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Abstract
Real-life query languages feature external predicates such as user-defined functions or built-in
arithmetic and string operations. These predicates are often infinite, potentially leading to unsafe
or non-computable queries. To overcome this, traditional languages such as SQL, put significant
syntactic restrictions on the use of external predicates. These restrictions have been relaxed in a
number of modern query languages, each doing it in their own way. Our goal therefore is to provide
a theoretical basis for querying with external predicates. To this end, we formalize queries with
external predicates based on the notion of access patterns. We develop a suitable evaluation model,
based on Turing machines with oracles, and tailor the classical notion of query safety to it. Since
query safety is undecidable in general, we can only produce sufficient conditions for guaranteeing
safety. We do so by developing an inference system to derive safety and computability for relational
algebra, first-order logic, as well as for a language that combines them both.
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1 Introduction

Although first-order logic and relational algebra form a beautiful theoretical basis for query
languages, most real-life queries go beyond their scope. For example, none of the TPC-H and
TPC-DS benchmark queries, designed to represent real-life workloads, is a pure relational
algebra query. One of the key differences is that real-life query languages allow the use of
externally defined predicates, which can conceptually correspond to infinite relations and
which queries can only access in a restricted way, for example, using access patterns, either
explicitly specified or implicit and syntactically enforced.
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19:2 Queries with External Predicates

A very basic example of an external predicate is the addition on integers: Add “

tpa, b, cq P Z3 | a ` b “ cu. Indeed, SQL allows writing SELECT R.a + S.b FROM R,S, which
implicitly gives access to Add. This use of addition is restricted, however, by providing
an access pattern to Add that requires the first two arguments in order to produce the
third. Several modern query languages such as Rel [28], Soufflé [19], and .QL [5] are
less restrictive and allow much more general access, and even explicit handling of infinite
predicates. For example, it is possible in Rel to write the aforementioned SQL query as

def qpzq : existsp px, yq | Rpxq and Spyq and Addpx, y, zq q.

Here, Add is treated just like any database relation, which means that we could also have
returned all y such that existsp px, zq | Rpxq and Spzq and Addpx, y, zq q, which would not
have been possible in SQL. This more flexible use of external (potentially infinite) predicates in
modern languages brings new challenges. For example, we need to be able to detect cases like

def q1px, yq : existsp pzq | Rpzq and Addpx, y, zq q or
def q2pzq : existsp px, yq | Rpxq and Spyq and not Addpx, y, zq q

which would return infinite results. Notice that q and q1 are very close syntactically (they
both are conjunctive queries without self-joins); this indicates that syntactic restrictions
alone will not suffice.

In practice, the questions we described using Add occur for user-defined functions (UDFs),
which can provide arbitrary, externally programmed code that can be invoked when query-
ing a database. The exact details vary depending on the concrete DBMSs, but in gen-
eral such extensions of basic querying facilities provide the interface CREATE FUNCTION
<name>(<parameter-list>) RETURNS <return-type>. The return type could be a scalar or
a table. Queries can then use subexpressions of the form name(...). Upon execution, when
provided with concrete parameters, the code for the UDF is inlined in the query execution
code. A naive example of a UDF is Add(x,y) which simply returns x + y; another example
is CountOccurrences(word,text) that returns the number of occurrences of word in text.
A more complex example is PathLen(u,v,l) that returns true iff there is a path from node
u to node v of length l in a graph stored in the database (see Example 4).

In this paper, we model UDFs as external predicates with access patterns [12, 13, 14, 22,
23, 26]. Access patterns provide information about parameters that need to be specified in
order to retrieve tuples from a relation corresponding to the predicate. We focus on automatic
detection of queries with external predicates that are computable, aiming at syntactic criteria
for termination. Based on these, a DBMS can immediately discard non-computable queries
rather than letting the user wait for a timeout.

Our contribution is twofold. First, we formalize abstract (language-agnostic) queries with
external predicates and define what it means for such a query to be computable. We propose
a model of computation that is uniform with respect to external predicates: the evaluation
algorithm accesses them via oracles. This reflects how UDFs are handled in execution
engines—as black boxes. Indeed, while the result of a query depends on the semantics of the
UDFs it uses, the evaluation algorithm does not: all the execution engine does is call some
procedures at some points during query evaluation and continue with their results. Next,
in preparation for the second part, we characterize computability in terms of an effective
variant of the well-known notion of safety [8, 11, 21, 27, 29, 30] and a complementary notion
we call testability. Effective safety ensures not only that the output of the query is finite, but
also that a finite superset of the output can be effectively produced; testability amounts to
the decidability of the membership problem associated with the query, meaning that we can
decide if a given tuple is in the output.

Second, we look at concrete query languages. Relational query languages are often
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presented in a dichotomic way: there are declarative languages (such as relational calculus)
that are translated into procedural languages (such as relational algebra) that in turn are
evaluated by a query engine. The reality is more complicated: languages like SQL have
a declarative component (basic SELECT-FROM-WHERE statements) and a procedural one (set
operations UNION, INTERSECT, EXCEPT, explicit JOIN . . . ON in FROM). Another such language is
Rel [28], where the user can turn formulas into relations using comprehension and, conversely,
check membership of tuples with variables in complex relational expressions. To reflect this,
we use a formalism called FO/RA, obtained by combining first order logic (FO) and relational
algebra (RA) by means of comprehension and membership tests to go between the two.
In the presence of external predicates, even simple relational algebra expressions are not
necessarily computable. In fact, safety, effective safety, and testability are all undecidable for
FO, RA, and FO/RA. Still, it is desirable to be able to identify a large class of computable
queries. To this end we develop an effective rule system for deriving computability of queries
with external predicates, which works by independently propagating effective safety and
testability through the syntactic representation of queries. Compared to a heuristic algorithm,
an effective inference system offers enhanced explainability, transparency, and extensibility:

computability of a query can be witnessed by a derivation;
the execution engine can guarantee to handle all derivably computable queries and the
class of handled queries can be precisely described to users in terms of inference rules;
new language constructs can be handled by including additional rules, as illustrated in
our inference system for FO/RA, which essentially combines inference systems for FO
and RA, with additional rules handling comprehension and membership tests.

Our system is incomplete (which is the case for every effective inference system for deriving
an undecidable property), but we provide some basic relative completeness results, showing
that our system can capture computability (up to query equivalence) in some restricted cases.

While our actual target is FO/RA, we begin by looking at RA and FO separately, which
allows introducing necessary ingredients gradually. Why consider both FO and RA, if they
are well known to be equivalent? The classical equivalence of RA and FO [2, Chapter
6] relies on the active domain semantics of FO. In the presence of external predicates,
however, we can no longer assume it, since external predicates can have infinite domains.
Moreover, translation-based approaches to safety are generally problematic. One reason is
that safety can get “lost in translation” due to the inherent incompleteness of safety inference
systems, which manifests itself as strong syntax-dependence. Another reason why relying on
translations is a bad idea, is that, in a practical scenario, (un)safety errors would lead to
cryptic error messages, referring to translated queries, not the originals. Safety rules should
therefore cover all constructs of the real language.

Our work has both immediate and long term practical relevance. Newly developed
languages whose syntax allows unsafe queries currently attempt to rule them out using
bespoke solutions that change with every new compiler release. We provide them with a
systematic approach that can be used for base-line guarantees of safety and computability.
In longer term, our results could be used to relax the strict syntactic rules regulating the
use of UDFs in SQL. We envision users specifying access patterns for UDFs and the system
detecting unsafe usage of UDFs in queries.

Organization. Computability theory for queries with external predicates is developed in
Section 2. In Sections 3 and 4 we develop inference systems for RA and FO, and in Section 5
we combine them into an inference system for FO/RA. We describe related work in Section 6
and conclude in Section 7.

ICDT 2025



19:4 Queries with External Predicates

2 Framework

We assume a countably infinite set V of values (containing integers, floats, etc.) from which
we will take the data values in databases. Because we deal with relational algebra, first-order
logic, and a formalism that combines the two, it is convenient to work with a generalized
notion of tuple, that captures both ordinary tuples and valuations of variables. A tuple
schema is a finite set; elements of a tuple schema are called fields. For a tuple schema F , an
F-tuple is simply a function F Ñ V. We write VF for the set of all F -tuples. An F -relation
is a (possibly infinite) set R Ď VF of F -tuples. There is exactly one H-tuple and thus there
are exactly two H-relations: one that contains the H-tuple, and one that does not. We say
that an F1-tuple α1 extends an F2-tuple α2 if F1 Ě F2 and α1pfq “ α2pfq for all f P F2.
We then also say that α2 is a restriction of α1 (to F2).

