an infinite number
of matches, since the path matched by p could include a Transfer
loop (e.g., path(a3,t7,a5,t8,a1,t1,a3)) any number of times.

To prevent this behaviour, GPML queries must demonstrably
terminate; in particular, the number of matches must be finite. To
achieve this, GPML uses restrictors and selectors. Every unbounded
quantifier (such as * above) must be contained in the scope of either
a restrictor or a selector or both.

5.1 Restrictors and Selectors
Restrictors. A restrictor is a path predicate (that is, it imposes a

condition stating which paths are acceptable) such that the num-
ber of matches cannot be infinite. For instance, TRAIL forbids the
matched path to repeat edges; there are only finitely many edges,
therefore there are only finitely many paths with no repeated edges

8

Graph Pattern Matching in GQL and SQL/PGQ SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

Keyword Description

TRAIL No repeated edges.
ACYCLIC No repeated nodes.
SIMPLE No repeated nodes, except that the first and last

nodes may be the same.

Figure 7: Table of restrictors

in a graph. Restrictors are listed in Figure 7. Restrictors may be
placed either at the head of a path pattern, or at the head of a
parenthesized path pattern. If the above example is written as

MATCH TRAIL p = (a WHERE a.owner='Dave')
−[t:Transfer]−>*(b WHERE b.owner='Aretha')

then, executed on the graph of Fig. 1, returns three bindings for p:

path(a6,t5,a3,t2,a2)
path(a6,t6,a5,t8,a1,t1,a3,t2,a2)

path(a6,t5,a3,t7,a5,t8,a1,t1,a3,t2,a2)

Note that the last path repeats the node a3; it is allowed by TRAIL
but would be forbidden by the restrictor ACYCLIC. Note also that

path(a6,t5,a3,t2,a2,t3,a4,t4,a6,t5,a3,t2,a2)

which traverses the Transfer cycle starting and ending in a6, is
not a trail, and is thus not returned.

Selectors. A selector is an algorithm that partitions the solution
space into parts, and selects a finite number of matches per part.
There is one part per pair of endpoints (𝑠, 𝑡), and it contains all
paths in the solution space that start in 𝑠 and end in 𝑡 . For instance,
ALL SHORTEST keeps the paths having the shortest length within
each part. Note that the shortest length is can differ from part to
part. Selectors are listed in Figure 8. Selectors may only be placed
at the head of a path pattern. As an example, replacing TRAIL with
ANY SHORTEST in the above query finds any one of the shortest
paths between the nodes a6 and a2. In this case, there is only
one shortest path between these nodes and thus p is bound to
path(a6,t5,a3,t2,a2).

Combining restrictors and selectors. At the conceptual level, re-
strictors can be seen as operating during pattern matching while
selectors operate afterwards. That is, if combined, selectors are
always applied after restrictors. For instance, consider the query:
MATCH ALL SHORTEST TRAIL

p = (a WHERE a.owner='Dave')
−[t:Transfer]−>*(b WHERE b.owner='Aretha')
−[r:Transfer]−>*(c WHERE c.owner='Mike')

It selects the shortest paths among the trails going from node a6 to
node a3 and passing though a2. It returns two bindings for p:

path(a6,t5,a3,t2,a2,t3,a4,t4,a6,t6,a5,t8,a1,t1,a3)
path(a6,t6,a5,t8,a1,t1,a3,t2,a2,t3,a4,t4,a6,t5,a3)

The path path(a6,t5,a3,t2,a2,t3,a4,t4,a6,t5,a3) is not con-
sidered: it is shorter but it is not a trail.

Keyword Description

ANY SHORTEST Selects one path with shortest length from each
part. Non-deterministic.

ALL SHORTEST Selects all paths in each part that have the mini-
mal length in the part. Deterministic.

ANY Selects one path in each part arbitrarily. Non-
deterministic.

ANY 𝑘 Selects arbitrary 𝑘 paths in each part (if fewer
than 𝑘 , then all are retained). Non-deterministic.

SHORTEST 𝑘 Selects the shortest 𝑘 paths (if fewer than 𝑘 , then
all are retained). Non-deterministic.