For k P N, we denote the set t1, . . . , ku as rks. We refer to rks-tuples as k-ary tuples, and
identify α P Vrks with

`

αp1q, . . . , αpkq
˘

P Vk where Vk is the k-ary Cartesian product of V.
We also use F Ď rks to represent “partial” k-ary tuples. We use Vrks and Vk interchangeably.
We let V˚ “

Ť8

i“0 Vk. A k-ary relation or a relation of arity k is a (possibly infinite) set of
k-ary tuples.

2.1 Queries with External Predicates
We work with two kinds of predicates (or relation names), database predicates coming from
an infinite set D, and external predicates coming from an infinite set E, disjoint from D. We
assume a fixed function ar : DY EÑ N that assigns to each predicate R its arity arpRq.

Database predicates are the names of the (finite) relations we store in databases. A
database schema is a finite subset S Ď D. A database D over schema S is a function that
maps each database predicate R P S to a finite relation DpRq Ď VarpRq. We write DBpSq for
the set of all databases over S.

External predicates correspond to relations that are computed on demand rather than
stored in the database: built-in predicates such as arithmetical functions, or user-defined
predicates such as stored procedures in SQL databases. Crucially, they may be infinite and
we have to specify how they are accessed by the database system. We capture this through
the notions of access patterns and access schemas.

§ Definition 1 (Access Pattern). For a finite set F , an access pattern over F is a pair of sets
I, O Ď F , written I⇝O. A k-ary access pattern, for k P N, is an access pattern over rks.

For a (possibly infinite) F-relation R Ď VF , we write AccessI⇝O
R for the function that

maps an I-tuple α to the set of O-tuples β such that there is an F-tuple γ P R that extends
both α and β. Relation R supports I⇝O if AccessI⇝O

R pαq is finite for every I-tuple α and
moreover the function AccessI⇝O

R is computable.

When O is a singleton tou we usually write I⇝o instead of I⇝tou, and similarly for I.
Observe that R Ď VF supports the trivial access pattern F⇝H iff the membership problem
for R is decidable. On the other hand, R Ď VF supports H⇝F iff R is finite. Finally, every
finite F-relation supports all access patterns over F .

§ Definition 2 (Access Schema). An access schema is a finite-domain partial function E over
E that maps an external predicate L of arity k to a set EpLq of k-ary access patterns. By a
slight abuse of notation, we write L P E if E is defined on L.

§ Remark 3. In this paper we will only look at cases for which the membership problem for
each external predicate is decidable, hence we implicitly assume that access schemas always
contain the access pattern rarpLqs⇝H for every external predicate L.
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§ Example 4. Consider a database with a unary relation N and a binary relation E storing
nodes and edges of a graph. Let S be of the set triples pu, v, ℓq such that there is a path
from u to v of length ℓ in the stored graph. Although S does not support t1, 2u⇝3 (there
might be infinitely many paths of different lengths from some u to some v), it supports
t1, 2, 3u⇝H since it is easy to test if there is a path of length ℓ from node u to node v. In
fact, S supports all access patterns I⇝O with 3 P I. That said, a system may choose to not
provide the access pattern 3⇝t1, 2u because it might be too expensive due to its inherent
quadratic complexity. The access pattern 1⇝2 corresponds to allowing to return all nodes
reachable from a given node. This access pattern is also supported by S (despite using a
strict subset of the three positions of S) and is less costly computationally.

User defined functions often depend on the content of the database: in Example 4, the set
S depends on the stored graph. However, to keep our framework simple, we shall disregard
such dependencies, just as we disregard integrity constraints such as E Ď N ˆN . This does
not limit the scope of our results because our algorithms and inference systems are designed
to work uniformly with all databases and all interpretations of external predicates, including
the intended combinations. While incorporating such dependencies into the model might in
principle allow obtaining stronger results, we believe this is not a priority.

§ Definition 5 (E-Interpretation). An interpretation λ is a partial function that maps external
predicates to possibly infinite relations of matching arity, i.e λpLq Ď VarpLq, for L P E. It is
an E-interpretation if, for each L P E, the relation λpLq is defined and supports all access
patterns in EpLq. We write ΛpEq for the set of all E-interpretations.

Note that AccessI⇝O
λpLq is finite for every E-interpretation λ and pattern I⇝O in EpLq.

Consider Example 4 and let E be the access schema mapping a name PathLen P E
to tt1, 2, 3u⇝H, t1, 3u⇝2, t2, 3u⇝1u. Then the function that maps PathLen to the set S

in Example 4 is an E-interpretation. As the name suggests, access patterns in EpPathLenq
model how the engine allows one to access predicate PathLen, not only the finiteness and
computability of this information. Hence, an E-interpretation λ might be such that λpPathLenq
supports some access pattern I⇝O R EpPathLenq, such as 3⇝t1, 2u in our case.

§ Definition 6 (Queries). A query over access schema E , database schema S, and output
schema F is a function q : ΛpEq ˆ DBpSq Ñ 2VF ; that is, given an E-interpretation and
a database over S, it returns a (possibly infinite) set of F-tuples. We then also call q an
E-query. If F “ rks, we say that q is k-ary. In particular, the output schema of a unary
query is t1u.

§ Example 7. Continuing Example 4, consider an external predicate Rank that computes the
rank of a node based on the graph that is encoded in the database relation E. So, Rank is a set
of pairs pu, rq where u is a node and r is a value normalized to the interval [0,1] (e.g., PageRank,
betweenness, or another centrality score). The query HRpxq “ Dr Rankpx, rq ^ r ą 0.8
determines if a node x has a high rank. The query Npuq ^HRpuq ^ p@vEpv, uq ñ ␣HRpvqq
returns all nodes u that are highly ranked such that all nodes v with edges to u are not
(which may be interesting to detect cases of bots trying to artificially boost importance).
Notice that, formally, different interpretations λ can be used to associate different meanings
to Rank (PageRank, etc.).

2.2 Computability of E-queries
Since external predicates are potentially infinite, we need to define what it means for queries
to be computable, because infinite objects are not usually part of the input of computational
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19:6 Queries with External Predicates

problems. We base our computational model on Turing machines with oracles.

§ Definition 8 (Turing Machine with Oracles, adapted from [4]). A Turing machine with k

oracles ω1, . . . , ωk is a 3-tape Turing machine with an input tape and two special working
tapes, called the oracle input tape and the oracle output tape, as well as special states calli
and returni for every i P rks. Moreover, the transition table does not have any transitions
originating in calli, nor leading to returni.

Given an interpretation of each oracle name ωi as a function Ωi from words over the tape
alphabet to words over the tape alphabet, the machine behaves as an ordinary Turing machine
except when it enters a state calli for some i P rks. Whenever this happens, the current
content of the oracle output tape is replaced with Ωipuq where u is the current content of the
oracle input tape, and the machine moves to state returni. For a deterministic machine M

with k oracles, we write MΩ1,...,Ωkpwq for the output computed by M with oracle functions
Ω1, . . . , Ωk over input w.

From now on, we assume (as is standard in descriptive complexity and finite model
theory) that we have some fixed encoding of tuples and relations as words over the tape
alphabet (see examples in [2, 16, 24]). With this, we can speak of Turing Machines taking a
database or a tuple as input and returning a set of tuples.

§ Definition 9 (E-algorithm). For an access schema E, by an E-algorithm A we mean a
deterministic Turing machine M with an oracle named LI⇝O for each L P E and I⇝O in
EpLq. For an E-interpretation λ, by Aλ we denote the function M Ω̄ where Ω̄ interprets each
oracle name LI⇝O as AccessI⇝O

λpLq . We say that A computes a function f : ΛpEq ˆX Ñ Y ,
for some sets X, Y , if Aλpxq “ fpλ, xq for every E-interpretation λ and x P X. We say that
f is uniformly computable if there is an E-algorithm that computes it. We then also say that
fpλ, xq is uniformly computable from input x.

The above definition applies to E-queries which are functions q : ΛpEq ˆDBpSq Ñ 2VF ;
thus it specifies when E-queries are uniformly computable. Later we also apply it to functions
f : ΛpEq ˆDBpSq ˆ VI Ñ 2VF for I Ď F that additionally take an I-tuple as input, which
corresponds to letting X “ DBpSq ˆ VI .

Note that the notion of computability provided by E-algorithms is uniform with respect
to E-interpretations. That is, not only is the function computable for each interpretation,
but it is computed by the same algorithm given by a single Turing machine with oracles.
As such, it corresponds to the intuition of a program that can call external functions: the
program itself is fixed and independent from the external functions, whereas the output
of the program depends on the semantics of the external functions. The interfaces to the
external functions are given by E . Continuing Example 7, an E-algorithm would iterate
through all nodes in the relation E of edges, use oracle calls to determine their rank, and
then return all nodes u with high rank for which all its in-neighbors do not have high rank.

To round off the discussion of computability of E-queries, let us sketch a simple connection
to query evaluation in the classical setting. If λ is a finite E-interpretation, i.e., λpLq is
finite for all L P E , it can be materialized and stored in the database. In general this is not
possible, but the following proposition (a variant of a folklore property of Turing machines
with oracles) shows that, for uniformly computable queries, it suffices to store a sufficiently
large finite chunk of each external predicate.

§ Proposition 10. Let q be a uniformly computable E-query over database schema S and
output schema F . For every database D over S and every E-interpretation λ there is a finite
E-interpretation λ1 such that λ1pLq Ď λpLq for all L P E, and qpλ, Dq “ qpλ1, Dq. Moreover,
some such λ1 is uniformly computable from D.
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2.3 Safety of E-queries
A prerequisite for the computability of E-queries is safety, i.e., finiteness of the output.

§ Definition 11 (Safety). An E-query q is safe if qpλ, Dq is finite for every E-interpretation
λ and database D.

However, a safe E-query needs not be uniformly computable (see Example 33 in the
appendix). Our goal is to derive uniform computability for queries expressed in formalisms
such as relational algebra or first order logic. For this we need a notion that is flexible
enough to propagate up the syntax tree of the query and captures not only finiteness
but also computability. With these postulates in mind we introduce relative effective
safety. To keep the definition concise, we use two auxiliary notions. For an E-query q

over database schema S and output schema F , and access pattern I⇝O over F , we define
qI⇝O : ΛpEqˆDBpSqˆVI Ñ 2VO such that qI⇝Opλ, D, αq “ AccessI⇝O

qpλ,Dqpαq for all λ P ΛpEq,
D P DBpSq, and α P VI . By an overapproximation of a function f : X Ñ 2Y we mean any
function f 1 : X Ñ 2Y such that fpxq Ď f 1pxq for all x P X.

§ Definition 12 (Effective safety). Let q be a E-query over output schema F and let I Ď F . The
query q is effectively safe relative to I if there is a uniformly computable overapproximation
of qI⇝F . When I “ H, we simply say that q is effectively safe.

Intuitively, relative effective safety means that, given values for all fields from I, we can
uniformly compute, from an input database, a finite upper bound on the set of query answers
having the specified values in all fields from I. In particular, if a query is effectively safe,
then not only do we know that it is safe but we can also compute an upper bound on the set
of answers on a given database. For instance, the query in Example 7 is trivially effectively
safe because the set of nodes in N is always an overapproximation of the output of the query.

In Definition 12 we let the algorithm compute an overapproximation of qI⇝F , rather
than qI⇝F itself, in order to simplify propagation up the syntax tree, as illustrated below.

§ Example 13. Consider effectively safe unary E-queries q1, q2, an arbitrary unary E-query q3,
and assume that t1, 2u⇝4 belongs to EpLq, for some L P E with arpLq “ 4. Then, the unary
E-query q, below, is also effectively safe.

qpλ, Dq “
␣

x4
ˇ

ˇ Dx1 P q1pλ, Dq Dx2 P q2pλ, Dq Dx3 P q3pλ, Dq px1, x2, x3, x4q P λpLqu

Indeed, by the hypotheses, there are two E-algorithms A1, A2 that compute overapproxim-
ations of qH⇝1

1 and qH⇝1
2 . From them, one may build the following E-algorithm A. For

every a1 returned by A1 and a2 returned by A2, call the Lt1,2u⇝4 oracle on input pa1, a2q.
Return the union of all sets returned by these (finitely many) calls. It can be verified that A
computes an overapproximation of qH⇝1.

Note that our reasoning needs no assumption on q3, and is valid only because we work with
overapproximations. Indeed, one cannot uniformly compute qH⇝1 from qH⇝1

1 and qH⇝1
2 .

Ultimately, however, we need the exact set of answers. To facilitate this, we introduce a
complementary notion of testability, which will be derived separately.

§ Definition 14 (Testability). An E-query q over output schema F is testable if qF⇝H is
uniformly computable.

Thus, q is testable if checking whether α P qpλ, Dq is uniformly computable from D and α.
While effective safety alone does not guarantee uniform computability (see Example 33 in
the appendix), together with testability it captures uniform computability exactly.

ICDT 2025



19:8 Queries with External Predicates

§ Proposition 15. An E-query q is uniformly computable iff it is effectively safe and testable.

Using overapproximations allows us to reason about the effective safety of single fields
rather than the whole query, which further improves propagation up the syntax tree.

§ Definition 16 (Relative effective safety of fields). Let q be an E-query over output schema F
and let I Ď F . A field o P F is effectively safe in q relative to I if there is a uniformly
computable overapproximation of qI⇝o.

For instance, if L P E and q is the E-query mapping each pλ, Dq to the relation λpLq then,
for each I⇝O in EpLq, each field o P O is effectively safe in q relative to I.

§ Proposition 17. Let q be an E-query over output schema F and let I Ď F . Query q is
effectively safe relative to I iff each field in F is effectively safe in q relative to I.

In the remainder of the paper we use the criterion in Proposition 17 as an equivalent
definition of (relative) effective safety.

3 Relational Algebra with External Predicates

In this section, we consider Relational Algebra (RA) in the unnamed perspective, adjusted
to handle external predicates. For an access schema E and a database schema S, the syntax
of E-expressions (of RA) over S is given by the grammar

E ::“ R | L | α | E Y E | E ´ E | E ˆ E | σi
.
“jpEq | πspEq

where R P S, L P E , α P V˚, i, j P N, and s P N˚ (note that s can have repetitions). In what
follows, by an RA expression we mean an E-expression of RA over S for some access schema
E and some database schema S. The semantics of an E-expression E over S, written JEK,
is a function that maps an E-interpretation λ and a database D over S to a set of tuples,
defined as follows. For R P S and L P E we have JRK pλ, Dq “ DpRq and JLK pλ, Dq “ λpLq.
The rest of the inductive definition is as usual [2]. We denote by arpEq the arity of E (defined
as usual) and by pospEq the set of positions in E, that is, pospEq “ t1, . . . , arpEqu. We only
allow expressions E1θE2 with θ P tY,X,´u whenever arpE1q “ arpE2q.

Note that the semantics JEK of an E-expression E over S is a query over access schema E ,
database schema S and output schema pospEq. We call E testable, effectively safe (relative
to a set P Ď pospEq of positions), or uniformly computable, if so is the query JEK. Similarly
we say that position i is effectively safe in E relative to P , if so is field i in the query JEK;
that is, JEKP⇝i has a uniformly computable overapproximation. In the following proposition
we highlight some basic facts about testability and effective safety of E-expressions.

§ Proposition 18.
1. Some RA expressions are not testable, and some are not effectively safe.
2. All RA expressions without external predicates are testable and effectively safe.
3. Testability, safety, and effective safety of RA expressions are undecidable.