SHORTEST 𝑘
GROUP

In each part, sorts the paths by length, groups
paths with the same length, then selects all paths
in the first 𝑘 groups (if fewer than 𝑘 , then all are
retained). Deterministic.

Figure 8: Table of selectors

5.2 Prefilters and Postfilters of Selectors
When working with selectors, it is important to differentiate pre-
filters from postfilters. A prefilter is a predicate applied before se-
lection; a postfilter is a predicate applied after selection. In GPML,
postfilters are expressed in the final WHERE clause, whereas pre-
filters are expressed in element patterns or parenthesized path
patterns within the selector’s path pattern.

For example, suppose we want to find the shortest path from
Scott to Charles passing through an account that is blocked:

MATCH ALL SHORTEST
(p:Account WHERE p.owner='Scott')
−>+ (q:Account WHERE q.isBlocked='yes')
−>+ (r:Account WHERE r.owner='Charles')

Note that all predicates in this example are expressed in element
patterns, therefore they are all prefilters. The only solution is the
path(a1,t1,a3,t2,a2,t3,a4, t4,a6,t5,a3,t7,a5), in which q
is bound to a4 (Jay, the only blocked account).

It would be a mistake to place the predicate on q in the final
WHERE clause, like this:

MATCH ALL SHORTEST
(p:Account WHERE p.owner='Scott')
−>+ (q:Account)
−>+ (r:Account WHERE r.owner='Charles')

WHERE q.isblocked='yes'

The shortest path from Scott to Charles is path(a1,t1,a3,t7,a5)
with q bound to a3, which will be the result of the selector, but this
result is then filtered out by the final WHERE clause because a3 is
not blocked. Consequently this query finds no result. The original
problem statement had the predicate “passing through an Account
that is blocked” as a prefilter, therefore the query placing it as a
postfilter is incorrect.

5.3 Aggregates of Unbounded Group Variables
There is another subtle way of having non-terminating queries that
must be ruled out by GPML. Consider this query:

9

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Deutsch et al.

MATCH ALL SHORTEST [(x)−[e]−>*(y)
WHERE COUNT(e.*)/(COUNT(e.*)+1)>1]

Note carefully that the predicate is within a parenthesized path
pattern, therefore it is a prefilter. As a prefilter, the group variable
e has not yet passed through the selector ALL SHORTEST; conse-
quently the predicate sees e as effectively unbounded.

If a match has 0 edges, the quotient in the WHERE clause is 0; if
it has 1 edge, the quotient is 1/2; if it has 2 edges, the quotient is
2/3; etc. The quotient can never exceed 1. This is easily seen by
human reason, but generalizing this observation to any aggregate
on an unbounded element reference is not obvious. For example,
suppose the aggregate were AVG(e.x); the behavior of AVG on an
unbounded collection of property references is not easy to antic-
ipate. A few aggregates (MAX, MIN, COUNT) are monotonic, which
might permit reasoning on simple expressions such as linear combi-
nations, but it is currently expected that GPML will simply prohibit
all predicates on unbounded groups to ensure termination.

6 EXECUTION MODEL BY EXAMPLE
We illustrate GPML evaluation using a step-by-step example. The
output of the example query is a set of path bindings, that is path
where elements are optionally associated with variables (see Sect 6.4
for details). The key steps in the pattern matching execution model,
as reflected in the forthcoming standard, are as follows.

Normalization GPML provides syntactic sugar to help write
patterns; this step puts patterns in a canonical form.

Expansion The pattern is expanded into a set of rigid patterns
without any kind of disjunction. Intuitively, a rigid pattern
is one that could be expressed by a SQL equi-join query.
Formally, it is a pattern without quantifiers, union or multiset
alternation. The expansion also annotates each rigid pattern
to enable tracking the provenance of the syntax constructs.

Rigid-pattern matching For each rigid pattern, one com-
putes a set of path bindings. Each elementary construct of
the rigid pattern is computed independently and then the
results are joined together on variables with the same name.

Reduction and deduplication of path bindings. The path
bindings matched by the rigid patterns are reduced by remov-
ing annotations and then collected into a set. This implies
a deduplication step since different path bindings might be-
come equal after reduction, and only one copy is kept.