Proof sketch. Concerning item 1, consider an empty database schema S and an access
schema E with a single binary predicate L such that EpLq “ tt1, 2u⇝Hu. Then, the
E expression E0 “ L is not safe and hence not effectively safe. Concerning testability, we
show that there cannot be an E-algorithm A that uniformly decides whether a P JE1K pλ, Dq

from input pD, aq where E1 “ π1pLq. The contradiction arises with two interpretations:
λ1pLq “ H and λ2pLq “ tpa, vqu, where v is a value not appearing in any of the finitely many
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calls of the Lt1,2u⇝H oracle during the execution of Aλ1pD, aq. The execution of Aλ2pD, aq

is identical to the one of Aλ1pD, aq, though the first should accept and the second reject.
Item 2 is easy. For item 3, given an RA expression F without external predicates over a

schema S, testing if the output of F is empty on each database is undecidable [2, Ch. 8].
Undecidability of (effective) safety is obtained by using expression E0ˆF , and undecidability
of testability by expression E1 ˆ F , where E0 and E1 are the expressions from item 1. đ

3.1 Inference System ISRA

We now present an inference system ISRA for deriving effective safety and testability of RA
expressions. Then, we will prove that ISRA is sound (Theorem 20), that it can derive effective
safety of all expressions without external predicates (Proposition 22), and that derivability of
testability and effective safety in the system is decidable (Proposition 21). In ISRA, we write
“i is effectively safe in E relative to P” as E $ P i and “E is testable” as Eó. Moreover,
whenever we write E $ P i, we implicitly assume that P Ď pospEq and i P pospEq. In
rule x9y below, P2 ` arpE1q stands for tj ` arpE1q | j P P2u. In rules x14y and x15y, the tuple
s of positions is used as a function t1, . . . , |s|u Ñ pospEq and in rule x21y, setpsq is the set of
elements in s.
Axiom, weakening, and cut
x1y

E $ tiu i
x2y

E $ P i

E $ P Y ti1u i
x3y

E $ P i E $ P 1 i1

E $ P Y pP 1 ´ tiuq i1

Atomic RA expressions
x4y

α$ H i
α P V˚

x5y
R$ H i

R P S x6y
L$ I i

L P E , I⇝O P EpLq, i P O

RA operations

x7y
E1$ P1 i E2$ P2 i

E1 Y E2$ P1 Y P2 i
x8y

E1$ P1 i

E1 ˆ E2$ P1 i
x9y

E2$ P2 i

E1 ˆ E2$ P2 ` arpE1q i` arpE1q

x10y
E1$ P1 i

E1 ´ E2$ P1 i
x11y

σi
.
“jpEq $ tiu j

x12y
σi

.
“jpEq $ tju i

x13y
E $ P i1

σi
.
“jpEq $ P i1

x14y
πspEq $ tiu i1

spiq “ spi1
q x15y

E $ P i

πspEq $ P 1 i1
spP 1

q “ P, spi1
q “ i

Testability
x16y

tαuó
α P V ˚

x17y
Ró

R P S x18y
Ló

L P E x19y
Eó

σi
.
“jpEqó

x20y
E1ó E2ó

pE1 θ E2qó
θ P tY,´,ˆu x21y

Eó E $ setpsq i for each i P pospEq ´ setpsq
πspEqó

Note that atomic RA expressions are effectively safe and testable (Proposition 18.2), hence
the rules x4y, x5y, x16y and x17y. Similarly, effective safety for external predicates (rule x6y)
are implied by the presence of suitable access patterns (Remark 3). Testability for external
predicate (rule x18y) is unconditional, because the trivial access pattern is always present.

§ Example 19. The inference system we presented is suited to the rather minimalistic syntax
we use. To illustrate how the system works, let us consider a derived operation: intersection.
It follows directly from the definitions that if position i is safe in expression E relative to
positions P , the same is true in expressions E X F and F X E. Hence, if we allowed the
X-operator in the syntax, it would be natural to add the following extra rules.

x22y
E1$ P1 i

E1 X E2$ P1 i
x23y

E2$ P2 i

E1 X E2$ P2 i
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19:10 Queries with External Predicates

Can we derive them in our system? Actually, it depends on how we express the intersection
operator using the already supported operators. If we take E1 X E2 “ E1 ´ pE1 ´ E2q,
then we can derive rule x22y using an application of rule x10y. However, there is no way
to derive x23y: the only rule applicable to the expression E1 ´ pE1 ´ E2q is x10y, and it
drops all information about the second argument. On the other hand, if we take E1 X E2 “

π1,...,npσ1“n`1 . . . σn“2npE1 ˆ E2qq, where n is the arity of both E1 and E2, then both rules
are derivable. For instance, we give below the derivation tree corresponding to rule x23y in
the case where E1 and E2 are binary, P2 “ t1u and i “ 2.

x11y
σ1 .

“3p¨ ¨ ¨ q $ t1u 3

E2$ t1u 2
x9y

E1 ˆ E2$ t3u 4
x13y

σ2 .
“4pE1 ˆ E2q $ t3u 4

x12y
σ2 .

“4pE1 ˆ E2q $ t4u 2
x3y

σ2 .
“4pE1 ˆ E2q $ t3u 2

x13y
σ1 .

“3pσ2 .
“4pE1 ˆ E2qq $ t3u 2

x3y
σ1 .

“3pσ2 .
“4pE1 ˆ E2qq $ t1u 2

x15y
π1,2pσ1 .

“3pσ2 .
“4pE1 ˆ E2qqq $ t1u 2

Note that it is not surprising that different statements are derivable depending on how
an operator is expressed. Indeed, equivalence of RA expressions is an undecidable semantic
notion, while statement derivability is a decidable syntactic notion.

3.2 Soundness and Completeness of ISRA

Unsurprisingly, the proposed inference system is sound.

§ Theorem 20 (Soundness of ISRA). Let E be an E-expression over S.
1. If the statement Eó is derivable in ISRA, then E is testable.
2. If, for some i P pospEq and some P Ď pospEq, the statement E $ P i is derivable in

ISRA, then position i is effectively safe in E relative to P .

Less typically, our inference system is effective, meaning that it is decidable whether a
given statement is derivable and if so, a derivation can be computed.

§ Proposition 21. ISRA is effective.

As our inference system is both sound (Theorem 20) and effective (Proposition 21), it
cannot be complete, because both testability and effective safety for RA are undecidable
(Proposition 18). From a practical view-point, an advantage of a decidable but incomplete
inference system over an undecidable but complete one, is that it defines a decidable class of
safe and computable queries. When such a system is integrated into a query engine, the user
can get transparent guarantees, rather than best-effort behaviour based on opaque heuristics:
the engine can show the rules to the user and promise to derive everything derivable.

While ISRA is incomplete in general, it does offer some relative completeness. First, as a
basic sanity check, one may verify that ISRA is complete for RA expressions without external
predicates. As these are all testable and effectively safe (Prop. 18), we have the following.

§ Proposition 22. For every RA expression E without external predicates, Eó and E $ H i

are derivable in ISRA for every i P pospEq.

Moreover, we can prove that ISRA is complete up to query equivalence when only trivial
access patterns are used in the access schema.
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§ Theorem 23. Assume that EpLq “
␣

rarpLqs⇝H
(

for all L P E. Let E be a uniformly
computable E-expression over S. Then there is an E-expression Ê such that JÊK “ JEK, and
statements Êó and Ê $ H i are derivable in ISRA for all positions i of Ê.

4 First-Order Logic with External Predicates

We now move to first-order logic (FO). Due to the presence of external predicates, we work
with the classical semantics, in which quantified variables range over the infinite set of values
V, rather than the active domain semantics. Note that we cannot reason about safety of FO
formulas by translating FO to RA: we know that safe FO equals RA, but this says nothing
about unsafe FO formulas. We need to know which formulas are safe before we can translate
them into RA. Could we have started with FO instead and handled RA by translation to
FO? Such a translation is possible in principle, but since no inference system for safety can
be complete, the resulting notion of safety for RA would then be translation-dependent. In
practice, this would mean that a user writing a query would be getting errors about the
translated query, not the one originally formulated.

We define syntax and semantics of first-order logic adjusted to handle external predicates
as follows. Let X be a set of variables, S a database schema, and E an access schema. The
syntax of formulas φ over an access schema E and database schema S, also referred to as
E-formulas, and terms t is given by the grammar

φ ::“ Rpxq | Lpxq | t “ t | φ_φ | φ^φ | ␣φ | Dx φ | @x φ t ::“ c | x

where R P S, L P E , c P V, x P X and x P X˚. For simplicity, we assume that if we have Dx φ

or @x φ, then x appears in φ. We use the classical notion of free variables of a formula φ,
denoted by fvpφq. The semantics of a formula φ is defined with respect to an E-interpretation
λ, a database D over S, and a valuation µ : fvpφq Ñ V of the free variables of φ:

λ, D, µ ( Rpxq iff µpxq P DpRq and λ, D, µ ( Lpxq iff µpxq P λpLq;
the interpretation of Boolean connectives ^,_ and ␣ is standard;
λ, D, µ ( Dx φ iff there is v P V such that λ, D, µrx ÞÑvs ( φ where the valuation µrx ÞÑvs

extends µ with µrx ÞÑvspxq “ v;
λ, D, µ ( @x φ iff λ, D, µrx ÞÑvs ( φ for every v P V.

For an E-formula φ over S, we let JφK pλ, Dq “
␣

µ : fvpφq Ñ V
ˇ

ˇ λ, D, µ ( φ
(

for all
λ P ΛpEq and D P DBpSq. Recall that an fvpφq-tuple is a function fvpφq Ñ V, hence JφK is
an E-query over database schema S and output schema fvpφq. We call formula φ testable,
effectively safe (relative to a set X Ď fvpφq of variables), or uniformly computable, if so is
query JφK. Similarly, a variable y P fvpφq is effectively safe in φ (relative to X Ď fvpφq), if so
is field y in the query JφK.

Also, to handle unrestricted negation ␣φ (the difference operator E1 ´ E2 in RA is
guarded negation), we introduce a dual notion of co-safety; it will facilitate meaningful
inferences for formulas outside the positive fragment of FO. Variable y P fvpφq is effectively
co-safe in φ (relative to X Ď fvpφq) if y is effectively safe in ␣φ (relative to X).

By the correspondence between RA and FO, we have an analogue of Proposition 18 for
FO. In particular, testability and effective (co-)safety are undecidable for FO formulas.

4.1 Inference System ISFO

Like for RA, we use a sequent-like notation. For X Ď fvpφq and y P fvpφq, we write φ$ X y

for “y is effectively safe in φ relative to X”, and φ $ X y for “y is effectively co-safe in φ
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19:12 Queries with External Predicates

relative to X”. Moreover, we represent rules that are identical for safety and co-safety as
a single rule, with the symbol representing either or . Note that this choice must
be consistent when a rule is applied: if appears multiple times in a rule, then either all
occurrences are interpreted as or all are interpreted as .
Axiom, weakening, and cut
x24y

φ $ txu x
x25y

φ $ X y

φ $ X Y tzu y
x26y

φ $ X y φ $ X 1 y1

φ $ X Y pX 1 ´ tyuq y1

Atoms
x27y

y “ v$ H y
y P X, v P V x28y

v “ y$ H y
y P X, v P V x29y

y “ x$ txu y
x, y P X

x30y
x “ y$ txu y

x, y P X x31y
Rpx1, . . . , xnq $ H xj

R P S, j P t1, . . . , nu

x32y
Lpx1, . . . , xnq $ txi | i P Iu xj

L P E , I⇝O P EpLq, j P O

Boolean operations

x33y
φ1$ X1 y φ2$ X2 y

φ1 _ φ2$ X1 YX2 y
x34y

φ1 $ X1 y φ2 $ X2 y

φ1 ^ φ2 $ X1 YX2 y

x35y
φ1$ X1 y

φ1 ^ φ2$ X1 y
x36y

φ1 $ X2 y

φ1 _ φ2 $ X2 y
x37y

φ $ X y

␣φ$ X y

x38y
φ2$ X2 y

φ1 ^ φ2$ X2 y
x39y

φ2 $ X2 y

φ1 _ φ2 $ X2 y
x40y

φ$ X y

␣φ $ X y

Quantifiers

x41y
φ $ X y

Dz φ $ X y
z ‰ y, z R X x42y

φ $ X y

@z φ $ X y
z ‰ y, z R X

Testability
x43y

t1 “ t2ó
t1, t2 P V Y X x44y

Rpx1, . . . , xnqó
R P S x45y

Lpx1, . . . , xnqó
L P E

x46y
φ1ó φ2ó

pφ1 θ φ2qó
θ P t_, ^u x47y

φó

p␣φqó

Testability of quantified formulas requires some minimal safety of the eliminated variable.

x48y
φó φ $ fvpφq ´ tzu z

pDz φqó
z P fvpφq x49y

φó φ $ fvpφq ´ tzu z

p@z φqó
z P fvpφq

4.2 Soundness and Completeness
As in the case of RA, our inference system for FO is sound and effective.

§ Theorem 24 (Soundness of ISFO). Let φ be an E-formula.
1. If the statement φó is derivable in ISFO, then φ is testable.
2. For X Ď fvpφq and y P fvpφq, if the statement φ$ X y (resp. φ $ X y) is derivable

in ISFO, then variable y is effectvely safe (resp. effectively co-safe) in φ relative to X.

§ Proposition 25. ISFO is effective.

As for RA, this precludes general completeness, but we can show that ISFO is complete for
safe-range FO formulas [1, Chapter 5] (see the appendix for the definition). The importance
of safe-range FO formulas stems from the following folklore result concerning safe queries
(i.e. that always return a finite set of tuples, as per Definition 11).

§ Theorem 26 (Folklore). For every FO formula φ without external predicates such that
the query JφK is safe, there is a safe-range FO formula φ1 without external predicates such
that JφK “ Jφ1K.
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Note that in the absence of external predicates, all safe FO formulas are effectively safe
(because they are testable). The class of effectively safe formulas defined by ISFO includes all
safe-range FO formulas.

§ Theorem 27. Let φ be an FO formula without external predicates that is safe-range. Then,
the statements φó and φ$ H x for each x P fvpφq can be derived in ISFO.

Note that our system avoids normalizing formulas by relying on co-safety. Let us see
that ISFO can derive effective safety also for some non-safe-range formulas without external
predicates.

§ Example 28. Consider the formula φpyq :“ ␣Dx p␣Rpx, yq _ Spxqq with R, S P S. Note that
φpyq is trivially false for each y because R is finite. Using our inference system one can derive
φ$ H y by alternating between safety and co-safety: starting from Rpx, yq $ H y, we
can apply rules x40y, x36y, x41y, and x40y to derive ␣Dx p␣Rpx, yq _ Spxqq $ H y. However,
φ is not safe-range.

Analogously to the RA case, we are now ready to prove completeness of the inference
system of Section 4.1, up to query equivalence, in the case of trivial access patterns.

§ Theorem 29. Assume that EpLq “ trarpLqs⇝Hu for all L P E. Let φ be a uniformly
computable E-formula over S. Then there is a E-formula φ̂ such that Jφ̂K “ JφK, and
statements φ̂ó and φ̂$ H x are derivable in ISFO for all x P fvpφ̂q.

Note that this result does not contradict [30] which states that safe queries may not have
effective syntax for a particular interpretation λ, as queries safe under that interpretation
need not be safe under all interpretations (and thus they need not be uniformly computable).

5 Combining Algebra and Logic

We are now ready to approach the combination of relational algebra and first-order logic,
announced in the introduction. All we need to do is connect RA expressions and FO formulas.
This is done by turning each formula into an algebra expression that produces the set of
valuations of free variables that satisfy the formula (comprehension), and turning each algebra
expression of arity n into a formula with n free variables (membership).

5.1 Syntax and Semantics
The grammars for E-expressions over S and E-formulas over S are combined into one and
extended with productions

E ::“ tx : φu (Comprehension) and φ ::“ Epxq (Membership)

where x P X˚. We refer to the resulting expressions as FO/RA expressions. Observe that an
expression E can now have free variables, denoted by fvpEq. We let

fvptx1, . . . , xk : φuq “ fvpφq´tx1, . . . , xku and fv
`

Epx1, . . . , xkq
˘

“ fvpEqYtx1, . . . , xku .

Note also that the productions φ ::“ Rpxq and φ ::“ Lpxq are now redundant because they
are generalized by the membership rule above, and can therefore be omitted.

The semantics of both formulas and expressions is given with respect to a database D, an
interpretation λ of external predicates, and a valuation µ of variables (which can now occur
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also in expressions). We define the semantics of comprehension and membership (which
make formulas and expressions interdependent) as follows:

Jtx1, . . . , xk : φuKµ pλ, Dq “ tpv1, . . . , vkq P Vk | λ, D, µrx1 ÞÑ v1, . . . , xk ÞÑ vks ( φu

λ, D, µ ( Epx1, . . . , xkq iff
`

µpx1q, . . . , µpxkq
˘

P JEKµ pλ, Dq

A FO/RA formula φ defines a query JφK over output schema fvpφq,

JφK pλ, Dq “
␣

µ P Vfvpφq
ˇ

ˇ λ, D, µ ( φu .