6.1 Running Example
The remainder of this section gives a detailed account of how pat-
tern matching is computed for the following query.
MATCH TRAIL (a WHERE a.owner='Jay')

[−[b:Transfer WHERE b.amount>5M]−>]+
(a) [−[:isLocatedIn]−>(c:City) |

−[:isLocatedIn]−>(c:Country)]

This query finds sequences of transfers of arbitrary length that
start and end with account owner Jay, as well as the location (city
or country) of Jay. To ensure termination, the TRAIL mode is used.

6.2 Normalization
The first step of normalization makes each sequence of node and
edge patterns consistent. More precisely, it introduces empty node
and edge patterns in order to make each such sequence start with a
node pattern, end with a node pattern, and alternate between node
and edge patterns. In addition, syntactic sugar is expanded, e.g.,
quantifier + is replaced by {1,}. Hence, the pattern becomes:

(a WHERE a.owner='Jay')
[()−[b:Transfer WHERE b.amount>5M]−>()]{1,}
(a) [()−[:isLocatedIn]−>(c:City) |

()−[:isLocatedIn]−>(c:Country)]

We then introduce a fresh variable into each anonymous node and
edge pattern (that is, a pattern that is not assigned to a variable).
The fresh node and edge variables are denoted by □𝑥 and −𝑥 , re-
spectively, for some index 𝑥 . The pattern then becomes
(a WHERE a.owner='Jay')
[(□

𝑖
)−[b:Transfer WHERE b.amount>5M]−>(□

𝑖𝑖
)]{1,}

(a)[(□
𝑖𝑖𝑖
)−[−

𝑖
:isLocatedIn]−>(c:City) |

(□
𝑖𝑣
)−[−

𝑖𝑖
:isLocatedIn]−>(c:Country)]

6.3 Expansion
Expansion turns the pattern into a set of rigid patterns, which fix
the number of iterations for each quantifier and a disjunct for each
union or alternation. In our query, this amounts to choosing a dis-
junct in the union |, and expanding the quantifier {1,}. While
unbounded quantifiers such as {1,} make the set infinite, tech-
niques of Section 5 will make the evaluation feasible. The following
pattern is one possible expansion, where we expanded the quantifier
once and chose the left side of the path pattern union:

(a WHERE a.owner='Jay')
(□1

𝑖
)−[b1:Transfer WHERE b1.amount>5M]−>(□1

𝑖𝑖
)

(a) (□
𝑖𝑖𝑖
)−[−

𝑖
:isLocatedIn]−>(c:City)

In general, one such pattern is obtained for each 𝑛 ∈ N \ {0} and
each ℓ ∈ {City, Country}: we expand the quantifier 𝑛 times, and
choose either the City or the Country option of the path pattern
union. Such a pattern is denoted by 𝜃𝑛,ℓ . As an example, the pattern
below is 𝜃𝑛,City.

(a WHERE a.owner='Jay')
(□1

𝑖
)−[b1:Transfer WHERE b1.amount>5M]−>(□1

𝑖𝑖
)

(□2
𝑖
)−[b2:Transfer WHERE b2.amount>5M]−>(□2

𝑖𝑖
)

.

.

.
.
.
.

.

.

.

(□𝑛
𝑖
)−[b𝑛:Transfer WHERE b𝑛.amount>5M]−>(□𝑛

𝑖𝑖
)

(a) (□
𝑖𝑖𝑖
)−[−

𝑖
:isLocatedIn]−>(c:City)

Each group variable is marked by a superscript, corresponding to
the iteration of the quantifier the variable is in.

The next step is a clean-up: every node pattern with an anony-
mous variable is deleted if it is adjacent to another node pattern.
The resulting pattern is denoted by 𝜋𝑛,ℓ . For instance, 𝜋𝑛,City is:

(a WHERE a.owner='Jay')
−[b1:Transfer WHERE b1.amount>5M]−>(□1

𝑖𝑖
)

−[b2:Transfer WHERE b2.amount>5M]−>(□2
𝑖𝑖
)

.

.

.
.
.
.

.

.

.

−[b𝑛:Transfer WHERE b𝑛.amount>5M]−>(a)
−[−

𝑖
:isLocatedIn]−>(c:City)

10

Graph Pattern Matching in GQL and SQL/PGQ SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

6.4 Computation of Path Binding
The matches of rigid patterns are computed independently. The
result of the computation is called a path binding, which in turn is
a sequence of elementary bindings. An elementary binding is a pair
of a variable and a graph element. It is convenient to portray these
pairs as tables with two rows: the first row contains the variables,
the second row contains the graph elements, and each column is
an elementary binding. An example path binding is

a b1 □1
𝑖𝑖

a4 t4 a6

Consider the rigid path pattern 𝜋4,City. Each node-edge-node
pattern is computed independently using the input graph, and then
equi-joined on variables with the same name. The first node-edge-
node part of 𝜋4,City is

(a WHERE a.owner='Jay')
−[b1:Transfer WHERE b1.amount>5M]−>(□1

𝑖𝑖
)

In the graph it matches only one path binding, the one shown above.
The independent computation of the second, third, fourth and fifth
parts of 𝜋4,City provides many path bindings shown below:

□1
𝑖𝑖

b2 □2
𝑖𝑖

□2
𝑖𝑖

b3 □3
𝑖𝑖

□3
𝑖𝑖

b4 a a −
𝑖

c

a6 t5 a3 a6 t5 a3 a6 t5 a3 a4 li4 c2
a3 t2 a2 a3 t2 a2 a3 t2 a2 a6 li6 c2
a2 t3 a4 a2 t3 a4 a2 t3 a4 a3 li3 c1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

(4 more) (4 more) (4 more) (3 more)
The labels are matched and the WHERE clauses are checked at this
stage. Thus, the edge (a6,t6,a5) does not appear anywhere above as
it fails the WHERE condition, nor does the edge (ip1,sip1,a1) since
it has neither the Transfer nor the isLocatedIn label.

Then the path bindings are concatenated by an implicit equi-join
on variables with the same name. In the end there is only one path
binding for 𝜋4,City given below.

a b1 □1
𝑖𝑖

b2 □2
𝑖𝑖

b3 □3
𝑖𝑖

b4 a −
𝑖

c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

Note that variables with different subscript or superscript (e.g., b1
and b2) are not joined on.

Restrictors are also checked at this point. For instance, 𝜋8,City
has no match. Indeed, a path binding computed by the above join
would use the loop (t4,t5,t2,t3) twice, hence would not be a trail.

In the end, 𝜋𝑛,ℓ never has any matches unless 𝑛 = 4 (as presented
above) or 𝑛 = 7. The patterns 𝜋4,City, 𝜋4,Country, 𝜋7,City and
𝜋7,Country each have one match given below.

a b1 □1
𝑖𝑖

b2 □2
𝑖𝑖

b3 □3
𝑖𝑖

b4 a −
𝑖

c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b1 □1
𝑖𝑖

b2 □2
𝑖𝑖

b3 □3
𝑖𝑖

b4 a −
𝑖𝑖

c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b1 □1
𝑖𝑖

b2 □2
𝑖𝑖

b3 □3
𝑖𝑖

b4 □4
𝑖𝑖

b5 □5
𝑖𝑖

b6 □6
𝑖𝑖

b7 a −
𝑖

c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2

a b1 □1
𝑖𝑖

b2 □2
𝑖𝑖

b3 □3
𝑖𝑖

b4 □4
𝑖𝑖

b5 □5
𝑖𝑖

b6 □6
𝑖𝑖

b7 a −
𝑖𝑖

c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2

The latter two path bindings are trails, but are not acyclic, since
the node a3 appears twice. Thus, they would have been filtered out
if we had used the restrictor ACYCLIC instead of TRAIL.

6.5 Reduction and Deduplication
Reduction of path bindings strips variables from their annotations
(subscripts and superscripts). In particular, it merges together all
variables introduced in anonymous element patterns. The result of
reduction in our example is show below:

a b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b □ b □ b □ b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2

a b □ b □ b □ b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2

All reduced path bindings are then collected in a set. That is, at this
point, deduplication occurs. If two different rigid patterns yield the
same reduced path binding, then a single copy of the path binding
is kept. The final result has only two distinct reduced path bindings:

a b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b □ b □ b □ b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2

Having finished this detailed example, we now look at some
other features of the pattern matching algorithm.