A FO/RA expression E defines a query JEK over output schema pospEq Y fvpEq,

JEK pλ, Dq “
␣

αY µ
ˇ

ˇ α P VpospEq, µ P VfvpEq, α P JEKµ pλ, Dqu .

§ Example 30. Let R and S be binary predicates. The expression tpx, yq : Dz Rpx, zq^Rpz, yqu

returns endpoints of paths of length two in relation R, while tpx, yq : Dz pR´Sqpx, zq^ pR´

Sqpz, yqu returns endpoints of paths of length two in R´ S.

The definitions of uniform computability, testability, as well as (relative) effective safety
and co-safety carry over immediately to FO/RA formulas and expressions. In particular,
o P pospEq Y fvpEq is effectively safe in E relative to ∆ Ď fvpEq Y pospEq if so is o in JEK.

5.2 Inference System ISFO{RA

The inference system for FO/RA combines the systems for FO and RA, along with additional
rules that allow moving between formulas and expressions. As before, we use a sequent-like
notation: for ∆ Ď pospEq Y fvpEq and o P pospEq Y fvpEq, we write E $ ∆ o for “o is
effectively safe in E relative to ∆”.

ISFO{RA consists of three parts. The first part is ISFO, as defined in Section 4.1. The
second part is ISRA from Section 3.1, slightly generalized to accommodate both positions and
variables in safety rules. More precisely, in axiom, weakening, and cut, we simply replace P ,
P 1 and i, i1 with ∆, ∆1 and o, o1. Rules for atomic expressions remain the same. In rules for
RA operations, we replace P , P1, P2 and i, i1 with ∆, ∆1, ∆2 and o, o1 in rules x7y, x8y, x10y,
and x13y. Rules x11y, x12y, and x14y are not changed. Rule x9y is replaced with rules

x50y
E2$ P2 YX2 y

E1 ˆ E2$ pP2 ` arpE1qq YX2 y
x51y

E2$ P2 YX2 i

E1 ˆ E2$ pP2 ` arpE1qq YX2 i` arpE1q

where P2 Ď pospE2q, X2 Ď fvpE2q, i P pospE2q, and y P fvpE2q. Rule x15y is replaced with

x52y
E $ P YX i

πspEq $ P 1 YX i1
spP 1

q “ P, spi1
q “ i x53y

E $ P YX y

πspEq $ P 1 YX y
spP 1

q “ P

where P Ď pospEq, X Ď fvpEq, i P pospEq, P 1 Ď pospπspEqq, i1 P pospπspEqq, and y P fvpEq.
Rules for testability are not changed except that setpsq in rule x21y, is replaced by setpsqYfvpEq.

The third part of ISFO{RA takes care of the two new productions that turn formulas into
expressions and the other way around. For a set ∆, we let ∆ro{o1s denote ∆ itself when
o R ∆, and p∆´touqY to1u otherwise. Moreover, we write ∆ro1{o

1
1, . . . , ok{o

1
ks, where all oi’s

are different, as a shorthand for ∆ro1{o
1
1s ¨ ¨ ¨ rok{o

1
ks. With this in place, we introduce the

following safety rules for comprehension and membership productions.

x54y
E $ ∆ i

Epx1, . . . , xnq $ ∆r1{x1, . . . , n{xns xi
x55y

E $ ∆ y

Epx1, . . . , xnq $ ∆r1{x1, . . . , n{xns y

x56y
φ$ ∆ xi

tx1, . . . , xn : φu$ ∆rx1{1, . . . , xn{ns i
x57y

φ$ ∆ y

tx1, . . . , xn : φu$ ∆rx1{1, . . . , xn{ns y
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x58y
tx1, . . . , xn : φu$ tiu j

xi “ xj x59y
φó

tx : φuó
x P X˚

x60y
Eó

Epxqó
x P X˚

Note that going from expressions to formulas and back is transparent for testability, as shown
by rules x59y and x60y above.

Finally, we show that ISFO{RA is sound (Theorem 31), and effective (Proposition 32).

§ Theorem 31 (Soundness of ISFO{RA). Let ξ be an E-expression or an E-formula.
1. If the statement ξó is derivable in the ISFO{RA, then ξ is testable.
2. For ∆ Ď pospξqYfvpξq and o P pospξqYfvpξq, if ξ$ ∆ o (resp. ξ $ ∆ f) is derivable

in ISFO{RA, then o is effectively safe (resp. co-safe) in ξ relative to ∆.

§ Proposition 32. ISFO{RA is effective.

6 Related Work

Our work is closely related to the notion of access patterns [23]: those state that values of
some attributes must be given to retrieve tuples from a relation. While our access patterns
are similar to those studied in the literature [12, 14, 22, 26, 13] they are more general since
we allow patterns of the form I⇝O where I Y O is not the entire set of attributes. Our
notion of a set X supporting access pattern I⇝O is similar to having a finiteness constraint
I⇝O on X [29] but is again more general. For instance even if for all positions I in X, the
number of values for O is finite (that is, X satisfies finiteness constraint I⇝O in [29]), this
does not mean that I⇝O needs to allow the access pattern I⇝O. For example, even though
the set of phone numbers is finite, an external predicate (or web service) may only allow
access to a phone number if a correct name and address is provided.

Furthermore, in the literature on access patterns, relations are finite, and most of that
work focus on conjunctive queries, their unions, and slight extensions [26, 20], though some
of it was extended to the entire relational calculus [25]. The latter served as the basis for
deriving effective computability in a related setting of bounded evaluation [13, 9]. That work
itself came from formalizing the notion of scale independence in big data querying [3].

Both the access pattern framework [26] and the bounded evaluation framework [13]
present (essentially) derivation rules for first-order logic queries, that are similar to our rules
for safety in Section 4. These however do not touch infinite relations, nor co-safety, nor
testability, and only work in the context of FO (no RA or FO/RA). Importantly, the notions
of computability targeted in these works are rather specific and vary from one framework
to another (e.g., annotated query plans [14], stability [22], V-executability [26]). Here, we
study a general notion of computability in the presence of access patterns (based on Turing
machines with oracles) that subsumes previously considered notions while remaining close to
execution models for queries with UDFs.

Safety with infinite predicates was studied in the settings of constraint databases and
Datalog queries. Regarding the former [21], we know that in general an analog of SafeFO
defined via range-restriction is impossible: there are computable external predicates for
which the safe queries cannot be captured by a recursively enumerable class of FO queries
[30]. A known case of safety captured by range-restriction applies to external predicates
defined over R with the usual arithmetic operations and comparisons [8]. However, these
results already break over Q or Z, which makes them mostly of theoretical interest. Safety of
positive Datalog programs in the presence of infinite predicates is discussed in [27, 29, 11]. In
that case, safety breaks down into two components: safety of one step of the recursion (called
weak safety) and termination of the recursion. Most of the work is about the termination
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of the program. It is undecidable in general [29], and several conditions on the IDBs are
known to make it decidable [29, 11]. Weak safety of positive Datalog programs corresponds
in our setting to safety of UCQs. It is shown to be EXPTIME-complete in [29] and another
algorithm is given in [11]. In both cases, propagation of finiteness dependencies appears in
proofs, but no inference system is explicitly formalised.

Computability in the presence of infinite relations can be quite intricate. Classically
queries are defined as computable maps from finite databases to finite relations [10, 2].
When the finiteness assumption is relaxed, several approaches exist. In recursive databases
[17, 18], relations are possibly infinite but computable, and are given by their defining
Turing machines. This model finds its origins in the theory of computability over recursive
graphs [7, 6]. However in general such infinite computable relations are not even closed
under FO operations, unless they are highly symmetric. Another related setting is that of
metafinite model theory [15], in which database elements can be associated with elements of
an infinite structure (such as, for example, real numbers with arithmetic). While a number
of expressiveness results were obtained in [15], the development of a computational model for
this setting was left for future work, but it was never completed to the best of our knowledge.
On the other hand, a sufficient condition for a positive Datalog program to be computable is
given in [11]: in each rule, the body variables need to be safe relative to the head variables.
It is related to our rule x48y, and their condition would be that this rule is applicable for
every existential quantifier.

7 Conclusion

We formalized queries with external predicates along with a corresponding notion of comput-
ability, requiring the existence of a uniform algorithm that communicates with an oracle for
each access pattern to an external predicate. This means that the same algorithm (where
only oracles change) always computes the correct query result and works for every possible
interpretation of the external predicates. We also characterized computability of arbitrary
queries in terms of their effective safety and testability.

In our quest for computability, we presented effective rule systems for inferring effective
safety and testability for RA, FO, and FO/RA. Our inference systems can used as working
components of an actual DBMS, providing a transparent and effective sufficient criterion
for computability. When such an inference system is integrated in a query engine, the user
gets transparent guarantees, rather than best-effort behavior based on internal compiler
heuristics. The latter happens in languages such as Rel and .QL, where safety guarantees
are inferred from the compiler’s behavior (that may well change) rather than cast in stone
in the documentation. We make another important step towards applicability in real-life
languages by studying safety and computability in a language that combines FO with RA,
as happens in many relational query languages. We believe a variety of language-specific
features can be covered simply by including additional rules into the inference system. An
interesting question is how to use the insights gained during inference to build query plans.

A fundamental open question is the completeness of our inference systems. Safety, effective
safety, and testability are undecidable for RA and FO, so any effective inference system
for these notions must be incomplete, but we did prove relative completeness (up to query
equivalence) in the case when the external schema only provides trivial access patterns. Can
this be extended to arbitrary access patterns? A positive answer would mean that derivable
computability, despite being more restrictive than computability, does not additionally limit
the expressive power of queries.



Guagliardo, Libkin, Marsault, Martens, Murlak, Peterfreund, Sirangelo 19:17

References
1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,

1995.
2 Marcelo Arenas, Pablo Barceló, Leonid Libkin, Wim Martens, and Andreas Pieris. Database

Theory. Open source at https://github.com/pdm-book/community, 2022.
3 Michael Armbrust, Eric Liang, Tim Kraska, Armando Fox, Michael J. Franklin, and David A.

Patterson. Generalized scale independence through incremental precomputation. In Kenneth A.
Ross, Divesh Srivastava, and Dimitris Papadias, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June
22-27, 2013, pages 625–636. ACM, 2013. doi:10.1145/2463676.2465333.

4 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2006. URL: https://theory.cs.princeton.edu/complexity/book.pdf.

5 Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: object-
oriented queries on relational data. In Shriram Krishnamurthi and Benjamin S. Lerner,
editors, 30th European Conference on Object-Oriented Programming, ECOOP 2016, July
18-22, 2016, Rome, Italy, volume 56 of LIPIcs, pages 2:1–2:25. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ECOOP.2016.2, doi:
10.4230/LIPICS.ECOOP.2016.2.

6 D. R. Bean. Recursive Euler and Hamilton paths. Proc. Amer. Math. Soc., 55:385–394, 1976.
7 Richard Beigel and William I. Gasarch. On the complexity of finding the chromatic number

of a recursive graph I: the bounded case. Ann. Pure Appl. Log., 45(1):1–38, 1989. doi:
10.1016/0168-0072(89)90029-8.

8 Michael Benedikt and Leonid Libkin. Safe constraint queries. SIAM J. Comput., 29(5):1652–
1682, 2000. doi:10.1137/S0097539798342484.

9 Yang Cao, Wenfei Fan, and Tengfei Yuan. Bounded evaluation: Querying big data with
bounded resources. Int. J. Autom. Comput., 17(4):502–526, 2020. URL: https://doi.org/
10.1007/s11633-020-1236-1, doi:10.1007/S11633-020-1236-1.

10 Ashok K. Chandra and David Harel. Computable queries for relational data bases. J. Comput.
Syst. Sci., 21(2):156–178, 1980. doi:10.1016/0022-0000(80)90032-X.

11 Sara Cohen, Joseph (Yossi) Gil, and Evelina Zarivach. Datalog programs over infinite databases,
revisited. In Marcelo Arenas and Michael I. Schwartzbach, editors, Database Programming
Languages, pages 32–47, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

12 Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting queries using views with access
patterns under integrity constraints. Theor. Comput. Sci., 371(3):200–226, 2007. URL:
https://doi.org/10.1016/j.tcs.2006.11.008, doi:10.1016/J.TCS.2006.11.008.

13 Wenfei Fan, Floris Geerts, and Leonid Libkin. On scale independence for querying big data.
In Richard Hull and Martin Grohe, editors, Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June
22-27, 2014, pages 51–62. ACM, 2014. doi:10.1145/2594538.2594551.

14 Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query optimization in
the presence of limited access patterns. In Alex Delis, Christos Faloutsos, and Shahram
Ghandeharizadeh, editors, SIGMOD 1999, Proceedings ACM SIGMOD International Con-
ference on Management of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA, pages
311–322. ACM Press, 1999. doi:10.1145/304182.304210.

15 Erich Grädel and Yuri Gurevich. Metafinite model theory. Inf. Comput., 140(1):26–81, 1998.
URL: https://doi.org/10.1006/inco.1997.2675, doi:10.1006/INCO.1997.2675.

16 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y. Vardi,
Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Texts in Theor-
etical Computer Science. An EATCS Series. Springer, 2007. doi:10.1007/3-540-68804-8.

17 Tirza Hirst and David Harel. Completeness results for recursive data bases. In Catriel Beeri,
editor, Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles

ICDT 2025

https://github.com/pdm-book/community
https://doi.org/10.1145/2463676.2465333
https://theory.cs.princeton.edu/complexity/book.pdf
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.4230/LIPICS.ECOOP.2016.2
https://doi.org/10.4230/LIPICS.ECOOP.2016.2
https://doi.org/10.1016/0168-0072(89)90029-8
https://doi.org/10.1016/0168-0072(89)90029-8
https://doi.org/10.1137/S0097539798342484
https://doi.org/10.1007/s11633-020-1236-1
https://doi.org/10.1007/s11633-020-1236-1
https://doi.org/10.1007/S11633-020-1236-1
https://doi.org/10.1016/0022-0000(80)90032-X
https://doi.org/10.1016/j.tcs.2006.11.008
https://doi.org/10.1016/J.TCS.2006.11.008
https://doi.org/10.1145/2594538.2594551
https://doi.org/10.1145/304182.304210
https://doi.org/10.1006/inco.1997.2675
https://doi.org/10.1006/INCO.1997.2675
https://doi.org/10.1007/3-540-68804-8


19:18 Queries with External Predicates

of Database Systems, May 25-28, 1993, Washington, DC, USA, pages 244–252. ACM Press,
1993. doi:10.1145/153850.153905.

18 Tirza Hirst and David Harel. More about recursive structures: Descriptive complexity and
zero-one laws. In Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science,
New Brunswick, New Jersey, USA, July 27-30, 1996, pages 334–347. IEEE Computer Society,
1996. doi:10.1109/LICS.1996.561361.

19 Herbert Jordan, Bernhard Scholz, and Pavle Subotic. Soufflé: On synthesis of program
analyzers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part II, volume 9780 of Lecture Notes in Computer Science, pages 422–430. Springer, 2016.
doi:10.1007/978-3-319-41540-6\_23.

20 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Conjunctive queries with
free access patterns under updates. In Floris Geerts and Brecht Vandevoort, editors, 26th
International Conference on Database Theory, ICDT 2023, March 28-31, 2023, Ioannina,
Greece, volume 255 of LIPIcs, pages 17:1–17:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICDT.2023.17, doi:10.4230/
LIPICS.ICDT.2023.17.

21 Gabriel Kuper, Leonid Libkin, and Jan Paredaens. Constraint Databases. Springer, 2000.
22 Chen Li. Computing complete answers to queries in the presence of limited access patterns.

VLDB J., 12(3):211–227, 2003. URL: https://doi.org/10.1007/s00778-002-0085-6, doi:
10.1007/S00778-002-0085-6.

23 Chen Li and Edward Y. Chang. On answering queries in the presence of limited access
patterns. In Jan Van den Bussche and Victor Vianu, editors, Database Theory - ICDT 2001, 8th
International Conference, London, UK, January 4-6, 2001, Proceedings, volume 1973 of Lecture
Notes in Computer Science, pages 219–233. Springer, 2001. doi:10.1007/3-540-44503-X\_15.