Using selectors. After deduplication, any selectors (if present)
would be applied. Assume that in our running example we replaced
the restrictor TRAIL with the selector ALL SHORTEST. While the
number of reduced path bindings would be infinite (since Transfer
loops may be taken arbitrarily many times without the trail restric-
tion), the selector would keep the shortest reduced binding path
for each pair of endpoints (in our case, a4 and c2), thus returning

a b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

Multiple patterns. When more than one pattern, separated by
commas, appear after MATCH, each path pattern is solved separately,
resulting in finitely many solutions to each path pattern. At this
point the cross product of the sets of path bindings is formed,
and then filtered on the basis of implicit equi-joins on the global
singleton variables and the final WHERE clause.

Path pattern union vs multiset alternation. The consequence of
using deduplication is that our running query with path pattern
union is equivalent to a querywhere the last edge pattern is replaced
by (a)−[:isLocatedIn]−>(c:City|Country).

To avoid deduplication and to maintain four reduced path bind-
ings in the output, one could use multiset alternation instead, re-
placing the pattern by

(a) [−[:isLocatedIn]−>(c:City) |+|

−[:isLocatedIn]−>(c:Country)]

6.6 Query Outputs
How should the result of pattern matching be represented to pro-
duce the output of a query? We have seen that executing a GPML
statement results in a set of path bindings. Presenting this to the

11

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA Deutsch et al.

Graph pattern

Graph DB

GPML processor output

SQL/PGQ table

GQL

graph view

new graph

Figure 9: Conceptual diagram of GPML, SQL/PGQ and GQL

user depends on the host language, SQL/PGQ or GQL. Figure 9
shows the relationship between GPML and its two host languages.
The output of the GPML processor is consumed by the host to
produce the final output requested by the user. For SQL/PGQ, it
will be a table. For GQL, the output could be more varied, including
a graph view, or a new graph. Indeed, each path binding defines a
subgraph of the input graph given by its nodes and edges, together
with annotations, given by variables assigned to them in the path
binding. This opens up more possibilities for structuring query
outputs. While in the initial release of the GQL standard, outputs
will be in line with those of SQL/PGQ, it is anticipated that in the
future more advanced options will be added.

7 LOOKING FORWARD
In this section we outline the ongoing work on the development of
the SQL/PGQ and GQL standards and list several research problems
that have arisen in the process of designing the GPML.

7.1 Standards Process: Steps and Timing
The SQL/PGQ and GQL standards are being developed in the inter-
national standards committee ISO/IEC JTC1 SC32 WG3 "Database
Languages" with input from various national bodies. In particular,
the US committee INCITS DM32 "Data Management and Inter-
change" and DM32’s SQL/PGQ and GQL expert groups review all
significant US change proposals before they are considered byWG3.

The ISO/IEC JTC1 process has a number of steps with ballots to
transition between the stages. The high-level overview is:

• Initial effort – develop and expand the draft;
• Committee Draft (CD) Ballot – 12 weeks;
• Draft International Standard (DIS) Ballot – 20 weeks;
• International Standard (IS) published.

After each ballot, time is needed to resolve the comments submitted.
The current schedule for the progression of the SQL/PGQ and

GQL standards is shown in Figure 10 (it depends on work that
has not been completed and so could change). By the time the DIS
ballot starts, the technical specification is fairly stable. Since GPML
is the same for GQL and SQL/PGQ, GQL GPML will be fairly stable
when SQL/PGQ begins DIS ballot. As SC32 WG3 makes progress
on the drafts, it accumulates Language Opportunities (LOs). LOs are
capabilities that are potentially useful, but are not yet ready for the
current versions of the draft standards. Below we provide a sample
of LOs pertaining to GPML:

• Constraining a graph pattern through the introduction of
isomorphic match modes: for example, an edge-isomorphic
match requires all edges matched across all constituent path
patterns in the graph pattern to differ from each other.

• Queries on multiple graphs in a single concatenated MATCH.

Date SQL/PGQ GQL

2017 Work started
2018 Work started
2021-02-07 CD Ballot End
2022-02-20 CD Ballot End
2022-12-04 DIS Ballot End
2023-01-30 Final Text to ISO
2023-03-13 SQL/PGQ IS Published
2023-05-21 DIS Ballot End
2023-07-30 Final Text to ISO
2023-09-10 GQL IS Published

Figure 10: SQL/PGQ and GQL Timeline

• Path macros for multiple use in a query.
• Outputting the interleaving of bindings in nested quantifiers,
such as [[(p)−>(q)]* −>(r)]*.

• Cheapest path search, by adding weights to edges.
• Exporting a graph element or path binding to JSON.

GQL also has LOs that go beyond those common with SQL/PGQ.
Examples include property graph keys and constraints [4], system
versioned graphs, and stored queries, procedures, and functions.
As discussed in Section 6.6, formats such as JSON could potentially
be used for returning a raw multi-path binding.

7.2 Research Questions
There are many open questions related to GPML, including estab-
lishing the complexity of its various fragments and extending it to
capture additional aspects of data, such as the temporal aspect.

Some of the most intriguing questions concern processing un-
bounded paths. The innocently looking MATCH (x)−[e]−>*(y)
WHERE AVG(e.a)<1 KEEP ANY SHORTEST may not terminate.
Are there interesting classes of predicates on aggregates of group
variables for which termination can be guaranteed? How to solve
efficiently shortest path queries with arbitrary regular expressions,
not just −>* as in Dijkstra’s algorithm? Can we handle more com-
plex optimization problems, such as maximizing an objective func-
tion subject to an upper bound on the length or cost of the path (e.g.,
“What is the most scenic route to the airport in at most 2 hours?”).

Another direction is to consider fully recursive graph patterns,
permitting multiple self-references, not just a single one like in the
* operator. Such patterns might be used to search for trees and
other structures more complex than paths. Is there intuitive syntax
to express such patterns? What real-world problems might they
address? What is the cost of adding them to GPML?

ACKNOWLEDGMENTS
The work of the FSWG is supported by grants from Neo4j held
at the University of Edinburgh and ENS-Paris. The academic
group also gratefully acknowledges support of the following
research grants: EPSRC grants N023056 and S003800 (Libkin);
DFG grants 369116833 and 431183758 (Martens); NCN grant
2018/30/E/ST6/00042 (Murlak); ANID – Millennium Science Ini-
tiative Program – Code ICN17_002 (Vrgoč); ANR grants QUID, code
ANR-18-CE40-0031 (Francis and Marsault) and VeriGraph, code
ANR-21-CE48-0015 (Libkin).

12

Graph Pattern Matching in GQL and SQL/PGQ SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

REFERENCES
[1] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L.

Wiener. 1997. The Lorel Query Language for Semistructured Data. Int. J. Digit.
Libr. 1, 1 (1997), 68–88. https://doi.org/10.1007/s007990050005

[2] Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L.
Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow,
Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for
Future Graph Query Languages. In SIGMOD’18. ACM, 1421–1432.

[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter,
and Domagoj Vrgoc. 2017. Foundations of Modern Query Languages for Graph
Databases. ACM Comput. Surv. 50, 5 (2017), 68:1–68:40.

[4] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W.
Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip
Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda,
Slawek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property
Graphs. In SIGMOD ’21: International Conference on Management of Data. ACM,
2423–2436.

[5] Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting beyond
a Yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the
standard. In World Wide Web (WWW). ACM, 629–638.

[6] Pablo Barceló. 2013. Querying graph databases. In Principles of Database Systems
(PODS). ACM, 175–188.

[7] Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. 2012.
Expressive languages for path queries over graph-structured data. ACM Trans.
Database Syst. 37, 4 (2012), 31:1–31:46.

[8] Pablo Barceló, Leonid Libkin, and Juan L. Reutter. 2014. Querying regular graph
patterns. Journal of the ACM 61, 1 (2014), 8:1–8:54.