24 Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An
EATCS Series. Springer, 2004. URL: http://www.cs.toronto.edu/%7Elibkin/fmt.

25 Alan Nash and Bertram Ludäscher. Processing first-order queries under limited access patterns.
In Catriel Beeri and Alin Deutsch, editors, Proceedings of the Twenty-third ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 14-16, 2004, Paris,
France, pages 307–318. ACM, 2004. doi:10.1145/1055558.1055601.

26 Alan Nash and Bertram Ludäscher. Processing unions of conjunctive queries with negation
under limited access patterns. In Advances in Database Technology - EDBT 2004, 9th
International Conference on Extending Database Technology, Heraklion, Crete, Greece, March
14-18, 2004, Proceedings, volume 2992 of Lecture Notes in Computer Science, pages 422–440.
Springer, 2004. doi:10.1007/978-3-540-24741-8\_25.

27 R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. Safety of recursive horn clauses with
infinite relations. In Proceedings of the Sixth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, PODS ’87, page 328–339, New York, NY, USA, 1987.
Association for Computing Machinery. doi:10.1145/28659.28694.

28 RelationalAI, 2024. https://learn.relational.ai/.
29 Y. Sagiv and M. Y. Vardi. Safety of datalog queries over infinite databases. In Proceedings of

the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
PODS ’89, page 160–171, New York, NY, USA, 1989. Association for Computing Machinery.
doi:10.1145/73721.73738.

30 Alexei P. Stolboushkin and Michael A. Taitslin. Finite queries do not have effective syntax.
Inf. Comput., 153(1):99–116, 1999. URL: https://doi.org/10.1006/inco.1999.2792, doi:
10.1006/INCO.1999.2792.

https://doi.org/10.1145/153850.153905
https://doi.org/10.1109/LICS.1996.561361
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.4230/LIPIcs.ICDT.2023.17
https://doi.org/10.4230/LIPICS.ICDT.2023.17
https://doi.org/10.4230/LIPICS.ICDT.2023.17
https://doi.org/10.1007/s00778-002-0085-6
https://doi.org/10.1007/S00778-002-0085-6
https://doi.org/10.1007/S00778-002-0085-6
https://doi.org/10.1007/3-540-44503-X_15
http://www.cs.toronto.edu/%7Elibkin/fmt
https://doi.org/10.1145/1055558.1055601
https://doi.org/10.1007/978-3-540-24741-8_25
https://doi.org/10.1145/28659.28694
https://learn.relational.ai/
https://doi.org/10.1145/73721.73738
https://doi.org/10.1006/inco.1999.2792
https://doi.org/10.1006/INCO.1999.2792
https://doi.org/10.1006/INCO.1999.2792


Guagliardo, Libkin, Marsault, Martens, Murlak, Peterfreund, Sirangelo 19:19

A Supplementary Materials for Section 2 (Framework)

§ Proposition 10. Let q be a uniformly computable E-query over database schema S and
output schema F . For every database D over S and every E-interpretation λ there is a finite
E-interpretation λ1 such that λ1pLq Ď λpLq for all L P E, and qpλ, Dq “ qpλ1, Dq. Moreover,
some such λ1 is uniformly computable from D.

Proof. Let A be an E-algorithm that computes q. Let D be a database over S, and λ

an E-interpretation. Let us run the algorithm A on input D with E-interpretation λ, and
log all calls to each oracle along with the received answers. For every call to oracle LI⇝O

with input α : I Ñ V and every tuple β : O Ñ V received in return, there is a witnessing
tuple γ P λpLq that extends both α and β. Let us pick one such γ for each α and β, and
let pλpLq be the (finite) set of all tuples picked for all oracles LI⇝O with I⇝O ranging
over EpLq. Because pλpLq is finite, it supports all access patterns in EpLq. Hence, λ is an
E-interpretation. We claim that AλpDq “ ApλpDq. Indeed, for each logged oracle call, the
answer is the same with interpretation λ and with interpretation pλ. A simple argument by
induction on the number of steps shows that the runs of A with interpretation λ and with
interpretation pλ are the same, which gives the claim. Because the algorithm computes q, we
have qpλ, Dq “ AλpDq “ ApλpDq “ qppλ, Dq.

Every choice of witnessing tuples gives a finite interpretation pλ such that qpλ, Dq “ qppλ, Dq.
Let us see that we can uniformly compute some such pλ from D. For every call to oracle
LI⇝O with input α and every β received in return, rather than guessing a witnessing tuple
γ P λpLq, we compute it: we iterate over all tuples γ P VarpLq that extend both α and β,
and for each such γ call the oracle LrarpLqs⇝H. Because some witnessing γ exists, the oracle
will give the positive answer eventually. Then we add the current γ to pλpLq. This gives a
terminating E-algorithm that computes some pλ such that qpλ, Dq “ qppλ, Dq. đ

§ Example 33. Consider the binary relation H containing all pairs pM, kq where M is a Turing
machine that halts in exactly k steps on the empty word. Notice that H supports t1, 2u⇝H;
indeed, it is decidable to test if a given pM, kq is in H or not. Let Halts be an external
predicate symbol and EpHaltsq “ tt1, 2u⇝Hu. Consider now a database relation symbol TM
and the database D mapping TM to a finite set of (encodings of) Turing machines we are
interested in.

The query returning all x such that TMpxq ^ Dk Haltspx, kq is not only safe, but also
effectively safe. Indeed, for every database D and every E-interpretation, the set of returned
answers is a subset of D. However, the query is not uniformly computable because any
hypothetical E-algorithm A computing it could be used to solve the halting problem. Indeed,
by taking λ : Halts ÞÑ H, we would have that AλpDq is the set of all Turing machines
in D which halt on the empty word, and this for all D. In particular on databases DM

containing a single Turing machine M , the set AλpDM q would be tMu iff M halts on the
empty word. Notice that Aλ is a computable function (in the classical sense). In fact A,
under interpretation λ, can be turned into an ordinary algorithm by replacing each call to
the Halts oracle by the the decision procedure for H. We would then have an algorithm for
the halting problem. For similar reasons the query is not testable (see Definition 14).

§ Proposition 15. An E-query q is uniformly computable iff it is effectively safe and testable.

Proof. Let q be an E-query over database schema S and output schema F .
Suppose that q is uniformly computable. It follows immediately that there is a uniformly

computable overapproximation of qH⇝F : indeed, the query q itself is such overapproximation,
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modulo interpreting q : ΛpEq ˆ DBpSq Ñ VF as a function ΛpEq ˆ DBpSq ˆ VH Ñ VF .
Hence, q is effectively safe. Testability also follows easily: the algorithm simply computes
the set qpλ, Dq and checks if it contains the input tuple.

Conversely, suppose that q is effectively safe and testable. It follows that there are two
E-algorithms, computing qF⇝H and an overapproximation f of qH⇝F , respectively. An
E-algorithm computing q can be obtained as follows. First, run the E-algorithm computing
the overapproximation f on the input database D and the H-tuple. Then, for each returned
F-tuple β, run the E-algorithm computing qFÑH on D and β, test if it returns H or the
singleton of the H-tuple, and—in the latter case—add β to the initially empty output set.
Return the resulting output set. đ

§ Proposition 17. Let q be an E-query over output schema F and let I Ď F . Query q is
effectively safe relative to I iff each field in F is effectively safe in q relative to I.

Proof. Let q be an E-query over database schema S and output schema F , and let I Ď F .
Suppose that q is effectively safe relative to I. Then, there are uniformly computable

approximations fo of qI⇝o for all o P F . Let f : ΛpEq ˆDBpSq ˆ VI Ñ 2VF be defined as

fpλ, D, αq “
␣

β : F Ñ V
ˇ

ˇ βpoq P fopλ, D, αq for all o P F
(

.

It is routine to check that f is an overapproximation of qI⇝F and that it is uniformly
computable.

Conversely, suppose that there is a uniformly computable overapproximation f of qI⇝F .
For each o P F , we can define a uniformly computable overapproximation fo of qI⇝o by
letting fopλ, D, αq “

␣

βpoq
ˇ

ˇ β P fpλ, D, αq
(

. đ
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