[9] Béla Bollobás. 2013. Modern Graph Theory. Vol. 184. Springer Science & Business
Media.

[10] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
2008. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommen-
dation. https://www.w3.org/TR/2008/REC-xml-20081126/

[11] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
2000. Containment of Conjunctive Regular Path Queries with Inverse. In Knowl.
Representation & Reasoning (KR). Morgan Kaufmann, 176–185.

[12] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
2003. Reasoning on regular path queries. SIGMOD Record 32, 4 (2003), 83–92.

[13] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi.
1999. Rewriting of Regular Expressions and Regular Path Queries. In Proceedings
of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, USA, Victor
Vianu and Christos H. Papadimitriou (Eds.). ACM Press, 194–204. https://doi.
org/10.1145/303976.303996

[14] Isabel F. Cruz, Alberto O. Mendelzon, and Peter T.Wood. 1987. A Graphical Query
Language Supporting Recursion. In Proceedings of the Association for Computing
Machinery Special Interest Group on Management of Data 1987 Annual Conference,
San Francisco, CA, USA, May 27-29, 1987, Umeshwar Dayal and Irving L. Traiger
(Eds.). ACM Press, 323–330. https://doi.org/10.1145/38713.38749

[15] Richard Cyganiak, David Wood, and Markus Lanthaler. 2014. RDF 1.1 Concepts
and Abstract Syntax. W3C Recommendation. https://www.w3.org/TR/rdf11-
concepts/

[16] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2019. TigerGraph: A Native
MPP Graph Database. arXiv:1901.08248 http://arxiv.org/abs/1901.08248

[17] Alin Deutsch, Yu Xu,MingxiWu, and Victor E. Lee. 2020. Aggregation Support for
Modern Graph Analytics in TigerGraph. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan,
Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 377–392.
https://doi.org/10.1145/3318464.3386144

[18] Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan Suciu. 1997. A Query
Language for a Web-Site Management System. SIGMOD Rec. 26, 3 (1997), 4–11.
https://doi.org/10.1145/262762.262763

[19] Diego Figueira, Adwait Godbole, Shankara Narayanan Krishna, Wim Martens,
Matthias Niewerth, and Tina Trautner. 2020. Containment of Simple Conjunctive
Regular Path Queries. In International Conference on Principles of Knowledge
Representation and Reasoning (KR). 371–380.

[20] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property
Graphs. In Proceedings of the 2018 International Conference on Management of
Data. Association for Computing Machinery, New York, NY, USA, 1433–1445.

https://doi.org/10.1145/3183713.3190657
[21] Alastair Green, Paolo Guagliardo, and Leonid Libkin. 2021. Property graphs and

paths in GQL: Mathematical definitions. Technical Reports TR-2021-01. Linked
Data Benchmark Council (LDBC). https://doi.org/10.54285/ldbc.TZJP7279

[22] William L. Hamilton. 2020. Graph Representation Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning 14, 3 (2020), 1–159.

[23] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language. W3C
Recommendation. http://www.w3.org/TR/sparql11-query/

[24] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutiérrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,
Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, SabbirM. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine
Zimmermann. 2021. Knowledge Graphs. ACM Comput. Surv. 54, 4 (2021), 71:1–
71:37. https://doi.org/10.1145/3447772

[25] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J Ballard,
Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain,
Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal
Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian
Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate protein structure
prediction with AlphaFold. Nature 596, 7873 (Aug. 2021), 583–589.

[26] Property Graph Query Language. 2021. PGQL 1.4 Specification. https://pgql-
lang.org/spec/1.4/

[27] Leonid Libkin, Wim Martens, and Domagoj Vrgoč. 2016. Querying Graphs with
Data. Journal of the ACM 63, 2 (2016), 14:1–14:53.

[28] Katja Losemann and Wim Martens. 2013. The complexity of regular expressions
and property paths in SPARQL. ACM Trans. Database Syst. 38, 4 (2013), 24.

[29] Yao Ma and Jiliang Tang. 2021. Deep Learning on Graphs. Cambridge University
Press.

[30] Wim Martens and Tina Trautner. 2018. Evaluation and Enumeration Problems
for Regular Path Queries. In International Conference on Database Theory (ICDT)
(LIPIcs, Vol. 98). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 19:1–19:21.

[31] Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. 1996. Querying the
World Wide Web. In Proceedings of the Fourth International Conference on Parallel
and Distributed Information Systems, December 18-20, 1996, Miami Beach, Florida,
USA. IEEE Computer Society, 80–91. https://doi.org/10.1109/PDIS.1996.568671

[32] Alberto O. Mendelzon and Peter T. Wood. 1989. Finding Regular Simple Paths
in Graph Databases. In Proceedings of the Fifteenth International Conference on
Very Large Data Bases, August 22-25, 1989, Amsterdam, The Netherlands. Morgan
Kaufmann Publishers Inc., 185–193.

[33] Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple Paths in
Graph Databases. SIAM J. Comput. 24, 6 (1995), 1235–1258.

[34] openCypher. 2017. Cypher Query Language Reference, Version 9. https:
//github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf

[35] openCypher. 2021. Usage of Cypher. https://opencypher.org/projects/
[36] Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL Query Language for

RDF. W3C Recommendation. http://www.w3.org/TR/rdf-sparql-query/
[37] Jonathan Robie, Michael Dyck, and Josh Spiegel. 2017. XML Path Language

(XPath) 3.1. W3C Recommendation. https://www.w3.org/TR/xquery-31/
[38] Jonathan Robie, Michael Dyck, and Josh Spiegel. 2017. XQuery 3.1: An XML

Query Language. W3C Recommendation. https://www.w3.org/TR/xquery-31/
[39] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,

Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz,
Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bern-
hard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi,
Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. Tamer Özsu, Eric Peukert, Stefan
Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian Schulz,
Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tom-
masini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun
Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future is big graphs:
a community view on graph processing systems. Commun. ACM 64, 9 (2021),
62–71. https://doi.org/10.1145/3434642

[40] TigerGraph Team. 2021. TigerGraph Documentation – version 3.1. https:
//docs.tigergraph.com/

[41] Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi.
2016. PGQL: a property graph query language. In Proceedings of the Fourth
International Workshop on Graph Data Management Experiences and Systems.
ACM, 1–6.

[42] Peter T. Wood. 2012. Query languages for graph databases. SIGMOD Record 41, 1
(2012), 50–60.

13

https://doi.org/10.1007/s007990050005
https://www.w3.org/TR/2008/REC-xml-20081126/
https://doi.org/10.1145/303976.303996
https://doi.org/10.1145/303976.303996
https://doi.org/10.1145/38713.38749
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://arxiv.org/abs/1901.08248
http://arxiv.org/abs/1901.08248
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/262762.262763
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.54285/ldbc.TZJP7279
http://www.w3.org/TR/sparql11-query/
https://doi.org/10.1145/3447772
https://pgql-lang.org/spec/1.4/
https://pgql-lang.org/spec/1.4/
https://doi.org/10.1109/PDIS.1996.568671
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
https://opencypher.org/projects/
http://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xquery-31/
https://doi.org/10.1145/3434642
https://docs.tigergraph.com/
https://docs.tigergraph.com/

	Abstract
	1 Introduction
	2 Property Graphs
	3 Graph Pattern Matching Today
	3.1 Existing Languages
	3.2 Related Work

	4 Graph pattern matching language
	4.1 Accessing Nodes and Edges
	4.2 Building Path Patterns by Concatenation
	4.3 Graph Patterns
	4.4 Quantifiers and Group Variables
	4.5 Path Pattern Union & Multiset Alternation
	4.6 Conditional Variables

	5 Assuring termination
	5.1 Restrictors and Selectors
	5.2 Prefilters and Postfilters of Selectors
	5.3 Aggregates of Unbounded Group Variables

	6 Execution model by example
	6.1 Running Example
	6.2 Normalization
	6.3 Expansion
	6.4 Computation of Path Binding
	6.5 Reduction and Deduplication
	6.6 Query Outputs

	7 Looking forward
	7.1 Standards Process: Steps and Timing
	7.2 Research Questions

	Acknowledgments
	References

